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Genetic linkage analysis can be used to identify regions of
the genome that contain genes that predispose to disease.
We begin by explaining the principles of such analysis in
the context of major gene disorders, then consider
methods more suited to complex diseases that do not
require the specification of a disease model (model-free or
non-parametric linkage). Finally we consider the power
and interpretation of linkage studies and the choice of
phenotype.

Linkage and linkage disequilibrium are two key
concepts in genetic epidemiology (see first paper in this
series1). Two genetic loci are linked if they are transmitted
together from parent to offspring more often than
expected under independent inheritance. They are in
linkage disequilibrium if, across the population as a
whole, they are found together on the same haplotype
more often than expected (see a later paper in this series2).
In general, two loci in linkage disequilibrium will also be
linked, but the reverse is not necessarily true. 

Linkage extends over much longer regions of the
genome than does linkage disequilibrium. Two loci are
linked if, during meiosis, recombination occurs between
them with a probability of less than 50%.1 By contrast,
every time recombination occurs between the loci in the
population, the linkage disequilibrium between them is
weakened, and is maintained only if the two loci are very
close together. Linkage analysis is often the first stage in
the genetic investigation of a trait, since it can be used to
identify broad genomic regions that might contain a
disease gene, even in the absence of previous biologically
driven hypotheses. 

Parametric linkage analysis
Parametric or model-based linkage analysis is the analysis
of the cosegregation of genetic loci in pedigrees. Loci that
are close enough together on the same chromosome
segregate together more often than do loci on different
chromosomes. Loci on different chromosomes segregate
together purely by chance. Each genotype for one genetic
marker or locus is made up of two alleles, one inherited
from each parent. Specific alleles are in gametic phase
when they are coinherited from the same parent—ie, they
were present together in the single transmitted gamete

originating from that parent. The further apart two loci are
on the same chromosome, the more likely it is that a
recombination event at meiosis will break up the
cosegregation. The main quantity of interest in parametric
linkage analysis is the recombination fraction � (the
probability of recombination between two loci at meiosis).
By genotyping genetic markers and studying their
segregation through pedigrees, it is possible to infer their
position relative to each other on the genome. This
process can be done to map genetic markers or to map
disease or trait loci. There now exist many sets of linkage-
mapping markers, in which the markers have been
selected to be regularly spaced across the genome (for
example, the Marshfield Clinic resource).

Ehlers-Danlos disease
As an example, figure 1 shows a pedigree segregating a
form of the Ehlers-Danlos disease (EDS-VIII [MIM
130080]). We will use the reported linkage analysis of this
pedigree3 to illustrate parametric linkage analysis. EDS-
VIII is a very rare autosomal dominant disorder.
72 individuals from five generations were clinically
examined in this family, and DNA samples were available
for genetic analysis from 19 of them. Figure 1 shows only
those parts of the pedigree segregating the disease (ie,
many unaffected individuals are not shown). Figure 1 also
shows genotypes for 17 selected genetic markers
spanning 30 centimorgans (cM) on chromosome 12. For
example, individual six is homozygous for allele 1
(denoted 1 1) for marker D12S352, whereas no genotype
(denoted – –) is available for D12S356. This 30-cM region
contains many more markers than those indicated here.
The bold black vertical line indicates a haplotype that is
shared between affected individuals. In the third
generation, affected people have coinherited the same
haplotype at all 17 loci, except for individuals 17 and seven;
for individual 17 a recombination has occurred at some
stage between markers D12S100 and D12S1615. In the
fourth generation, although three affected people still
share the same full haplotype, there has been one
recombination in individual three and evidence of two
ancestral recombinations in individual 18. By ancestral,
we mean recombinations that have occurred in ancestors
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that we have been unable to directly discern through
genotyping. However all affected people have coinherited
the same segment of chromosome 12, which is about 7
cM long (flanked by markers D12S314 and D12S1695).
Figure 1 shows that everyone who has inherited the
haplotype 6–10–5-3–7-6–3 has EDS type VIII, whereas no
unaffected people have inherited this haplotype. So this
region of chromosome 12 could contain the dominant
gene causing the disease.

LOD scores
Linkage is usually reported as a logarithm of the odds
(LOD) score (panel 1). This score was first proposed by
Morton in 1955.5 It is a function of the recombination
fraction (�) or chromosomal position measured in cM.
This means that the LOD score is different depending
upon which value of � is being considered. Large positive
scores are evidence for linkage (or cosegregation), and
negative scores are evidence against. To calculate a LOD
score a model for disease expression must be specified.
This model includes the frequency of the disease allele

and mode of inheritance (eg, dominant or recessive),
marker allele frequencies, and a full marker map for each
chromosome. The ultimate objective of the analysis is to
estimate the recombination fraction between individual
markers and the disease locus (two-point) or position of
the disease locus relative to a fixed map of markers where
the location of each marker is assumed to be known
(multipoint). The best (maximum likelihood) estimate of �
or position is that which maximises the lod score function:
the maximum LOD score.

The higher the LOD score, the greater the evidence for
linkage. Traditionally, a score of 3 was regarded as
significant evidence of linkage. This is equivalent to
p=0·0001.6 This seemingly stringent level of significance
is because of the low prior probability of linkage to any
particular marker and was originally set to allow for the
sequential testing that Morton envisaged would follow.
Morton assumed that groups would collaborate and
genotype the same markers in more and more families
until the total LOD score, for a predetermined �, reached 3
(linkage accepted at that value of �) or –2 (linkage
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Figure 1: Genotypes and haplotypes for family EDS-VIII for markers from chromosome 12p13 
Square=male. Circle=female. Filled=affected individual. Clear=unaffected individual. Position of each marker relative to D12S352 as follows: D12S100 (3·3cM),
D12S1615 (4·6cM), D12S1626 (7·1cM), D12S1652 (7·6cM)(, D12S314 (11·4cM), D12S99 (12·6cM), D12S356 (14·2cM), D12S374 (14·2cM), D12S1625 (16·4cM),
GATA49D12 (17·7cM), GATA151HO (17·7cM), D12S336 (19·0cM), D12S1695 (19·6cM), GATA167AO (20·3cM), D12S89 (23·2cM), D12S364 (29·4cM).
With permission of University of Chicago Press.3
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rejected). However, the common practice now is to
maximise the LOD score over the recombination fraction.
This increases the power to detect linkage, and linkage is
viewed as being excluded for all values of � at which LOD
is less than –2. More recent workshows that a LOD score
of 3 is equivalent to a genome-wide significance level of
about 0·09.7 In this theoretical work, it was assumed that
researchers could genotype markers at very high density
over the whole genome (ten markers per cM). A higher
threshold of at least 3·3 would be necessary to ensure that
the genome-wide type I error rate was in fact 0·05.
Although the number of genetic markers used in a
genome scan can be very large, once a certain density of

markers is achieved, each new marker does not represent
another independent statistical test and the threshold does
not need to be increased.

Figure 2 is a plot of the LOD score function obtained
when the disease gene is assumed to be at one of a series
of regularly spaced positions. The maximum score is
obtained when the disease gene is placed close to marker
D12S356 (at 14·2 cM from D12S352). As we move away
from this position, the LOD score decreases and at some
points becomes very negative. Such large negative values
are common in multipoint linkage analysis and this
generally means that there is evidence that
recombination(s) have arisen between marker(s) and the

Panel 1: LOD scores and likelihood ratios

Results of genetic linkage studies are often reported in the form of LOD scores. These scores are actually based on likelihood ratios.
The use of maximum likelihood in genetic linkage analysis was originally proposed in 1947.4 Its use became widespread once
Morton5 published his log-odd (LOD) tables, which enabled the sequential analysis of family-based linkage studies. 

Maximum likelihood
Maximum likelihood provides a statistical framework to compare various hierarchical models and compute estimates of the various
model parameters. The likelihood of the model, conditional on the data (represented as like[model]), is defined as the probability of
the observations occurring, calculated according to the model. Hypotheses are tested  by comparing two likelihoods (likelihood
ratio test), the likelihood of an alternative model versus the likelihood of the null (or reduced) model. Under the null model, twice
the natural logarithm of the ratio of the likelihoods is distributed as a �2. Extreme values of this test statistic are interpreted as
evidence against the null hypothesis.  

LOD scores
LOD score analysis is equivalent to likelihood ratio testing, but for historical reasons, instead of natural logarithms, logs to the base
10 are used. In the linkage analysis framework, the only parameter of interest is the recombination fraction (�) between marker and
disease locus or the map position of the disease locus with respect to a fixed map of markers. The null hypothesis represents no
linkage between disease and marker locus (�=0·5), and the alternative hypothesis assumes linkage exists (��0·5).
The LOD score function is then defined as:

The LOD score function is maximised with respect to �—the recombination fraction in two-point analysis (a single marker and
disease locus), or map position in multipoint analysis (disease locus and at least two markers at fixed relative positions). 
The value of � which gives the maximum LOD score is the maximum likelihood estimate of �.
Heterogeneity LOD score
When linkage analysis is done allowing for more than one disease locus, the LOD score is maximised with respect to two
parameters, � and � (the proportion of families linked to this locus). The heterogeneity LOD score is defined as:

LOD score for non-parametric sib pair linkage analysis
The classic likelihood ratio test statistic obtained from a non-parametric sib pair linkage analysis is found by maximising the
following ratio with respect to z0 and z1 (with z2=1–z0–z1):

This ratio can be converted into a LOD score for comparability with parametric analyses by dividing by 4·6 (ie, 2�loge10), which
changes the ratio to base 10 logarithms. 
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disease locus. For example, such a recombination has
occurred between D12S314 and D12S99 for individual
three in figure 1. This person has inherited allele 2
(D12S314) from the affected mother and must have
inherited the disease allele also. This situation can only
happen if there is recombination between the marker and
disease. When the LOD score is calculated assuming the
disease gene is coincident with marker D12S314 (ie, these
two locations are one and the same), we are assuming zero
probability of recombination. So in calculating the LOD
score at this point, we are fixing the recombination rate
between the marker and disease locus to be zero. Joint
consideration of data and model show this to be
impossible or extremely unlikely, resulting in very strong
evidence against linkage at that specific location. 

Specifying the genetic model
For any parametric linkage analysis, the genetic model for
the disease of interest must be specified. For a simple
mendelian disease, this model amounts to mode of
inheritance and frequency of disease allele. For some
diseases, carrying the risk genotype does not always result
in the individual being affected (incomplete penetrance).
In more complex models, only a proportion of disease
cases are due to a specific major gene, resulting in some
risk of disease for individuals with any disease genotype
(inclusion of a sporadic rate). Model parameters must be
chosen before the linkage analysis. These model
parameter estimates are preferably taken from population-

based studies of the disease. Segregation analysis and
estimation of familial relative risks can be used to ensure
that appropriate models are used in the linkage analysis.

Genetic heterogeneity
The fact that the pattern of disease in families is consistent
with a strong major gene component does not necessarily
imply that only one gene is involved. There are many
examples of diseases caused by inherited mutations in
distinct genes. Some mutations give rise to the same
disease but with a different mode of inheritance—for
example, Charcot-Marie-Tooth disease has autosomal
recessive, dominant, and X-linked forms, and mutations
in up to ten genes are responsible for the different forms.8

The EDS-VIII family illustrated yielded strong evidence of
a disease gene on chromosome 12, but when four further
smaller families were examined, two were not consistent
with linkage to this region.

Heterogeneity LOD scores
Locus heterogeneity such as that with Charcot-Marie-
Tooth disease can seriously affect the power of parametric
linkage analysis. The most common solution is to assume
that mutations in the disease genes will be so rare that
each family will be linked to only one such gene. The
genome scan is then done maximising a heterogeneity
LOD score (panel 1). At each genomic position, the
heterogeneity LOD score is maximised with respect to
another parameter, �: the proportion of families linked to
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Figure 2: Multipoint LOD score for EDS-VIII family by position (in cM) relative to marker closest to tip of chromosome 12 (D12S352 in this study)
Order and cumulative distance between markers obtained from Marshfield Genetic Database and presented telomeric to centromeric, as follows:
D12S352–3·3cM–D12S100–4·6cM–D12S1615–7·1cM–D12S1626–7·6cM–D12S1652–11·4cM–D12S314–12·6cM–D12S99–
14·2cM–D12S356–14·2cM–D12S374–16·4cM–D12S1625–17·7cM–GATA49d12–17·7cM–GATA151h0–19·0cM–D12S336–19·6cM–D12S1695–20·3cM–GATA1
67a0–23·2cM–D12S89–29·4cM–D12S364. With permission of University of Chicago Press.3
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this locus. If the genetic component of a disease is due to a
few major genes, then power to detect linkage is reduced,
but it might still be possible to detect the locus in this way.
For example, the breast cancer genes BRCA1 and BRCA2
were detected by parametric linkage analysis despite
heterogeneity.9,10 If the genetic component is made up of a
large number of distinct genes, parametric linkage
analysis can be severely compromised and model-free
alternatives become necessary, as discussed below. 

Methods for reducing locus heterogeneity include
limiting the analysis to strictly defined subtypes of disease
(where there might be reason to suspect a stronger genetic
component or where subtypes might themselves be
diseases with distinct causes, each with a distinct genetic
component) or targeting families in an isolated population
where the number of original founder mutations could be
low. Standard methods for accounting for heterogeneity
assume that the genetic model for disease will be the same
in linked and unlinked families. If genetic heterogeneity
exists, then the estimates of model parameters from
population genetics might no longer be appropriate when
trying to identify individual loci contributing to the overall
genetic component. It is therefore common for genome
scans to be done for a range of parametric models
allowing for heterogeneity. However, if the LOD score has
been maximised over several models, then to maintain a

low false positive rate the threshold (eg, 3·3) will need to
be raised. The significance of the resulting maximum
LOD score can be estimated by simulation. 

Model-free (non-parametric) linkage analysis
For multifactorial diseases, where several genes (and
environmental factors) might contribute to disease risk,
there is no clear mode of inheritance. Methods to
investigate linkage have therefore been developed that do
not require specification of a disease model. Such
methods are referred to as non-parametric, or model-free.
The rationale is that, between affected relatives excess
sharing of haplotypes that are identical by descent (IBD) in
the region of a disease-causing gene would be expected,
irrespective of the mode of inheritance. Various methods
test whether IBD sharing at a locus is greater than
expected under the null hypothesis of no linkage. 

Sibling pairs
The simplest approach is to study sibling pairs, both of
whom are affected. At any locus, according to the null
hypothesis of no linkage, the number of IBD alleles
shared by a pair of siblings is none with probability 0·25,
one with probability 0·5, or two with probability 0·25
(panel 2). If IBD sharing in the families is known, the
observed proportions of pairs sharing no, one, and two
alleles at a candidate locus can be compared with these
expectations. Linkage would be suggested if the pairs of
siblings, both of whom are affected by a disease, share
significantly more alleles IBD than expected by chance.
The best test for linkage to use depends on the true mode
of inheritance but in a wide range of situations the most
powerful test is the so-called mean test, in which the mean
number of alleles shared IBD is compared with the
expected value of 1.11

In practice, IBD sharing between a pair of siblings is
rarely known with complete certainty because the parents
may not have been genotyped and the markers might not
be sufficiently polymorphic to distinguish between
sharing IBD or IBS (panel 2). In such cases, the
proportions of IBD sharing can only be estimated. A
general algorithm for calculating these proportions
considers all possible parental genotypes that are
consistent with the data.12 More recently, maximum
likelihood methods have been used.13–17

Other groups of relatives
Pairwise comparisons between relatives can easily be
modified for types of relative pair other than siblings.
However, in studies that set out to examine affected
sibling pairs, additional affected siblings are often
recruited. Various methods have been proposed to extend
the pairwise approach to sibships larger than two.
Selecting one pair at random or using only independent
pairs means discarding information, so using all possible
pairs is preferred. Should larger sibships be down-
weighted to account for non-independence between pairs

Panel 2: Allele-sharing in sibling pairs

In this affected sibling pair, the first sister has inherited allele 1 from her father and allele 4
from her mother. If the marker is unlinked to the disease, there are four equally likely
combinations of alleles the second sister can inherit: (1, 1), (1, 4), (2, 1), or (2, 4), where
the first number indicates the paternally inherited allele and the second number the
maternally inherited allele. As illustrated in the table below, the numbers of alleles shared
by the sisters that are IBD are 1, 2, 0 and 1 respectively. IBD sharing must be distinguished
from the numbers of alleles shared that are identical by state (IBS). When the second
sister has genotype (2, 1), both sisters have a type 1 allele; these alleles are IBS, but they
are not IBD (assuming the parents are not inbred), since one is inherited from the father
and one from the mother.

Genotype Number of alleles shared
Sibling 1 Sibling 2 IBD IBS

1, 4 1, 1 1 1
1, 4 2 2
2, 1 0 1
2, 4 1 1 

1, 2 1, 4

1, 4 ?,?
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with this approach, and if so, how?18,19 Weighting might
improve power, but since the type I error rate depends on
factors such as the informativeness of the markers, it is
recommended that significance levels be estimated by
simulation,19,20 a point we expand on below.

Alternative methods have been developed to analyse
families with larger numbers of affected relatives of
differing relationship, also based on the degree of IBD
sharing. Each pedigree can be assigned a score that
measures IBD sharing, and the test for linkage is based on
comparing this score with the expected score according to
the null hypothesis (combining over pedigrees). The score
can be based on pairwise comparisons, but a more
powerful alternative score has been proposed21 that
increases sharply as the number of affected members
sharing the same allele IBD increases. This score is part of
the program Genehunter.22 In the absence of complete
information, the score is replaced by its estimated value,
leading to a conservative test. These methods have been
modified to provide accurate likelihood-based tests,23 all
implemented in the much faster program Allegro.24

In linkage studies, genotyping is usually done at a set of
linked markers (in some cases covering the whole
genome). Here, IBD sharing can be estimated more
accurately by multipoint analysis, by use of information
from all markers on the chromosome. At any point along
a chromosome, the pattern of inheritance within a
pedigree can be described by an inheritance vector. This
vector records, for each non-founding member of the
family, whether they have inherited the grandpaternal or
grandmaternal allele from each of their parents. The full
inheritance vector might not be uniquely determined by
the marker data, but its probability distribution
conditional on the marker data can be calculated.17

Calculation of the full multipoint IBD distribution for a
pedigree is a non-trivial problem. Most available methods
are based on algorithms that are limited either in the
number of markers or in the complexity of the pedigrees
that can be analysed. To cope with problems of large size
in both dimensions, methods have been developed based
on Markov chain Monte Carlo estimation.25 Currently,
whole genome screens are being done with several
thousand single nucleotide polymorphisms,26 increasing
the number of markers by an order of magnitude over
previous studies. An analytical method based on gene flow
trees has been developed to handle such data,
implemented in the program Merlin.27

There have been corresponding methodological
developments in quantitative trait linkage analysis. In
1972, Haseman and Elston12 suggested using sibling pairs
to investigate linkage by regressing the squared difference
in the siblings’ trait values on the (estimated) proportion
of alleles shared IBD. Two siblings that share more alleles
IBD would be expected to have more similar trait values if
the marker is linked to a gene influencing the trait.
Consequently, in the presence of such linkage, there
should be a negative relation between the squared trait

differences and the estimated IBD sharing. More
powerful variants of this method have since been
developed that also incorporate information from the sum
of the siblings’ trait values, for example using the mean-
corrected cross-product (sibling covariance) as the
dependent variable28 (panel 3). Variance components
methods have been developed to analyse quantitative trait
linkage in general pedigrees. These methods model the
trait covariance between relatives, partitioning this value
into components due to a specific chromosomal region
(on the basis of estimated IBD sharing) and unlinked
genes (on the basis of degree of kinship). These methods
can now be done with multipoint methods to estimate
IBD sharing (for example with the program SOLAR29).

Numerous whole genome screens in a wide range of
complex diseases have now been done with model-free
linkage analysis for both qualitative and quantitative traits.
An early example was the affected sibling pair study of
type 1 diabetes,30 which successfully identified linkage to
the HLA region with a LOD score of more than 7. Many
quantitative traits related to cardiovascular disease have
been investigated with some interesting results; for
example in a whole genome screen of high-density
lipoprotein-cholesterol, evidence of linkage to a locus on
chromosome 9p was identified.31 A review of genome
screens of complex diseases32 showed that disappointingly
few studies published before 2001 were able to
demonstrate significant linkage according to the criteria of
Lander and Kruglyak7 described below. With the larger
study sizes and more focused sampling strategies often
employed more recently, this situation may be improving. 

Issues of power and interpretation
A fundamental issue in understanding the results of a
linkage analysis is the interpretation of statistical
significance. Whenever statistical tests are done, a balance
must be struck between making claims many of which fail
to be substantiated and adopting criteria so stringent that
true findings are missed. For the parametric analysis of
single gene disorders, it was suggested early that a
threshold of 3 for the LOD score indicated a significant
result at the genome-wide level. This approach has been
instrumental in avoiding the reporting of large numbers
of false-positive results, but at the same time allowing
linkage analyses of single-gene disorders to lead
successfully to the identification and cloning of disease
genes. 

The threshold issue is more contentious with complex
traits. In 1995, Lander and Kruglyak7 made proposals that
have proved highly influential. Assuming a dense map of
fully informative markers, they used mathematical theory
to derive the threshold required for a LOD score to achieve
genome-wide significance of 5%. Since the LOD scores
used in different approaches have slightly different
properties, the thresholds vary slightly from method to
method. For parametric linkage analysis, a threshold of
3·3 is necessary, whereas in an affected sibling pair study
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significant linkage needs a LOD score of 3·6 (or 4·0 if the
so-called possible triangle constraints16 are used). From a
whole genome scan Lander and Kruglyak suggested that
areas of suggestive linkage (evidence expected to occur
once overall by chance) and nominal linkage (p=0·05 from
a single test without adjustment for multiple testing)
should also be reported, although in the latter case no
claims for linkage should be made.

The stringency of the criteria for genome-wide
significance has been questioned, since they are based on
the assumption of a dense marker map with no missing
data. An alternative and flexible approach that takes into
account the particular features of the study is to use
simulation. Datasets can be simulated according to the
null hypothesis of no linkage across the whole genome
with the same family structures, marker map, allele
frequencies, and patterns of missing data as in the study
itself. With advances in computing, simulation is
becoming the standard method of assessment in large
studies.31,33–36 This approach also has the advantage that the
correct significance level can be identified for any method
of analysis (including the different weighting methods for
large families discussed above). 

The threshold for statistical significance from
simulation is likely to be lower than that from theoretical
results; how much lower will depend on the features of the
study. For a study of whole genome scans of siblings with
multiple sclerosis that used simulation,20 it was estimated
that a LOD score of 3·2 would be achieved without linkage
in only one in 20 studies—ie, a LOD of only 3·2 would be
significant at the genome-wide level at 5%. Further
investigation37 suggested that map density and the extent
of missing data have a substantial effect on significance
levels. Even if no locus were to show significant evidence
of linkage, a genome-wide study could contain
independent peaks of linkage exceeding some lower
threshold (eg, 2·0). In the locus counting approach, a

series of such thresholds is considered, and the number of
independent regions expected to exceed these thresholds
under the null hypothesis of no linkage is estimated by
simulation. This null distribution is then used to interpret
the results of the genome screen, by determining whether
or not more peaks were evident than would be expected by
chance.

Considerations of genome-wide significance apply to
whole genome scans, but it can be argued that the
situation is not so much different in candidate gene
linkage studies. Here, instead of whole genome scanning,
regions containing genes selected on biological grounds
are investigated. In practice, since for most diseases a
good case can be made for a very large number of
candidates, the significance of results should not be
interpreted very differently from those of genome-wide
scans. Researchers also often undertake numerous
subgroup analyses, which can again inflate the false-
positive rate if not interpreted correctly.

Simulation has an equally important role in study
design. Genetic linkage studies can be expensive and
investigators will not want to begin a study with low
power. Power calculations by simulation will inform
decisions about the number and type of families required
and the necessary marker density. Generally, the more
affected individuals in a pedigree, the more informative
the family is. However, some familial configurations will
be more informative than others. The most common
difficulty is missing data—there might be little available
information about older family members and not
everyone will consent to providing DNA. Simulation
allows investigators to estimate the power of the family
collections at their disposal. If the power is judged
adequate, an initial genome screen would be done with
markers no more than 20 cM apart. Then, depending on
the results from this first stage, further markers would be
genotyped in promising candidate regions or further sets
of genome-wide markers would be used to increase the
density to every 5–10 cM. 

The frequency of many diseases varies widely between
populations. This differential incidence can be due to
variations in both environmental and genetic background.
For example, the autosomal recessive Tay-Sachs disease is
100 times more common in Ashkenazi Jews than non-
Jews.38 Site-specific cancer shows a very high degree of
variation in incidence even within Europe.39 Many forms
of genetic differences have been identified between
populations,40 and studies might need to consider these
additional sources of heterogeneity and if possible allow
for them in the analysis. Such population differences
usually reduce statistical power. 

The limited success of linkage analysis for complex
diseases so far is at least in part due to studies being too
small to detect genes of modest effect. The interpretation
of apparently negative findings depends crucially on
power. The sample size necessary to detect linkage to
genes with a genotype relative risk of less than 2 could be

Panel 3: Quantitative trait linkage analysis using sibling pairs

Suppose we have a set of sibling pairs, and let the trait values
for the jth sibling pair be x1j and x2j. In the original method
proposed,12 the squared difference in trait values (x1j–x2j)

2 is
regressed on the number of alleles shared IBD. This dependent
variable ignores the information in the sum of the siblings’
trait values, which would also be related to the number of
alleles shared IBD under the alternative hypothesis. 
Combining the sum and the difference in trait values
(corrected by the overall mean trait value �), the following
dependent variable is suggested:
([x1j–�]+[x2j–�])2–([x1j– �]–[x2j–�])2

which simplifies to give a multiple of the mean-corrected
cross-product: 
4(x1j–�)(x2j–�)
The expected value of the mean-corrected cross-product is
just the sibling covariance.
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unachievable.41 Genotype error also affects power.42 With
large pedigrees, genotype error is easy to detect because
such errors often lead to mendelian inconsistencies
within the pedigree, but where only affected sibling pairs
are genotyped, with no other family data, incorrect
genotypes will probably not be spotted. 

Choice of phenotype
Some traits or diseases have a clear phenotype definition.
For simple mendelian traits, it is straightforward to
identify affected and unaffected individuals and even in a
disease such as cancer, once symptoms are experienced
the diagnosis is based on pathological findings. However,
other illnesses such as psychiatric disorders are more
problematic because the diagnosis often depends upon
several distinct symptoms, and there is often
disagreement as to what constitutes a definitive
diagnosis.43 The absence of a clear definition of phenotype
will lead to uncertainty about the classification of affected
and unaffected individuals, and to potential inconsistency
between studies. Sometimes use of a quantitative trait can
circumvent this difficulty; for example, the number of
distinct symptoms could be used as a measure of disease
severity. Conversely, there might sometimes be good
reason to transform a quantitative trait into a binary one.
For instance, an individual may be classed as obese if his
or her body-mass index is above a defined threshold and
non-obese if it is below it. However, simplifying a
quantitative trait to a binary phenotype can result in loss of
power if an inappropriate threshold is used.44

Genetic linkage studies are very rarely done with
population-based family datasets. Usually some other
selection criteria are applied to the phenotype before the
families are selected. These criteria are often driven by
the need to maximise power and to reduce heterogeneity.
A disease is aetiologically heterogeneous if it can result
from more than one distinct pathway. Families are
usually selected because of segregation of the disease of
interest, and might only be studied if many members are
affected. There might also be a focus on severely affected
individuals such as those with early age at onset or those
with other critical symptoms. Some diseases, such as
Charcot-Marie-Tooth disease, might be classified into
clear clinical subtypes. Sometimes diseases can be
associated with other phenotypes, and families can be
categorised as to whether or not the other phenotype is
present—eg, families with breast cancer with or without
ovarian cancer within the pedigree. Eligibility criteria
such as these can reduce heterogeneity, and it can be
helpful at the analysis stage if datasets can be split into
meaningful subgroups. However, these devices might
cause problems later when trying to interpret the linkage
finding in terms of the general population. For example,
a study that finds that half of highly selected families are
linked to a specific locus might not be able to predict the
proportion of the disease in the general population that is
due to this locus.

If the phenotype of interest is a diagnosis requiring
treatment or registration, the eligible families will often be
ascertained via specialist clinics. In other cases, the
phenotype itself might not be a treatable disease but a risk
factor for disease. A good example is obesity. Obesity can
be measured in different ways and studies can be difficult
to compare. There is also the problem of ascertainment.
Most linkage studies of obesity have arisen through
datasets designed to study other primary endpoints such
as heart disease, osteoporosis, and diabetes. There have
been over 30 published linkage studies of obesity-related
phenotypes.45 Many of these individually large studies
have reported significant linkage, but few such findings
have been replicated, indicating not only genetic
heterogeneity and low power, but also the heterogeneity of
study designs and choice of phenotype. 

One way of tackling replication in complex diseases is
meta-analysis of pooled linkage study results.46,47 However,
meta-analysis works best when studies have been done
under homogeneous conditions, when phenotypes have
been measured with the same criteria, and when
statistical analyses have been similar. Datasets might
need to be recoded before a meta-analysis is done. For
complex phenotypes such as obesity, where ascertain-
ment is so variable, collaborative analyses on raw data are
essential.

Linkage analysis: what next?
A linkage analysis of the whole genome can identify
regions that show evidence of containing a disease gene.
In the study of mendelian traits, crossover events often
narrow down the region sufficiently to define a small
interval of interest. Linkage analysis of complex diseases
can only identify large regions (typically tens of cM).
Location estimates indicated by the linkage peak are
highly variable, and increasing the density of the marker
map only somewhat improves the resolution.48 Although a
very strong candidate gene might exist within the linkage
region, such regions often contain hundreds of genes,
many of which are biologically plausible candidates. One
way to narrow the region in studies of cancer is exam-
ination of loss of heterozygosity in tumours.49 When
markers that are heterozygous in germline DNA exhibit
loss of heterozygosity in tumour cells, this can indicate
deletion of a region of the chromosome, and the pattern of
such loss can be used to narrow down the location of a
tumour suppressor gene. Other approaches are based on
linkage disequilibrium, which extends over much smaller
distances than linkage, and is the subject of the next paper
in this series.2
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