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Abstract

Background: Imputation of individual level genotypes at untyped markers using an external

reference panel of genotyped or sequenced individuals has become standard practice in genetic

association studies. Direct imputation of summary statistics can also be valuable, for example in

meta-analyses where individual level genotype data are not available. Two methods (DIST and

ImpG-Summary/LD), that assume a multivariate Gaussian distribution for the association summary

statistics, have been proposed for imputing association summary statistics. However, both meth-

ods assume that the correlations between association summary statistics are the same as the cor-

relations between the corresponding genotypes. This assumption can be violated in the presence

of confounding covariates.

Methods: We analytically show that in the absence of covariates, correlation among association

summary statistics is indeed the same as that among the corresponding genotypes, thus serving

as a theoretical justification for the recently proposed methods. We continue to prove that in the

presence of covariates, correlation among association summary statistics becomes the partial cor-

relation of the corresponding genotypes controlling for covariates. We therefore develop direct im-

putation of summary statistics allowing covariates (DISSCO).

Results: We consider two real-life scenarios where the correlation and partial correlation likely

make practical difference: (i) association studies in admixed populations; (ii) association studies in

presence of other confounding covariate(s). Application of DISSCO to real datasets under both

scenarios shows at least comparable, if not better, performance compared with existing correl-

ation-based methods, particularly for lower frequency variants. For example, DISSCO can reduce

the absolute deviation from the truth by 3.9–15.2% for variants with minor allele frequency <5%.

Availability and implementation: http://www.unc.edu/�yunmli/DISSCO.

Contact: yunli@med.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Recent large international efforts, including the International
HapMap Project (The International HapMap Consortium, 2007,

2010) and the 1000 Genomes Project (Abecasis et al., 2012; The
1000 Genomes Project Consortium, 2010), have provided compre-

hensive catalogs of genetic variants and linkage disequilibrium (LD)
patterns in various populations around the world. Using these pub-
licly available data as reference panels, imputation of individual

genotypes at untyped variants has facilitated recent genome-wide as-
sociation studies (GWAS) and meta-analysis (Berndt et al., 2013;

Chambers et al., 2011; Dastani et al., 2012; Huang et al., 2012).
Therefore, when individual level genotype data are available in
study samples, it has become a standard practice to perform geno-

type imputation (Auer et al., 2012; de Bakker et al., 2010; Duan
et al., 2013; Li et al., 2009; Pasaniuc et al., 2012).

Unfortunately, individual level genotype data are not always avail-

able, particularly in multisite meta-analysis GWASs that can include

many individual study GWASs. The process of gathering proper

institutional human subjects research approval, including formal

data-sharing agreements, can be very time consuming. Association

summary statistics, on the other hand, are routinely available and are

not subject to the same human subjects research bottlenecks. Two

methods have been proposed recently to directly impute association

summary statistics at untyped markers in the absence of individual

level genotypes (Lee et al., 2013; Pasaniuc et al., 2014). Both methods

assume the summary statistics across typed and untyped markers fol-

low a multivariate Gaussian distribution. Gaussian models have been

routinely used in other related genetic applications (Conneely and

Boehnke, 2007; Wen and Stephens, 2010). For both imputation meth-

ods using association summary statistics, the correlation structure

between the summary statistics is estimated based on the LD structure

between the corresponding markers in an external reference panel(s).

Both methods assume that the correlations between the association

summary statistics are the same as the correlations between the geno-

types at the corresponding markers.

In this study, we provide a general analytical proof that in the

absence of confounding covariates, estimating the covariance struc-

ture between summary statistics using marker LD information be-

tween the corresponding markers is reasonable. However, in practice,

confounding covariates are often present. In particular, we consider

two scenarios: association studies including genetically admixed indi-

viduals (Scenario I) and association studies in the presence of general

confounders (Scenario II). In Scenario I, the underlying LD between

markers among participants in the usually cosmopolitan reference

panel, obtained from the public domain likely differs from the corres-

ponding LD among subjects in the study sample. In Scenario II, we

consider the presence of general confounder covariates or mediators,

such as socialeconomic factors, environmental factors, etc., which are

inevitable in real association studies; for example, the adjustment of

body mass index (BMI) for association with risk with diabetes

(Narayan et al., 2007), smoking with lung cancer (Wynder and

Hoffmann, 1994), Duffy dose for white blood cell count (WBC)

(Reiner et al., 2011), just to name a few. For Scenario I, we propose to

use the top principal components (PCs) to adjust the correlation esti-

mates. For Scenario II, we develop a unified framework for DISSCO

to deal with general confounders and mediators.

2 Methods

2.1 Existing methods for the imputation of association

summary statistics
Two methods for direct imputation of association summary statistics

(Lee et al., 2013; Pasaniuc et al., 2014) have been proposed recently.

Both of these methods assume a multivariate Gaussian distribution

on the association summary statistics across typed and untyped

markers. The correlation structure between the summary statistics is

estimated based on the LD structure between the corresponding

markers using an external reference panel(s). Denote the vectors con-

taining summary, or Z, statistics at typed and imputed/untyped

markers as Zt and Zi, respectively. Denote the correlation matrices

containing the correlations between the typed markers estimated

from the study sample and reference panel as
P̂corr;study

t;t andP̂corr;refer

t;t , respectively, and the correlation matrices containing the

correlation estimates between typed and untyped markers in the study

sample and reference panel as
P̂corr;study

i;t and
P̂corr;refer

i;t , respectively.

DIST (Lee et al., 2013) uses the following formula to impute the

summary statistics for the untyped variants contained in Zi:

ZDIST
i ¼

X̂corr;refer

i;t

X̂corr;refer

t;t

� ��1

Zt

ImpG-Summary and ImpG-SummaryLD are normalized versions

of DIST (Pasaniuc et al., 2014), designed to improve the perform-

ance in finite samples. Specifically,

ZImpSummary
i ¼ ZDIST

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP̂corr;refer

i;t

P̂corr;refer

t;t

� ��1 P̂corr;refer

i;t

� �0r

ZImpSummaryLD
i

¼ ZDIST
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP̂corr;refer

i;t

P̂corr;refer

t;t

� ��1P̂corr;study

t;t

P̂corr;refer

t;t

� ��1�P̂corr;refer

i;t

�0r

In addition, ImpG-Summary and ImpG-SummaryLD adopt a regu-

larization procedure similar to ridge regression to adjust for statis-

tical noise in the estimation of the covariance matrix. Specifically,P̂adj
¼
P̂unadj

þ kI where
P̂unadj

is the unadjusted correlation ma-

trix with its elements equal to Pearson correlation, and by default,

k ¼ 0:001 is used for adjustment in the study sample and k ¼ 0:1

is used for adjustment in the reference panel.

2.2 Theoretical motivation
We and others (Han et al., 2011, 2009; Kostem et al., 2011; Pasaniuc

et al., 2014) theoretically justify existing methods in the absence of

confounders (Supplementary Material S1). However, the justification

fails when confounders exist. In this study, we show that in the pres-

ence of confounders, the correlation between the association summary

statistics is the partial correlation, conditional on the confounders, in-

stead of the marginal correlation between the corresponding marker

genotypes (Supplementary Material S2). The result implies that when

partial and marginal correlations differ confounders need to be prop-

erly incorporated for more accurate imputation of association statis-

tics. Herein, we describe our method, direct imputation of summary

statistics allowing covariates (DISSCO), which addresses this issue.

2.3 Motivating simulations
We first conducted proof-of-principle simulations to confirm the

theoretical findings that (i) Z statistics estimated in two simple linear

regression models without confounding covariates have correlations

close to the correlation between two predictor variables and (ii) Z

statistics estimated in two multiple regression models with the same

set of confounding covariates have correlation close to the partial

DISSCO 2435
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correlation instead of the marginal correlation between two pre-

dictor variables.

2.4 Our DISSCO imputation method
Both DIST and ImpG-Summary/LD assume that the correlations be-

tween the association summary statistics are the same as those be-

tween the corresponding marker genotypes. In the presence of

confounding covariates, we have shown both analytically and

through proof-of-principle simulations (results in Sections 3.1 and

3.2) that the correlations between the summary statistics are the par-

tial correlations instead of the marginal correlations between the

genetic markers. Thus, we propose our method DISSCO based on

partial correlations as below:

ZDISSCO
i ¼

X̂adj�parcorr;refer

i;t

X̂adj�parcorr;refer

t;t

� ��1

Zt;

where
P̂adj�parcorr;refer

t;t ¼
P̂unadj�parcorr;refer

t;t þ kI, and the elements inP̂unadj�parcorr;refer

t;t are equal to partial correlations. We follow the

ImpG-Summary/LD method and also adopt the ridge-like regulariza-

tion procedure. To achieve a desirable balance between performance

and computational efficiency, we only include markers within a pre-

specified window size of each untyped maker of interest. The impact of

including only closely linked markers is negligible, as markers further

away have little effect on the estimation of the summary statistic for

the untyped marker given the low LD between these markers and the

untyped marker of interest. Similar strategies were adopted by DIST

and impG-Summary/LD. We provide more details in the Section 5.

We describe two real-life scenarios where the correlation and

partial correlation likely make practical difference.

2.4.1 Scenario I: admixed samples

Genotype imputation in admixed populations is particularly chal-

lenging due to increased genetic heterogeneity across study partici-

pants and a deficit of well-matched reference panels. Considerable

efforts have been devoted to the selection of ancestry appropriate

reference panels for imputation (Egyud et al., 2009; Huang et al.,

2009; Pemberton et al., 2008). However, even after the selection of

an appropriate ancestry-matched reference panel, between-study

heterogeneity makes the naı̈ve uniform utilization of the same

phased reference panel for different study samples suboptimal.

Commonly used Markov model-based methods for the imputation

of individual level genotypes, including IMPUTE (Marchini et al.,

2007), IMPUTE2 (Howie et al., 2009), MaCH (Li et al., 2010), min-

imac (Howie et al., 2012), MaCH-Admix (Liu et al., 2012) and

Beagle (Browning and Yu, 2009), alleviates this issue by modeling,

separately for each study, the genetic data from the study sample to-

gether with genetic data from the reference panel when phasing the

individual reference haplotypes. Unfortunately, this approach is

only possible when there is individual level genotype data available

from the study participants.

Motivated by the common analytic practice used for controlling

for population stratification, DISSCO employs the following PC-

analysis-based procedure for the imputation of summary statistics in

admixed participants: (i) perform LD-based SNP pruning using

PLINK (Purcell et al., 2007), (ii) construct PCs using EigenSoft

(Patterson et al., 2006) on the study samples and reference samples

together using the pruned set of markers, (iii) perform single marker

association analyses controlling for the top PCs to obtain a Z statis-

tic for every typed marker and, finally, (iv) perform imputation of

the Z statistics at untyped markers by DISSCO. A unique aspect of

this scenario is that the PCs in the reference and study samples are

obtained in a unified manner from a single PCA analysis (Step 2). In

contrast, general confounding covariates that are directly measured

in study participants are typically not available among reference

individuals.

2.4.2 Scenario II: in the presence of general confounding covariates

Similar to any association analysis, in GWAS, it is often necessary to

control for other confounders, or possibly mediators, such as demo-

graphic information, environmental exposures and lifestyle factors.

In GWAS, a single-marker analysis using a multiple regression

framework is typically adopted to simultaneously model each single

marker of interest together with covariates, including those that

could confound the association. As aforementioned, unlike PCs,

which can be directly obtained in a unified manner for both the ref-

erence and study individuals by applying PCA, general covariates

available in study samples are often not available in the reference

population.

We project the relevant covariates into the reference participants

based on the covariate values in the study participants and the

observed genotypes at the typed markers within a window (window

defined the same manner as in Pasaniuc et al., 2014), surrounding

the subset of markers currently being imputed, in both the study and

reference samples. We use these imputed covariates, which we call

‘pseudo-covariates’, to calculate partial correlations in the reference

sample. To obtain these pseudo covariates, we first regress the cova-

riates C on genotypes at typed markers in the study sample, (Gstudy
t ),

and estimate the regression coefficients by bb¼
ð½1 Gstudy

t �0½1 Gstudy
t �Þ�1½1 Gstudy

t �0C and sample residuals eb¼ C

� 1 Gstudy
t

h i
: We then project the pseudo-covariates into the refer-

ence samples using the estimated regression coefficients from the

study samples and the genotypes in the reference samples, by

Cbrefer ¼ ½1 Grefer
t �bbþe�, where e� is a bootstrap sample of eb.

Based on these ‘pseudo-covariates’, we then calculateP̂parcorr;refer

i;t and
P̂parcorr;refer

t;t . Finally, we apply the DISSCO formula

to impute the Z statistics at untyped markers. The entire process is

repeated across all possible windows of genotyped markers spanning

the genome to obtain imputed summary statistics for all markers.

2.4.3 Covariate projection accuracy and impact on partial

correlation estimation

In our DISSCO framework, covariate projection accuracy, particu-

larly its impact on the estimation of partial correlations, is the key fac-

tor that determines the gains over existing methods. We therefore

performed simulations to evaluate both the accuracy of the projected

covariates and the impact of the projected covariates on the partial

correlation estimates the association summary statistics calculations.

2.5 Post-imputation quality filtering
Following the imputation quality index

br2 pred ¼
X̂corr;refer

i;t

X̂corr;refer

t;t

� ��1�X̂corr;refer

i;t

�0
proposed for ImpG-Summary/LD (Pasaniuc et al., 2014), we use

br2 predCO ¼
X̂parcorr;refer

i;t

X̂parcorr;refer

t;t

� ��1 X̂parcorr;refer

i;t

�0�

as a post-imputation quality measure.
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3 Simulation Results

3.1 Gaussian predictors and covariate
We first consider the case where the predictors of interest (X1 and

X2) as well as the confounder (C) follow a Gaussian distribution.

We simulated a random vector ðC X1 X2Þ following a standard tri-

variate Gaussian distribution with correlations qCX1
; qCX2

and

qX1X2
. We then generated the response variable c ¼ b0 þ bCCþ e,

where e is an independent Gaussian random variable with mean

zero and variance V. We fit the following two models, mimicking

GWAS single marker analysis, to obtain Z statistics testing the asso-

ciation between X1 ðX2Þ and Y controlling for C: Y �X1 þ C and

Y � X2 þC:

We considered eight different model settings, reflecting different

combinations of ðqCX1
;qCX2

;qX1X2
Þ, and conducted 10 000 simula-

tions for each model based on 300 observations (Table 1). We

observed that in all settings, the point estimate of the correlation be-

tween Z statistics, bqZ1Z2
, was considerably closer to the true partial

correlation qX1X2 jC than to the marginal correlation qX1X2
. The 95%

confidence interval for bqZ1Z2
always included the partial correlation

but not the marginal correlation (except under Setting 6 where the

two correlations were simulated to be identical). For example, in

Setting 7, where the marginal correlation was positive (0.3) but par-

tial correlation was negative (�0.38), the point estimate of the

correlation between the Z statistics was �0.37 and the 95% confi-

dence interval was [�0.38,�0.35].

3.2 Multinomial predictors G1 G2ð Þ and Gaussian

covariate
To mimic the discrete nature of observed genotypes, we simulated a

categorical vector ðG1 G2Þ containing genotypes at two typed

markers. Here too, we found that the correlations of the Z statistics

are consistent with the partial correlations and not marginal correl-

ations, for all settings examined (Supplementary Material S3). For

example, in Setting 2, where the marginal correlation is positive

(0.223) but the partial correlation is negative (�0.6), the point esti-

mate of the correlation between the Z statistics was �0.6 with a cor-

responding 95% confidence interval [�0.612,�0.587].

3.3 Covariate projection accuracy and its impact on

partial correlation estimation and association summary

statistics imputation
Although the ultimate goal of DISSCO is to impute association sum-

mary statistics, one key factor influencing its capability to achieve

this goal is the accuracy of partial correlation estimates based on

any projected covariates. We therefore first evaluated the accuracy

of DISSCO’s covariate projection and then its impact on the estima-

tion of partial correlations via simulations. We observed that the ac-

curacy of the covariate projection depends on the extent of the

correlation between the typed markers and the covariate(s) to be

projected. However, regardless of the absolute level of projection ac-

curacy, the partial correlations among typed markers can be better

estimated: the partial correlation estimator based on projected cova-

riates, i.e. bq
X1X2 jCb better approaches qX1X2 jC than bqX1X2

across all

settings. The difference can be dramatic: for example, for Setting 2

when true partial correlation qX1X2 jC ¼ 0:133, bq
X1X2 jCb¼ 0:132 but

bqX1X2
¼ 0:5 (Supplementary Table S3A). Partial correlation esti-

mates between typed and untyped show mixed results, but in general,

through covariate projection and subsequent partial correlation esti-

mation based on the projected covariates, DISSCO tends to generate

more accurate imputed Z statistics than approaches that ignore the

confounding. Details are documented in Supplementary Material S4.

4 Real data analysis

We applied DISSCO, DIST*, ImpG-Summary*/LD* (where * indi-

cates our own implementation of existing methods) to two real data-

sets: (i) the Women’s Health Initiative (WHI) study; and (ii) the

Cebu Longitudinal Health and Nutrition Survey (CLHNS) study.

4.1 Real data set 1: WHI African Americans
WHI was established by the National Institutes of Health in 1991 to

address major health issues causing morbidity and mortality in post-

menopausal women (Anderson et al., 1998). The SNP Health

Association Resource (SHARe) consortium genotyped 8421 African

Americans in WHI using the Affymetrix 6.0 genotyping platform.

Standard quality controls were applied previously (Reiner et al.,

2011), including removing markers with call rate <90%, Hardy

Weinberg equilibrium exact test P-value<10�6, or sample minor al-

lele frequency (MAF)<1%.

4.1.1 WHI Scenario I: accommodating admixture via PCs

We randomly masked 20% of the markers as untyped markers.

Because of the instability in the estimated correlations for markers

with MAF<1%, we imputed and compared the performance of

DISSCO, DIST* and ImpG-Summary*/LD* for markers with

MAF>1%. Our final dataset contained 653 877 typed markers and

162 443 untyped markers with MAF>1%.

We first used PLINK to prune the typed markers (�pairwise 0.1).

We then applied EigenSoft on the pruned markers to obtain PCs for

the study and reference (from 1000 Genomes Phase I v3) samples,

using default parameters. The phenotype we examined was BMI. We

first regressed BMI on age and the proportion of African ancestry esti-

mated using FRAPPE (Tang et al., 2005) to remove their effects. We

then used the residuals to perform single marker association analyses

for all markers, adjusting for PCs only, to evaluate DISSCO’s PCA-

based procedure for imputation in admixed populations.

For the masked experimental genotypes, we obtained the true Z

statistics, denoted by Z0
i . The Z statistics at typed markers Z0

t were

used to impute Z statistics at the untyped markers by DISSCO,

DIST* and Imp-Summary*/LD*, which are denoted by ZDISSCO
i ,

ZDIST
i , ZImpSummary

i and ZImpSummaryLD
i : We evaluated the performance

of these methods using three measures (i) D: the absolute deviation

between true and imputed Z statistics, (ii) %D: the absolute relative

percentage deviation between the difference of the true and imputed

Table 1. Gaussian predictors and confounder

Setting qCX1
qCX2

qX1X2
qX1X2 jC bqZ1Z2

1 0.5 0.9 0.8 0.93 0.93 [0.92,0.93]

2 0.5 0.9 0.5 0.13 0.14 [0.12,0.16]

3 0.4 0.5 0 �0.25 �0.24 [�0.26,�0.22]

4 0 0.8 0.3 0.50 0.50 [0.49,0.52]

5 0.6 0 0.5 0.63 0.63 [0.62,0.64]

6 0 0 0.5 0.50 0.51 [0.49,0.52]

7 0.6 0.8 0.3 �0.38 �0.37 [�0.38,�0.35]

8 0.9 0.8 0.5 �0.84 �0.84 [�0.84,�0.83]

bqZ1Z2
includes the point estimate and 95% confidence interval for the cor-

relation between the two Z statistics. Neither b0, bC nor V affects the values

of the partial or marginal correlations. Therefore, without loss of generality,

we set b0 ¼ 1, bC ¼ 1 and V¼ 1.
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Z statistics and the true Z statistics,
��� ZMethod

i
�Ztrue

i

Ztrue
i

���� 100, where the

subscript Method¼DISSCO/DIST*/ImpG-Summary*/ImpG-

SumaryLD*; and (iii) R2: the squared Pearson correlation between

the imputed and true Z statistics.

We evaluated the average performance of all four methods

across all 162 443 untyped markers without any post imputation fil-

tering and across the subset of 150 534 markers where r̂2 pred>0.6

for ImpG-Summary*/LD* and DIST*, and r̂2 predCO>0.6 for

DISSCO. In addition, for each marker and competing approach, we

tabulated whether the Z statistic estimated by DISSCO was closer

than the Z statistic estimated by the competitor to the true Z statistic

and we conducted a one-sided Wilcoxon signed rank test to test the

null hypothesis that there was no difference in accuracy between the

different approaches. We found that DISSCO provided imputed

summary Z statistics at the untyped markers that were, on average,

consistently more accurate than the other approaches across all

quality metrics and marker sets (Table 2). Based on the individual

marker results, DISSCO significantly outperformed all three com-

petitors (P<0.001 for all three comparisons).

4.1.2 WHI Scenario II: accommodating general covariates

We performed a second comparison between DISSCO and the exist-

ing methods using a GWAS of WBC, for which the Duffy blood

group null variant is known to account for 15–20% of the variation

among African Americans and is, therefore, routinely controlled for

in association studies (Auer et al., 2012; Reiner et al., 2011). Besides

the Duffy variant, we additionally performed covariate adjustment

for age, BMI and African ancestry. We again randomly masked

20% of markers as untyped markers and imputed those with

MAF>1%. In this analysis, our final set contained 150 934 imputed

variants.

We conducted single-marker association analyses with natural-

logarithm transformed WBC, adjusting for the aforementioned

covariates. We again evaluated the performance of all four methods

by comparing the imputed with true summary statistics, which were

established using masked experimental genotypes.

Results summarized in Table 3 indicate superior performance of

DISSCO over existing methods in the presence of general confound-

ing covariates, with or without post-imputation quality filtering.

Similar to the results for BMI, based on the individual marker re-

sults, DISSCO significantly outperformed all three competitors

(P<0.001 for all three comparisons).

4.2 Real data set 2: CLHNS study
To evaluate the performance in a relatively homogeneous study sam-

ple, we applied all methods to another dataset, the Cebu

Longitudinal Health and Nutrition Survey (CLHNS) study (Adair

et al., 2011). The study genotyped 1800 Filipino women using the

Affymetrix Genomewide Human SNP Array 5.0 GWAS chip (Lange

et al., 2010). The 1800 subjects were previously found to be rela-

tively genetically homogeneous and match closely to the East Asians

(specifically, CHB [Han Chinese from Beijing] and JPT [Japanese

from Tokyo]) in the International HapMap Project (Marvelle et al.,

2007).

Our outcome measure was adiponectin levels, an adipocyte-se-

creted protein involved in a variety of metabolic processes, including

glucose regulation and fatty acid catabolism. Several recent studies

have examined the genetic association with adiponectin (Croteau-

Chonka et al., 2012; Dastani et al., 2012; Wu et al., 2010). We per-

formed association analyses adjusting for age, household assets, nat-

ural logarithm transformed income and waist circumference. We

again masked 20% of the directly typed markers and excluded

Table 2. Estimation accuracy of association summary statistics in WHI data set: accommodating admixture via PCs

Measure Post-imputation

filtering

#SNPs DIST* ImpG-Summary* ImpG-Summary LD* DISSCO

D None 162 443 0.417 (4.1%) 0.410 (2.4%) 0.408 (2.0%) 0.400

%D None 162 443 56.1 (8.0%) 54.7 (5.7%) 55.1 (6.4%) 51.6

R2 None 162 443 0.697 (2.2%) 0.701 (1.6%) 0.708 (0.6%) 0.712

D >0.6 150 534 0.386 (3.1%) 0.378 (1.1%) 0.377 (0.8%) 0.374

%D >0.6 150 534 52.3 (6.9%) 50.6 (3.8%) 51.2 (4.9%) 48.7

R2 >0.6 150 534 0.743 (1.6%) 0.750 (0.7%) 0.755 (0.0%) 0.755

Best performing methods are highlighted as bold. The estimated accuracy of the association summary statistics is compared across different methods using

three metrics: D, %D and R2. Smaller D, smaller %D and larger R2 reflect more accurate estimation of the true Z statistic. The values in parentheses are the

relative improvement of DISSCO over DIST*/ImpG-Summary*/ImpG-SummaryLD*.

Table 3. Estimation accuracy of association summary statistics in WHI data set: accommodating general covariates

Measure Post-imputation

filtering

#SNPs DIST* ImpG-Summary* ImpG-SummaryLD* DISSCO

D None 150 934 0.422 (5.7%) 0.412 (3.4%) 0.416 (4.3%) 0.398

%D None 150 934 56.8 (9.2%) 55.1 (6.4%) 56.8 (9.2%) 51.6

R2 None 150 934 0.694 (3.0%) 0.699 (2.3%) 0.703 (1.7%) 0.715

D >0.6 140 128 0.392 (5.1%) 0.380 (2.1%) 0.384 (3.1%) 0.372

%D >0.6 140 128 53.4 (8.6%) 51.2 (4.7%) 52.9 (7.8%) 48.8

R2 >0.6 140 128 0.738 (2.6%) 0.749 (1.1%) 0.752 (0.7%) 0.757

Best performing methods are highlighted as bold. The estimated accuracy of the association summary statistics is compared across different methods using three

metrics: D, %D and R2. Smaller D, smaller %D and larger R2 are better. The values in parentheses are the relative improvement of DISSCO over DIST*/ImpG-

Summary*/ImpG-SummaryLD*.
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markers with MAF<1%. Our final set contained 265 340 typed

markers, which were used for imputation, and 65 992 untyped

markers that were imputed using Phase I v3 ASN haplotypes (http://

csg.sph.umich.edu/abecasis/MACH/download/1000G.2012-03-14.

html) from the 1000 Genomes Project.

Results summarized in Figure 1 and Table 4 again show advan-

tages of DISSCO over existing methods in the presence of general

confounding covariates, both before and after post-imputation qual-

ity filtering of markers. Similar to the results for WHI, based on the

Wilcoxon sign rank test across the individual marker results,

DISSCO significantly outperformed all three competitors (P<0.001

for all three comparisons).

4.3 More pronounced improvement for lower frequency

variants
Interestingly, we found that DISSCO had more pronounced sum-

mary statistic improvements for lower frequency variants. Figure 2,

for example, shows the performance of all methods across the entire

MAF spectrum in the CLHNS dataset. Compared with existing

methods, DISSCO had an average of 7.5–12.3% lower absolute

relative deviation from the true value for markers with MAF<10%

while the improvement reduced to 3.2–8.4% for markers with

MAF>10%. Similar results were obtained for the WHI dataset and

presented in Supplementary Materials S6.

5 Discussion

Two recent studies have proposed methods for direct imputation of

summary statistics that approach the quality of gold standard geno-

type-based imputation, at reduced computational costs. These meth-

ods are valuable particularly for meta-analysis studies when

individual level genotypes are not readily available. Both methods

assume summary association statistics follow multivariate Gaussian

distributions, with the correlations between the summary statistics

being the same as the correlations between the corresponding

marker genotypes that are estimated from publicly available refer-

ence panels.

In this study, we show analytically that, in the presence of con-

founders, the correlation matrix among the summary statistics is the

partial correlation matrix among the corresponding markers, condi-

tional on the confounders. With this theoretical underpinning, we

propose DISSCO for direct imputation of summary statistics accom-

modating confounding covariates.

We consider two scenarios where covariate adjustment can be

helpful, if not necessary: in the study of admixed samples and in the

presence of other known risk factors and mediators. The first scen-

ario presents the challenge of estimating the correlation matrix ap-

propriate for admixed samples using cosmopolitan reference panels

commonly available in the public domain rather than a single well-

matched reference dataset. Our solution of using PCs can be inter-

preted as sample-adjusted weighting of the reference individuals for

the estimation of the correlation structure. Our PC-based solution in

this scenario of admixed samples also effectively transforms the

issue into the need of controlling for the special covariates: PCs, thus

enabling the unified DISSCO framework under both scenarios.

For practical usage, Scenario I entails the estimation of PCs for

the reference individuals, which can be achieved either by perform-

ing PC analysis on the study and reference samples together, which

is commonly conducted in studies involving admixed samples; or

when PCA is performed on study samples only, one could choose to

project the top PCs in the same manner as general covariates (results

presented in Supplementary Material S7).

DISSCO leads to more noticeable gains for lower frequency vari-

ants. We believe this is largely due to the smaller number of LD tags

(variants in high LD) for lower frequency variants compared with

that for more common variants. For example, based on the 1000

Genomes Phase 1 datasets, we found on average 9.8 (7.6, 5.9) LD

tags (at LD r2 threshold of 0.8) for low frequency variants

(MAF<5%) and 23.2 (24.4, 8.9) LD tags on average for common

variants (MAF>5%) among individuals with European (Asian,

African) ancestry. Since not every marker is affected by confounding

covariates when estimating partial correlations, with more LD tags,

a common variant is less susceptible to the inaccurate estimation of

Fig. 1. CLHNS dataset: accommodating general covariates. Scatter plots com-

paring true Z statistics to the corresponding imputed Z statistics from

DISSCO and three competing methods for markers passing post imputation

quality filtering

Table 4. Estimation accuracy of association summary statistics in CLHNS dataset: accommodating general covariates

Measure Post-imputation

filtering

#SNPs DIST* ImpG-Summary* ImpG-Summary LD* DISSCO

D None 65 992 0.352 (9.4%) 0.333 (4.2%) 0.336 (5.1%) 0.319

%D None 65 992 47.0 (13.6%) 44.3 (8.4%) 45.5 (10.8%) 40.6

R2 None 65 992 0.716 (8.1%) 0.747 (3.6%) 0.747 (3.6%) 0.774

D >0.6 58 448 0.284 (6.3%) 0.267 (0.4%) 0.270 (1.5%) 0.266

%D >0.6 58 448 38.7 (10.1%) 36.1 (3.6%) 37.1 (6.2%) 34.8

R2 >0.6 58 448 0.819 (4.3%) 0.849 (0.6%) 0.848 (0.7%) 0.854

Best performing methods are highlighted as bold. The estimated accuracy of association summary statistics is compared across different methods using three

metrics: D, %D and R2. Smaller D, smaller %D and larger R2 reflect better estimation. The values in parentheses are the relative improvements of DISSCO over

DIST*/ImpG-Summary*/ImpG-SummaryLD*.
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partial correlation for a subset of its LD tags than is a low frequency

variant. In Supplementary Material S8, we use simulations to illus-

trate that the performance of methods based on either the partial or

marginal correlation increases with the number of LD tags and,

more importantly, that additional information from covariates leads

to relatively more gains when the number of LD tags is smaller.

Computationally, following ImpG-Summary/LD, DISSCO also

divides each chromosome into non-overlapping blocks with prede-

termined length (1 MB by default). Assume there are p ¼ pt þ put

markers, including pt typed and put untyped markers, Nstudy individ-

uals in the study sample, Nrefer individuals in reference sample, and

S covariates. After obtaining Zt, Z statistics at typed markers, im-

putation of summary statistics involves some of the following steps

(i) calculation of the reference correlation matrix R̂
unadj

, (ii) calcula-

tion of the sample correlation matrix between typed markers, (iii)

generation of reference sample pseudo-covariates, (iv) calculation of

reference sample partial correlations and (v) actual imputation via

the following formula:

Z:
i ¼ R̂

:;refer

i;t R̂
:;refer

t;t

� ��1

Zt;

where the subscript “.” differs across methods as detailed in Section

2, and (vi) the normalization of imputed values. All methods need

step (v). DIST also needs (i); ImpG-Summary also needs (i) and (vi);

ImpG-SummaryLD also needs (i), (ii) and (iv); and DISSCO also

needs (i), (iii) and (iv). Computational complexity of (i)–(vi) is

O(Nreferp
2), O(Nstudyp2

t ), O(p3
t þNstudyp2

t ), O(NreferSp), O(putp
3
t )

and O(putp
2
t ), respectively (detailed in Supplementary Material S9).

We report in Table 5 the computing time for each of the steps in the

real data sets on a 2.53 GHz Intel(R) Xeon(R) processor. Real-time

using actual software implementation is also reported. The DIST

software takes the longest mainly for two reasons: (i) it re-calculates

the reference correlation matrix within a window of 650 markers

for every untyped marker; and (ii) it uses numerical integration to

calculate P-values from Z-scores. In contrast, ImpGSummary has an

efficient implementation, at the cost heavy I/O burden: thousands of

small intermediate files written to and read from hard disk. Memory

consumption was comparable across the different software, with

1–2 GB maximum RAM for all the real data experiments.

There are multiple other factors that affect performance. Among

them, the important ones are (i) window size, (ii) regularization and

(iii) normalization. Specifically, a larger window size tends to im-

prove performance by providing more information. However, a

larger window size also means increased computational cost.

Including a larger number of typed markers does not guarantee bet-

ter results because the larger number of markers is more likely to

make the correlation matrix singular. As noted by the ImpG-

Summary/LD development team, regularization alleviates this issue

by adjusting for statistical noise in the estimation of the covariance

matrix in the reference sample. Following their work, DISSCO also

uses 1 MB as default window size with regularization. The normal-

ization procedure in ImpG-Summary/LD improves performance in

small samples. Since our focus in this article is on the improvement

of using partial-correlations instead of marginal correlations, we

compare our method to existing methods using the default param-

eter values.

We have primarily focused our performance comparisons be-

tween DISSCO and existing methods by comparing accuracies of

summary Z statistics to their true values. Since DISSCO directly im-

putes association statistics, it is also critical to establish its validity.

Following Pasaniuc et al. (2014), we generated real-data-based null

datasets and found that DISSCO maintains the desired type-I error

rate across a range of nominal values (10-1–10-5) with our default

level of regularization (k¼0.03) (Supplementary Materials S10 and

Tables S5A–D).

Fig. 2. Performance (measured by absolute relative percentage deviation

from truth [Y-axis]) by MAF in CLHNS dataset

Table 5. Computing time in each step for different imputation

methods in three real data analysis (time in seconds)

Scenario Step DIST* ImpG-

Summary*

ImpG-

SummaryLD*

DISSCO

WHI PCs 1 668 668 668 668

2 — — 437 —

3 — — — 922

4 — — — 507

5 4078 4078 4078 4078

6 — 4244 6048 —

1–6 4746 8990 11231 6175

Software 11477 3531 NA 6175

WHI GCs 1 660 660 660 660

2 — — 408 —

3 — — — 1043

4 — — — 593

5 4056 4056 4056 4056

6 — 4172 5806 —

1–6 4716 8888 10930 6352

Software 10797 3536 NA 6352

CLHNS 1 125 125 125 125

2 — — 86 —

3 — — — 90

4 — — — 125

5 497 497 497 497

6 — 502 605 —

1–6 622 1124 1313 837

Software 2443 473 NA 837

“—”: step not required for the corresponding method. “Software” row re-

ports the actual time by directly using DIST (v0.1.4), ImpG-Summary (v1.0)

and DISSCO (v1.0) software implementation. “NA” in the ImpG-

SummaryLD column is because it does not allow missing values in the sample

genotypes.
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Unlike imputation for individual genotypes, the selection of a

reference panel matching the study sample is much more crucial for

the accurate imputation of association summary statistics because

the correlation structure from the reference sample as a whole in-

stead of individual haplotypes are used in the calculations.

Although, when the reference and study samples are similar, these

methods for direct imputation of association statistics tend to work

well (Han et al., 2011), prudency is warranted as discussed in

Pasaniuc et al. (2014). As an illustration, our simulation studies

using a mismatched reference panel (the EUR haplotypes from the

1000 Genomes Project for the CLHNS dataset) resulted in inflated

type-I error rates when using our default level of regularization

(Supplementary Table S5E).

Finally, a key step in DISSCO is the projection of covariates into

the reference based on genotypes of typed markers. As top PCs cap-

ture a large amount the variation in these genotypes, it is conceptu-

ally natural to anticipate that projection based on the top PCs (thus

completely bypassing the need of individual level genotypes) might

achieve similar performance gains. We indeed have observed com-

parable performance gains using the top PCs (Table 2) as compared

with using general covariates (Table 3) in the admixed dataset.

Additional analysis in the CLHNS dataset using only the top five

PCs also showed near identical results as in Table 4 (identical up to

the third digit after the decimal point using all three measures, i.e.

D, %D and R2). Although a certain degree of information loss is

possible due to discarding information not captured by the top PCs,

we recommend using the top PCs as a convenient substitute for ac-

tual covariate projection when individual level genotypes are not

available.

In summary, we provide analytical justifications for two meth-

ods recently proposed for the imputation of association summary

statistics in the absence of confounding covariates. We further ex-

tend the analytical work in the presence of confounders and propose

a method accordingly to accommodate confounding covariates. Our

proof-of-concept simulations and applications to two real datasets

demonstrate the value of our method, DISSCO, particularly for low-

frequency variants. Our method is implemented in JAVA and freely

available online http://www.unc.edu/�yunmli/DISSCO/.
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