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Placental genomics mediates genetic associations
with complex health traits and disease
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As the master regulator in utero, the placenta is core to the Developmental Origins of Health

and Disease (DOHaD) hypothesis but is historically understudied. To identify placental gene-

trait associations (GTAs) across the life course, we perform distal mediator-enriched tran-

scriptome-wide association studies (TWAS) for 40 traits, integrating placental multi-omics

from the Extremely Low Gestational Age Newborn Study. At P < 2:5 ´ 10�6, we detect 248

GTAs, mostly for neonatal and metabolic traits, across 176 genes, enriched for cell growth

and immunological pathways. In aggregate, genetic effects mediated by placental expression

significantly explain 4 early-life traits but no later-in-life traits. 89 GTAs show significant

mediation through distal genetic variants, identifying hypotheses for distal regulation of

GTAs. Investigation of one hypothesis in human placenta-derived choriocarcinoma cells

reveal that knockdown of mediator gene EPS15 upregulates predicted targets SPATA13 and

FAM214A, both associated with waist-hip ratio in TWAS, and multiple genes involved in

metabolic pathways. These results suggest profound health impacts of placental genomic

regulation in developmental programming across the life course.
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The placenta serves as the master regulator of the intrau-
terine environment via nutrient transfer, metabolism, gas
exchange, neuroendocrine signaling, growth hormone

production, and immunologic surveillance1–3. Owing to strong
influences on postnatal health, the placenta is central to the
Developmental Origins of Health and Disease (DOHaD)
hypothesis—that the in utero experience has lifelong impacts on
child health by altering developmental programming and influ-
encing risk of common, non-communicable health conditions4.
For example, physiological characteristics of the placenta
have been linked to neuropsychiatric, developmental, and meta-
bolic diseases or health traits (collectively referred to as traits)
that manifest throughout the life course, either early- or later-in-
life (Fig. 1)1,5–8. Despite its long-lasting influences on health,
the placenta is understudied in large consortia studies of multi-
tissue gene regulation9,10. Studying regulatory mechanisms in
the placenta underlying biological processes in developmental
programming could provide novel insight into health and disease
etiology.

The complex interplay between genetics and placental tran-
scriptomics and epigenomics has strong effects on gene expres-
sion that may explain variation in gene-trait associations (GTAs).
Quantitative trait loci (QTL) analyses have identified a strong
influence of cis-genetic variants on both placental gene expression
and DNA methylation11. Furthermore, there is growing evidence
that the placental epigenome influences gene regulation, often
distally (>1–3 Megabases away in the genome)12, and that pla-
cental DNA methylation and microRNA (miRNA) expression are
associated with health traits in children13. Dysfunction of tran-
scription factor regulation in the placenta has also shown pro-
found effects on childhood traits14. Although combining genetics,
transcriptomics, and epigenomics lends insight into the influence
of placental genomics on complex traits15, genome-wide screens
for GTAs that integrate different molecular profiles and generate

functional hypotheses require more sophisticated computational
methods.

To this end, advances in transcriptome-wide association stu-
dies (TWAS) have allowed for integration of genome-wide
association studies (GWAS) and eQTL datasets to boost power in
identifying GTAs, specific to a relevant tissue16,17. However,
traditional methods for TWAS largely overlook genetic variants
distal to genes of interest, ostensibly mediated through regulatory
biomarkers, like transcription factors, miRNAs, or DNA methy-
lation sites18. Not only may these distal biomarkers explain a
significant portion of both gene expression heritability and trait
heritability on the tissue-specific expression level19,20, they may
also influence tissue-specific trait associations for individual
genes. Owing to the strong interplay of regulatory elements in
placental gene regulation, we sought to systematically characterize
portions of gene expression that are influenced by these distal
regulatory elements.

Here, we set out to identify the following: (1) which genes show
associations between their placental genetically regulated expression
(GReX) and various traits across the life course, (2) which traits
along the life course can be explained by placental GReX, in
aggregate, and (3) which transcription factors, miRNAs, or CpG
sites potentially regulate trait-associated genes in the placenta
(Fig. 1). We leveraged multi-omic data from fetal-side placenta
tissue from the Extremely Low Gestational Age Newborn (ELGAN)
Cohort Study21 to train predictive models of gene expression
enriched for distal-SNPs using MOSTWAS, a recent TWAS
extension that integrates multi-omic data22. Using 40 GWAS of
European-ancestry subjects from large consortia23–27, we performed
a series of TWAS for non-communicable health traits and disorders
that may be influenced by the placenta to identify GTAs and
functional hypotheses for regulation (Fig. 2). To our knowledge, this
analysis is among the first distal mediator-enriched TWAS of health
traits that integrates multi-omic data from the placenta.
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Fig. 1 Overview of the DOHaD hypothesis. The placenta facilitates important functions in utero, including nutrient transfer, metabolism, gas exchange,
neuroendocrine signaling, growth hormone production, and immunologic control. Accordingly, it is a master regulator of the intrauterine environment
and is core to the Developmental Origins of Health and Disease (DOHaD) hypothesis. Placental genomic regulation is influenced by both genetic and
environmental factors and affects placental developmental programming. In turn, this programming has been shown to have profound impacts on a variety
of disorders and traits, both early- and later-in-life.
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Results
Overview of analytic framework. We conduct a series of distal
mediator-enriched transcriptome-wide association studies
(TWAS) for a variety of complex traits by integrating GWAS data
with placental eQTL data from ELGAN. First, we use a recent
methodology, MOSTWAS22, to train predictive models of gene
expression using both local- and distal-SNPs to genes (Fig. 2a).
Next, we employ these models to conduct TWAS for these traits
using GWAS summary statistics to identify genes with placental
genetically regulated expression (GReX) associated with different
traits across the life course (Fig. 2b)17. We then estimate the
extent to which placental genetically regulated expression across
all trait-associated genes can explain the variability in a trait and
correlations between traits (Fig. 2c)17,28. Next, to provide more
biological context, for genes estimated to have placental GTAs, we
run multiple follow-up analyses (Fig. 2c): gene ontology enrich-
ment analyses29, probabilistic fine-mapping of overlapping loci30,
phenome-wide analyses for select genes, and prioritization of
functional hypotheses for upstream distal regulation22. Lastly, for
one particular functional hypothesis supported with strong
computational evidence, we conduct an in vitro assay in a human
placenta-derived cell line to validate the predicted mediator-
TWAS gene relationship and the transcriptomic consequences of
this mediator (Fig. 2d).

Complex traits are genetically heritable and correlated. We
curated GWAS summary statistics from subjects of European
ancestry for 40 non-communicable traits and disorders across five
health categories to identify potential links to genetically regu-
lated placental expression (traits and cohorts for each GWAS are
summarized in Supplementary Data 1, sample sizes are provided

in Supplementary Data 2). These five categories of traits (auto-
immune/autoreactive disorders, metabolic traits, cardiovascular
disorders, early childhood outcomes, and neuropsychiatric traits)
have been linked previously to placental and fetal biology and
morphology1–8. These 40 traits, derived from 5 different consortia
(Supplementary Data 1), comprise of 3 autoimmune/autoreactive
disorders, 8 body size/metabolic traits, 4 cardiovascular disorders,
14 neonatal/early childhood traits, and 11 neuropsychiatric traits/
disorders23–27. The 26 traits that are not categorized as neonatal/
early childhood traits are measured exclusively in adults. In
addition, these 40 GWAS are not derived from the same samples
of patients.

To quantify the total genetic contribution to each trait and the
genetic associations shared between traits, using linkage disequili-
brium (LD) score regression with LD scores generated for
individuals of European ancestry from the 1000 Genomes
projects31,32, we estimated the SNP heritability (h2) and genetic
correlation (rg) of these traits, respectively (Supplemental Figs. S1
and S2). Of the 40 traits, 37 showed significantly positive

SNP heritability and 18 with ĥ
2
> 0:10 (Supplemental Fig. S1,

Supplementary Data 1), with the largest heritability for childhood

BMI (ĥ
2 ¼ 0:69; SE ¼ 0:064). As expected, we observed strong,

statistically significant genetic correlations between traits of similar
categories (i.e., between neuropsychiatric traits or between
metabolic traits) (Supplemental Fig. S2; Supplementary Data 3).
At Benjamini–Hochberg FDR-adjusted P < 0:05, we also observed
significant correlations between traits from different categories:
diabetes and angina (̂rg ¼ 0:51, FDR-adjusted P ¼ 6:53´ 10�33),
Tanner scale (in children) and BMI (̂rg ¼ 0:42, FDR-adjusted
P ¼ 1:06´ 10�3), and BMI and obsessive compulsive disorder

Fig. 2 Overview of analytic pipeline. a Predictive models of placental expression are trained from germline genetics, enriched for mediating biomarkers
using MOSTWAS22 and externally validated in RICHS36 eQTL data. b Predictive models are integrated with GWAS for 40 traits to detect placental gene-
trait associations (GTAs). c GTAs are followed up with gene ontology analyses, probabilistic fine-mapping, and phenome-wide scans of genes with multiple
GTAs. Relationships between identified distal mediators and TWAS genes are investigated further in RICHS and ENCODE10. Expression-mediated genetic
heritability of and correlations between traits are estimated. d In vitro validation of prioritized regulatory protein-TWAS gene pairs are conducted using
placenta-derived choriocarcinoma cells by gene silencing, qRT-PCR, and RNA-seq to measure transcriptomic impacts of the regulatory protein.
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(̂rg ¼ �0:28, FDR-adjusted P ¼ 1:79´ 10�9), for example. Given
strong and potentially shared genetic influences across these traits,
we examined whether genetic associations with these traits are
mediated by the placental transcriptome.

Multiple placental gene-trait associations detected across the
life course. In the first step of our TWAS (Fig. 2a), we leveraged
MOSTWAS22, a recent TWAS extension that includes distal
variants in transcriptomic prediction, to train predictive models
of placental expression. As large proportions of total heritable
gene expression are explained by distal-eQTLs local to regulatory
hotspots18,20, MOSTWAS uses data-driven approaches to identify
mediating regulatory biomarkers or distal-eQTLs mediated
through local regulatory biomarkers to increase predictive power
for gene expression and power to detect GTAs (Supplemental
Fig. S3)22. In this analysis, these regulatory biomarkers include
potential regulatory protein (RP) encoding genes (as curated
by TFcheckpoint33), miRNAs, and CpG methylation sites from
the ELGAN Study. we assume that these RP genes, miRNAs, and
genes and other regulatory features local to these CpG methyla-
tion sites have distal effects on the transcription of genes of
interest and thus potentially mediate distal-eQTLs to the gene of
interest (Methods).

Using genotypes from umbilical cord blood34 and mRNA
expression, CpG methylation, and miRNA expression data from
fetal-side placenta15 from the ELGAN Study21 for 272 infants
born pre-term, we built genetic models to predict RNA expression
levels for genes in the fetal placenta (demographic summary in
Supplementary Data 4). Out of a total of 12,020 genes expressed
across all samples in ELGAN, we successfully built significant
models for 2994 genes, with positive SNP-based expression
heritability (nominal P<0:05) and fivefold McNemar’s adjusted
cross-validation (CV) R2 ≥ 0.01 (Fig. 3a [Step 1]; Methods).
Only these 2,994 models are used in subsequent TWAS steps.
Mean SNP heritability for these genes was 0.39 (25% quantile=
0.253, 75% quantile= 0.511), and mean CV R2 was 0.031
(quantiles: 0.014, 0.034). For out-sample validation, we imputed
expression into individual-level genotypes from the Rhode Island
Child Health Study (RICHS; N ¼ 149)35,36, showing strong
portability across studies: of 2,005 genes with RNA-seq expression
in RICHS, 1,131 genes met adjusted R2 ≥ 0:01, with mean R2 ¼
0:011 (quantiles: 7:71´ 10�4, 0.016) (Fig. 3b and Supplementary
Data 5). Summary statistics of demographic and clinical variables
for the RICHS show similar distributions of race, though RICHS
excluded all pre-term babies, a clear difference in these two cohorts
(Supplementary Data 4).

We integrated GWAS summary statistics for 40 traits from
European-ancestry subjects with placental gene expression using
our predictive models. Using the weighted burden test with the
1000Genomes European ancestry LD matrix as a reference17, we
detected 932 GTAs (spanning 686 unique genes) at P<2:5 ´ 10�6, a
transcriptome-wide significance threshold consistent with previous
TWAS17,28 (Fig. 3a [Step 2]). As many of these loci carry significant
signal because of strong SNP-trait associations, we employed Gusev
et al.’s permutation test to assess how much signal is added by
the SNP-expression weights and confidently conclude that integra-
tion of expression data significantly refines association with the
trait17. At FDR-adjusted P<0:05 and spanning 176 unique genes,
we detected 248 such GTAs, with 11 autoimmune/autoreactive,
136 body size/metabolic, 32 cardiovascular, 39 neonatal/childhood,
and 30 neuropsychiatric GTAs (Fig. 3a [Step 3], Supplementary
Data 2 and 6; Miami plots of TWAS Z-scores in Supplemental
Figs. S4–S9).

The 39 GTAs detected with adult BMI included LARS2
(Z ¼ 11:4) and CAST (Z ¼ �4:61). These two GTAs have been

detected using cis-only TWAS in different tissues17,28. In addition,
one of the 30 genes identified in association with waist-hip ratio (in
adults) was prioritized in other tissues by TWAS: NDUFS1
(Z ¼ �5:38)28. We cross-referenced susceptibility genes with a
recent cis-only TWAS of fetal birthweight, childhood obesity, and
childhood BMI by Peng et al. using placental expression data from
RICHS8. Of the 19 birthweight-associated genes they identified, we
could only train significant expression models for two in ELGAN:
PLEKHA1 and PSG8. We only detected a significant association
between PSG8 and fetal birthweight (Z ¼ �7:77). Similarly, of the
six childhood BMI-associated genes identified by Peng et al., only 1
had a significant model in ELGAN and showed no association with
the trait; there were no overlaps with childhood obesity-associated
genes8. We hypothesize that minimal overlap with susceptibility
genes identified by Peng et al. is due to differing phenotypes and
eQTL architectures in the datasets and different inclusion criteria
for significant gene expression models.

Next, we tested for horizontal pleiotropic effects of the SNPs
employed in the models for TWAS-prioritized genes; if SNPs
affect the outcome through a pathway independent of expression
of the gene, the TWAS association may be biased37,38. Here, using
PMR-Summary-Egger38, we test the magnitude of this null
hypothesis for each of the 248 TWAS-prioritized GTAs. At FDR-
adjusted P<0:05, only three GTAs showed significant horizontal
pleiotropic effects: MOV10, SLC35G2, and HLA-A, all associated
with adult waist-hip ratio (Supplementary Data 6). These three
genes may have upwardly biased TWAS associations, as the SNPs
used to construct their GReX may influence the outcome through
a different molecular pathway.

As these GTAs indicate trait association and do not reflect
causality, we used FOCUS30, a Bayesian gene-level fine-mapping
approach. For TWAS-significant genes with overlapping genetic
loci, FOCUS estimates posterior inclusion probabilities (PIP) in a
credible set of genes that explains the association signal at the
locus. We found 8 such overlaps and estimated a 90% credible set
of genes explaining the signal for each locus (Supplementary
Data 9). For example, we identified 3 genes associated with
triglycerides in adults at the 12q24.13 chromosomal region
(ERP29, RPL6, BRAP), with ERP29 defining the region’s 90%
credible set with approximately 95% PIP. Similarly, we detected 3
genes associated with adult BMI at 10q22.2 (AP3M1, SAMD8,
MRPS16), with AP3M1 defining the region’s 90% credible set
with approximately 99% PIP.

We conducted over-representation analysis for biological
process, molecular function, and PANTHER gene pathway
ontologies for TWAS-detected susceptibility genes (Fig. 3d and
Supplementary Data 7)29. Overall, considering all 176 TWAS-
identified genes, we observed enrichments for nucleic acid
binding and immune or cell growth signaling pathways (e.g.,
B-cell/T-cell activation and EGF receptor, interleukin, PDGF, and
Ras signaling pathways). By trait, we found related pathways
(sphingolipid biosynthesis, cell motility, etc) for TWAS genes for
metabolic and morphological traits (e.g., BMI and childhood
BMI); for most traits, we were underpowered to detect ontology
enrichments. We also assessed the overlap of TWAS genes with
GWAS signals. A total of 112 TWAS genes did not overlap with
GWAS loci (P<5 ´ 10�8) within a 500 kilobase interval around
any SNPs (local and distal) included in predictive models
(Supplementary Data 10).

Genetically regulated placental expression mediates trait her-
itability and genetic correlations. To assess how genetically
regulated placental expression explains trait variance, we com-
puted trait heritability on the placental expression level (h2GE)
using all examined and all TWAS-prioritized susceptibility genes
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using a LD-score regression approach17,31. Overall, we found 4/14
neonatal traits (childhood BMI, head circumference, total puberty

growth, and pubertal growth start) with significant ĥ
2

GE > 0 (FDR-
adjusted P<0:05 for jack-knife test of significance)28; none of the
26 traits outside the neonatal category were appreciably explained
by placental GReX (Supplemental Fig. S10). Figure 4a shows that

mean ĥ
2

GE is higher in neonatal traits than other groups. In fact,
placenta expression-mediated genetic heritability explains a larger
proportion of total SNP heritability of neonatal traits, compared
to traits from other categories (Fig. 4b). A comparison of the
number of GWAS-significant SNPs and TWAS-significant genes
also shows that neonatal traits are enriched for placental TWAS
associations, even though significant genome-wide GWAS
architecture cannot be inferred for these traits (Supplemental
Fig. S11). These observations suggest that placental GReX affects
neonatal traits more profoundly, as a significantly larger pro-
portion of neonatal traits showed significant heritability on the
placental GReX level than later-in-life traits.

Using RHOGE28, we assessed genetic correlations (rGE) between
traits at the level of placental GReX (Supplemental Fig. S12).
We found several known correlations: between cholesterol and
triglycerides, both in adults, (̂rGE ¼ 0:99; P ¼ 1:44´ 10�118) and

childhood BMI and adult BMI (̂rGE ¼ 0:55; P ¼ 3:67 ´ 10�8).
Interestingly, we found correlations between traits across categories
(Fig. 4c): IQ and diastolic blood pressure, both in adults,
(ρ̂GE ¼ �0:55; P ¼ 2:44 ´ 10�5) and age of asthma diagnosis and
adult glucose levels (ρ̂GE ¼ 0:86; P ¼ 3:05´ 10�6). These traits
have been linked in morphological analyses of the placenta, but our
results suggest possible genomic contributions39. Overall, these
correlations suggest shared genetic pathways for these pairs of traits
or for etiologic antecedents of these traits; these shared pathways
could be either at the susceptibility genes or through shared distal
loci, mediated by RPs, miRNAs, or CpG methylation sites.

Genes with multiple GTAs have phenome-wide associations in
early- and later-life traits. We noticed that multiple genes were
identified in GTAs with multiple traits, leading us to examine
potential horizontally pleiotropic genes. Of the 176 TWAS-
prioritized genes, we identified 50 genes associated with multiple
traits, many of which are genetically correlated (Supplementary
Data 11). Nine genes showed >3 GTAs across different categories.
For example, IDI1, a gene involved in cholesterol biosynthesis40,
showed associations with three metabolic and two neu-
ropsychiatric traits: body fat percentage (Z ¼ 15:57), HDL

Fig. 3 Placental MOSTWAS prediction and association test results. a Overview of TWAS association testing pipeline with number of gene-trait
associations (GTAs) across unique genes over various levels of TWAS tests. b Kernel density plots of in- (through cross-validation in ELGAN, red) and out-
sample (external validation in RICHS, blue) McNemar’s adjusted R2 between predicted and observed expression. Dotted and solid lines represent the mean
and median of the respective distribution, respectively. c Bar graph of numbers of TWAS GTAs at overall TWAS P<2:5 ´ 10�6 (for two-sided weighted
burden Z-test) and two-sided permutation test FDR-adjusted P<0:05 (x-axis) across traits (y-axis). The total number of GTAs per trait are labeled, colored
by the category of each trait. The bar is broken down by numbers of GTAs with (orange) and without (green) significant distal expression-mediated
associations, as indicated by FDR-adjusted P<0:05 for the distal-SNPs added-last test. d Enrichment plot of over-representation in 176 TWAS genes of
PANTHER pathways (y-axis) with -log10 FDR-adjusted P-value (x-axis) of one-sided Fisher’s exact test. The size of the point gives the relative enrichment
ratio for the given pathway.
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(Z ¼ 26:48), triglycerides (Z ¼ �7:53), fluid intelligence score
(Z ¼ 6:37), and schizophrenia (Z ¼ �5:56), with all five traits
measured in adults. A link between cholesterol-related genes and
schizophrenia has been detected previously, potentially due to
coregulation of myelin-related genes41. Mediated by CpG site
cg01687878 (found within PITPNM2), predicted expression of
IDI1 was also computed using distal-SNPs within Chromosome
12q24.31, a known GWAS risk loci for hypercholesteremia42; the
inclusion of this locus may have contributed to the large TWAS
associations. Similarly, SAMD4A also shows associations with
four adult body size/metabolic—body fat percentage (Z ¼ 6:70),
cholesterol (Z ¼ �6:76), HDL (Z ¼ �6:78), triglycerides
(Z ¼ �5:30)—and one adult cardiovascular trait (diastolic blood
pressure with Z ¼ �5:29). These associations also pick up on
variants in Chromosome 12q24.31 local to CpG sites cg05747134
(within MMS19) and cg04523690 (within SETD1B). Another
gene with multiple trait associations is CMTM4, an angiogenesis
regulator43, showing associations with body fat percentage
(Z ¼ 6:17), hypertension (Z ¼ 5:24), and fetal birthweight
(Z ¼ 8:11). CMTM4 shows evidenced risk of intrauterine growth
restriction due to involvement with endothelial vascularization44,
potentially suggesting that CMTM4 has a more direct effect in
utero, which mediates its associations with body fat percentage
and hypertension.

We further studied the nine genes with three or more distinct
GTAs across different categories (Fig. 5a). Using UK Biobank23

GWAS summary statistics, we conducted TWAS for a variety of
traits, measured in adults, across eight groups, defined generally
around ICD code blocks (Fig. 5a and Supplemental Fig. S13);
here, we grouped metabolic and cardiovascular traits into one
category for ease of analysis. At FDR-adjusted P<0:05, ATPAF2,
RPL6, and SEC11A showed GTA enrichments for immune-
related traits, ATAPF2 for neonatal traits, IDI1 for mental

disorders, and RPS25 for musculoskeletal traits. Across these 8
trait groups, RPL6 showed multiple strong associations with
circulatory, respiratory, immune-related, and neonatal traits
(Fig. 5a). Examining specific GTAs for ATPAF2, IDI1, RPS25,
and SEC11A reveals associations with multiple biomarker traits
(Supplemental Fig. S13). For example, at P<2:5 ´ 10�6, ATPAF2
and IDI1’s immune GTA enrichment includes associations with
eosinophil, monocyte, and lymphocyte count and IGF-1 con-
centration. ATPAF and RPS25 show multiple associations with
platelet volume and distribution and hematocrit percentage. In
addition, IDI1 was associated with multiple mental disorders
(obsessive compulsive disorder, anorexia nervosa, bipolar dis-
order, and general mood disorders), consistent with its TWAS
associations with fluid intelligence and schizophrenia (Supple-
mental Fig. S13). As placental GReX of these genes correlates with
biomarkers, these results may not necessarily signify shared
genetic associations across multiple traits. Rather, this may point
to more fundamental effects of these TWAS-identified genes that
manifest in complex traits later in life.

We next examined whether placental GReX of these nine genes
correlate with fundamental traits at birth. We imputed expression
into individual-level ELGAN genotypes (N ¼ 729). Controlling for
race, sex, gestational duration, inflammation of the chorion, and
maternal age, as described in Methods, we tested for associations
for six representative traits measured at birth or at 24 months:
neonatal chronic lung disease, birth head circumference Z-score,
fetal growth restriction, birthweight Z-score, necrotizing enteroco-
litis, and Bayley II Mental Development Index (MDI) at
24 months15. Shown in Fig. 5b and Supplementary Data 12, at
FDR-adjusted P<0:05, we detected negative associations between
SEC11A GReX and birthweight Z-score (effect size: −0.248, 95%
adjusted CI: [–0.434,–0.063]) and GReX of ATPAF2 and head
circumference Z-score (–0.173, [–0.282,–0.064]). Furthermore, we

Fig. 4 Trait genetic heritability and correlations mediated by placental expression. a Box-plot of expression-mediated trait heritability (h2GE), estimated
with LD-score regression, (y-axis) by category (x-axis), with labels if ĥ

2

GE is significantly greater than 0 using two-sided jack-knife test of significance.
Boxplots are b Box-plot of expression-mediated trait heritability (h2GE) standardized by SNP heritability (h2) (y-axis) by category (x-axis), with labels if ĥ

2

GE is
significantly greater than 0 using two-sided jack-knife test of significance. c Forest plot of significant placenta expression-mediated genetic correlations
(shown as points) and 95% FDR-adjusted two-sided Wald-type confidence intervals between traits from different categories. Boxplots in a, b provide, in
order of bottom to top, the lower extreme, lower quartile, median, upper quartile, and upper extreme. Sample sizes used to derive these statistics across
a–c are provided in Supplementary Data 1.
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detected negative associations between MDI and GReX of RPL6
(–2.636, [–4.251, –1.02]) and ERP29 (–3.332, [–4.987, –1.677]). As
many of these genes encode for proteins involved in core processes
(i.e., RPL6 is involved in trans-activation of transcription and
translation, and SEC11A has roles in cell migration and
invasion)45,46, understanding how the placental GReX of these
genes affects neonatal traits may elucidate the potential long-lasting
impacts of placental dysregulation.

Body size and metabolic placental GTAs show trait associa-
tions in mice. To further study functional consequences for
selected TWAS-identified genes, we evaluated the 109 metabolic
trait-associated genes in the Hybrid Mouse Diversity Panel
(HMDP) for correlations with obesity-related traits47. This panel
includes 100 inbred mice strains with extensive collection of
obesity-related phenotypes from over 12,000 genes, with expres-
sion measured in a variety of adult tissues. Of the 109 genes, 73

Fig. 5 Computational follow-up analyses of TWAS-prioritized genes. a Box-plot of -log10 FDR-adjusted P-value (two-sided weighted burden Z-tests) of
multi-trait scans of GTAs in UKBB, grouped by eight groups of traits (grouped generally around ICD code blocks or organ systems) across nine genes with
multiple TWAS GTAs across different trait categories. The red dotted line represents FDR-adjusted P= 0.05. Sample sizes vary for each trait. Boxplots
provide, in order of bottom to top, the lower extreme, lower quartile, median, upper quartile, and upper extreme. b Forest plot of GTA association estimates
(shown as points) and 95% FDR-adjusted two-sided Wald-type confidence intervals for six neonatal traits in ELGAN for nine genes with multiple TWAS
GTAs across categories. The red line shows a null effect size of 0, and associations are colored blue for associations at FDR-adjusted P < 0.05. Sample size
of 729 individuals from ELGAN were used to derived these estimates. c Follow-up GBAT and Mendelian randomization (MR) analysis results using RICHS
data. On the left, effect size (shown as points) and 95% adjusted confidence intervals from GBAT (x-axis; two-sided t-test, df= 148) between GReX of RP-
encoding genes and TWAS gene associations (pairs given on y-axis). On the right, MR effect size and 95% adjusted confidence interval (x-axis; two-sided
Wald-type test) of RP-gene on TWAS gene (pairs on y-axis). The red line shows a null effect size of 0, and associations are colored blue for associations at
FDR-adjusted p < 0.05. Sample size of 149 individuals from RICHS were used to derive these estimates.
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were present in the panel and 36 showed significant cis-GReX
associations with at least one obesity-related trait at FDR-adjusted
P < 0.10 (Supplementary Data 11). For example, EPB41L1
(Epb4.1l1 in mice), a gene that mediates interactions in the ery-
throcyte plasma membrane, was associated with cholesterol and
triglycerides in TWAS and showed 22 GReX associations with
cholesterol, triglycerides, and HDL in mouse liver, adipose, and
heart, with R2 ranging between 0.09 and 0.31. Similarly, UBC
(Ubc in mice), a ubiquitin maintaining gene, was associated with
waist-hip ratio in the placental TWAS and showed 27 GReX
associations with glucose in adults, insulin, and cholesterol in
mouse aorta, liver, and adipose tissues in HMDP, with R2 ranging
between 0.08 and 0.14. Though generalizing these functional
results from non-placental tissue in mice to humans is tenuous,
we believe these 36 individually significant genes in the HMDP
are fruitful targets for follow-up studies.

MOSTWAS reveals functional hypotheses for distal placental
regulation of GTAs. An advantage of MOSTWAS’s methodology
is in functional hypothesis generation by identifying potential
mediators that affect TWAS-identified genes. Using the distal-
SNPs added-last test from MOSTWAS22, we interrogated distal
loci incorporated into expression models for trait associations,
beyond the association at the local locus. For 88 of 248 associa-
tions, predicted expression from distal-SNPs showed significant
associations at FDR-adjusted P<0:05 (Fig. 3a [Step 4], Supple-
mentary Data 6). For each significant distal association, we
identified a set of biomarkers that potentially affects transcription
of the TWAS gene: a total of 9 regulatory protein-encoding genes
(RPs) and 159 CpG sites across all 89 distal associations. Parti-
cularly, we detected two RPs, DAB2 (distal mediator for PAPPA
and diastolic blood pressure, distal Z ¼ �3:98) and EPS15, both
highly expressed in placenta48,49. Mediated through EPS15
(overall distal Z ¼ 7:11 and 6:33, respectively), distally predicted
expression of SPATA13 and FAM214A showed association with
waist-hip ratio. EPS15 itself showed a TWAS association for
waist-hip ratio (Supplementary Data 6), and the direction of the
EPS15 GTA was opposite to those of SPATA13 and FAM214A.
Furthermore, RORA, a gene encoding a transcription factor
involved in inflammatory signaling50, showed a negative asso-
ciation with transcription of UBA3, a TWAS gene for fetal
birthweight. Low placental RORA expression was previously
shown to be associated with lower birthweight51. Aside from
functions related to transcription regulation, the 9 RPs (CUL5,
DAB2, ELL, EPS15, RORA, SLC2A4RG, SMARCC1, NFKBIA,
ZC3H15) detected by MOSTWAS were enriched for several
ontologies (Supplementary Data 14), namely catabolic and
metabolic processes, response to lipids, and multiple nucleic acid-
binding processes29.

As we observed strong correlations between expressions of RP-
TWAS gene pairs in ELGAN (Supplemental Fig. S14), we then
examined the associations between TWAS-identified genes and
the GReX of any predicted mediating RPs in an external dataset.
Using RICHS, we conducted a gene-based trans-eQTL scan using
Liu et al.’s Gene-Based Association Testing (GBAT) method52 to
computationally validate RP-TWAS gene associations. We pre-
dicted GReX of the RPs using cis-variants through leave-one-out
cross-validation and scanned for associations with the respective
TWAS genes (Fig. 4c and Supplementary Data 15). We found a
significant association between predicted EPS15 and FAM214A
expressions (effect size −0.24, FDR-adjusted P ¼ 0:019). In
addition, we detected a significant association between predicted
NFKBIA and HNRNPU (effect size −0.26, FDR-adjusted
P ¼ 1:9 ´ 10�4). We also considered an Egger regression-based
Mendelian randomization framework53 in RICHS to estimate the

causal effects of RPs on the associated TWAS genes (Methods and
Materials) using, as instrumental variables, cis-SNPs correlated to
the RP and uncorrelated with the TWAS genes. We estimated
significant causal effects for two RP-TWAS gene pairs (Fig. 5c and
Supplementary Data 16): EPS15 on FAM214A (causal effect
estimate −0.58; 95% CI [0.21, 0.94]) and RORA on UBA3 (0.58;
[0.20, 0.96]). These GBAT and MR estimates between EPS15 and
FAM214A are in opposite directions of the simple correlations
presented in Supplemental Fig. S14. However, as discussed in
previous TWAS and MR studies17,53, correlations between GReX
and a phenotype are not equivalent to correlations between full
expression and the phenotype, as full expression is subject multiple
post-transcriptional process, while GReX is not.

We also examined the CpG methylation sites MOSTWAS
marked as potential mediators for expression of TWAS genes for
overlap with cis-regulatory elements in the placenta from the
ENCODE Project Phase II10, identifying 34 CpG sites (mediating
29 distinct TWAS genes) that fall in cis-regulatory regions
(Supplementary Data 17). Interestingly, one CpG site mediating
(cg15733049, Chromosome 1:2334974) FAM214A is found in
low-DNase activity sites in placenta samples taken at various
timepoints; additionally, cg15733049 is local to EPS15, the RP
predicted to mediate genetic regulation of FAM214A. Further-
more, expression of LARS2, a TWAS gene for adult BMI, is
mediated by cg04097236 (found within ELOVL2), a CpG site
found in low DNase or high H3K27 activity regions; LARS2
houses multiple GWAS risk SNPs for type 2 diabetes54 and has
shown adult BMI TWAS associations in other tissues17,28. Results
from these external datasets add more evidence that these
mediators play a role in gene regulation of these TWAS-identified
genes and should be investigated experimentally in future studies.

In vitro assays reveal widespread transcriptomic consequences
of EPS15 knockdown. Based on our computational results, we
experimentally studied whether the inverse relationship between
RP EPS15 and its two prioritized target TWAS genes, SPATA13
and FAM214A, is supported in vitro. We used a FANA oligo-
nucleotide targeting EPS15 to knock down EPS15 expression in
human placenta-derived JEG-3 choriocarcinoma cells and asses-
sed the gene expression of the targets in no-addition controls,
scramble oligo controls, and the knockdown variant via qRT-
PCR. JEG-3 cells were selected for study based on their know first
trimester-like phenotypes, including the synthesis and secretion
of hCG, human placenta lactogen, progesterone, estrone, and
estradiol55,56. Addition of FANA-EPS15 to JEG-3 cells decreased
EPS15 gene expression, while increasing the expression of
SPATA13 and FAM214A (50% decrease in EPS15 expression,
795% and 377% increase in SPATA13 and FAM214A expression,
respectively). At FDR-adjusted P<0:10, changes in gene expres-
sion of EPS15 and downstream targets from the scramble were
statistically significant against the knockdown oligo. Similarly,
changes in gene expression between the control mRNA and RP
and target mRNA were statistically significant (Fig. 6a).

To further investigate the transcriptomic consequences of
EPS15 knockdown in vitro, we measured transcriptome-wide
gene expression in the choriocarcinoma cell lines via RNA-seq
and conducted differential gene expression analysis across the
knockdown cells and scramble oligo controls57–59. Owing to
small sample sizes, we define a differentially expression gene with
absolute log2-fold-change greater than 0.5 at P<1:32 ´ 10�6, a
Bonferroni correction across all assayed genes (Methods).
We detected 650 genes downregulated and 838 genes upregulated
in the EPS15 knockdown cells, validating the negative correlations
between EPS15 and SPATA13 and FAM214A observed in qRT-
PCR (Fig. 6b and Supplementary Data 18–19). In particular, these

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28365-x

8 NATURE COMMUNICATIONS |          (2022) 13:706 | https://doi.org/10.1038/s41467-022-28365-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


downregulated genes were enriched for cell cycle, cell prolifera-
tion, or replication ontologies, while upregulated genes were
enriched for multiple different pathways, including lipid-related
processes, cell movement, and extracellular organization (Fig. 5c
and Supplementary Data 20–S21). Enrichments for cellular,
molecular, and disease pathway ontologies support these enrich-
ments (Supplemental Fig. S15 and Supplementary Data 20–S21).
Though we could not study the effects of these three genes on
body size-related traits, cis-GReX correlation analysis from the
HMDP did reveal a negative cis-GReX correlation (r ¼ �0:31,
FDR-adjusted P= 0.07) between Eps15 (mouse analog of human
gene EPS15) and free fatty acids in mouse liver (Supplementary
Data 13). These results prioritize EPS15 for further study in larger
cell line or animal studies as a potential regulator for multiple
downstream genes, perhaps for genes affecting cell proliferation
and replication in the placenta, like SPATA1360.

Discussion
The placenta has been understudied in large multi-tissue con-
sortia efforts that study tissue-specific regulatory mechanisms9,10

relevant to complex trait etiology. To address this gap, we sys-
tematically categorized placental gene-trait associations relevant
to the DOHaD hypothesis using MOSTWAS, a method for
enriching TWAS with distal genetic variants22. We detected 176
genes (enriched for cell growth and immune pathways) with
transcriptome-wide significant associations, with the majority of
GTAs linked to metabolic and neonatal/childhood traits. Fur-
thermore, we could only estimate significantly positive placental
GReX-mediated heritability for four neonatal traits but not for
later-in-life traits. Many of these TWAS-identified genes, espe-
cially those with neonatal GTAs, showed multiple GTAs across
trait categories (nine genes with three or more GTAs). We
examined phenome-wide GTAs for these nine genes in UKBB
and found enrichments for traits affecting in immune and cir-
culatory system (e.g., immune cell, erythrocyte, and platelet
counts). We followed up with selected early-life traits in ELGAN
and found associations with neonatal body size and infant cog-
nitive development. These results suggest that placental expres-
sion, mediated by fetal genetics, is most likely to have large effects
on early-life traits, but these effects may persist later-in-life as
etiologic antecedents for complex traits.

Fig. 6 In vitro experiments in EPS15-knockdown human placenta-derived choriocarcinoma epithelial cells. a Bar graph of the mean gene expression fold-
changes with error bars of 1 standard deviation from the qRT-PCR from JEG-3 RNA. Nominal P-values of pairwise t-tests are shown, with an asterisk if
Benjamini–Hochberg FDR-adjusted P<0:10 (n= 2 cells examined over two independent experiments). Note differences in y-axis scales. b Volcano plot
of log2 fold-change (x-axis) of differential expression across EP15 knockdown cells and scramble oligonucleotide against –log10 FDR-adjusted P-value
(y-axis; two-sided Wald-type tests from negative binominal regression). Upregulated genes are in red and downregulated genes in blue. Top up- and
downregulated genes by P-value are labeled, as well as EPS15, SPATA13, and FAM214A. c Enrichment plot of over-representation of down- (blue) and
upregulated (red) genes of PANTHER and KEGG pathways (y-axis) with –log10 FDR-adjusted P-value (x-axis; one-sided Fisher’s exact test). The size of the
point gives the enrichment ratio.
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MOSTWAS also generates hypotheses for regulation of TWAS-
detected genes, through distal mediating biomarkers, like tran-
scription factors, miRNAs, or products downstream of CpG
methylation islands22. Our computational results prioritized 89
GTAs with strong distal associations. We interrogated one such
functional hypothesis: EPS15, a predicted RP-encoding gene in the
EGFR pathway, regulates two TWAS genes positively associated
with waist-hip ratio— FAM214A, a gene of unknown function, and
SPATA13, a gene that regulates cell migration and adhesion60–62.
In fact, EPS15 itself showed a negative TWAS association with
waist-hip ratio. In particular, EPS15, mainly involved in endocy-
tosis, is a maternally imprinted gene and predicted to promote
offspring health49,63–65. There is ample literature that implicates
the protein product of EPS15 as a direct or indirect transcription
regulator. The protein Eps15 is an adaptor protein that regulates
intracellular trafficking and has been detected in the nucleus
of mammalian cells66. Once in the nucleus, Eps15 has shown
to positively modulate transcription in a GAL4 transactivation
assay67. Furthermore, Eps15 and its binding partner intersectin
activate the Elk-1 transcription factor, pointing to Eps15’s function
in regulating gene expression in the nucleus68. Specific to the
placenta, it has been proposed, through mouse models, that
Eps15’s interactions with multiple proteins suggest a role in cell
adhesion of trophoblast to endothelial cells through biogenesis of
exosomes and extracellular vesicles, a critical part of placental and
fetal development69–71.

In placental-derived choriocarcinoma epithelial cells, knock-
down of EPS15 showed increased expression of both FAM214A
and SPATA13, as well as multiple genes involved in metabolic
and hormone-related pathways. Though not implicating a direct
causal effect, EPS15’s inverse association with SPATA13 and
FAM214A could provide more context to its full influence in
placental developmental programming, perhaps by affecting cell
proliferation or adhesion pathways. In vivo animal experiments,
albeit limited in scope and generalizability, can be employed to
further investigate GTAs, building off results from the HMDP
showing cis-GReX correlations between EPS15 mouse analog and
fatty acid levels. Although these cis-GReX correlations from
HMDP cannot be generalized from mice to humans, our in vitro
assay provides valuable evidence for EPS15 genomic regulation in
the placenta. JEG-3 cells are reliable in use and provide accurate
results when investigating specific cellular responses, such as the
placental gene expression experiments used in this study; how-
ever, these cell lines do not capture interactions between cell types
in the placental tissue and its effects on the placental tran-
scriptome, as a whole. Our results also support the potential of
MOSTWAS to build mechanistic hypotheses for upstream reg-
ulation of TWAS genes that hold up to experimental rigor.

We conclude with limitations of this study and future directions.
First, our analysis considers only placental tissue. Though many of
our GTAs leverage distal-eQTL architecture, which tend to be
tissue-specific, the QTLs we leverage in TWAS may not be
placenta-specific. A similar analysis across developmental and
adult tissues could reveal more widespread genetic signals asso-
ciated with these traits. Second, the ELGAN Study gathered
molecular data from infants born extremely pre-term. If unmea-
sured confounders affect both prematurity and a trait of interest,
GTAs could be subject to backdoor collider confounding72.
However, significant TWAS genes did not show associations for
gestational duration, suggesting minimal bias from this collider
effect. An extensive comparison of genome-wide eQTL archi-
tecture between ELGAN and RICHS, highlighting differences in
genetic effects on gene expression across pre-term status, could be
of particular scientific importance. An interesting future endeavor
could include negative control variables to account for unmeasured
confounders in predictive models to allow for more generalizability

of predictive models73,74. Fourth, though we did scan neonatal
traits in ELGAN using individual-level genotypes, as the sample
size is small, larger GWAS with longitudinal traits could allow for
rigorous Mendelian Randomization studies that investigate rela-
tionships between traits across the life course, in the context of
placental regulation. Fifth, we curated a list of regulatory proteins
to include as potential mediators but use RNA expression of the
genes that code for these proteins as a proxy for abundance. We
contend that RNA abundance of the gene is a noisy estimate of the
protein abundance. An interesting extension of this analysis could
consider a proteome-wide association study, using the MOSTWAS
framework to identify protein interactions that are disease-related.
Lastly, due to small sample sizes of other ancestry groups in
ELGAN, we could only credibly impute expression into samples
from European ancestry and our TWAS only considers GWAS in
populations of European ancestry75. We emphasize acquisition of
larger genetic and genomic datasets from understudied and
underserved populations, especially related to early-in-life traits.

Our findings reveal functional evidence for the fundamental
influence of placental genetic and genomic regulation on devel-
opmental programming of early- and later-in-life traits, identi-
fying placental gene-trait associations and testable functional
hypotheses for upstream placental regulation of these genes.
Future large-scale tissue-wide studies should emphasize the pla-
centa as a core tissue for learning about the developmental origins
of health and disease.

Methods
The study was approved by the Institutional Review Board of the University of
North Carolina at Chapel Hill (IRB #16-2535). All participants consented to the
study as per IRB protocol.

Data acquisition and quality control
Genotype data. Genomic DNA was isolated from umbilical cord blood and gen-
otyping was performed using Illumina 1 Million Quad and Human
OmniExpression-12 v1.0 arrays34,76. Prior to imputation, from the original set of
731,442 markers, we removed SNPs with call rate <90% and MAF < 1%. We only
consider genetic variants on autosomes. We did not use deviation from
Hardy–Weinberg equilibrium as an exclusion criterion since ELGAN is an
admixed population. This resulted in 700,845 SNPs. We removed 4 individuals out
of 733 with sample-level missingness >10% using PLINK77. We first performed
strand-flipping according to the TOPMed Freeze 5 reference panel and using eagle
and minimac4 for phasing and imputation78–80. Genotypes were coded as dosages,
representing 0, 1, and 2 copies of the minor allele. The minor allele was coded in
accordance with the NCBI Database of Genetic Variation81. Overall, after QC and
normalization, we considered a total of 6,567,190 SNPs. We obtained processed
genetic data from the Rhode Island Children’s Health Study, as described before36.

Expression data. mRNA expression was determined using the Illumina QuantSeq 3’
mRNA-Seq Library Prep Kit, a method with high strand specificity82. mRNA-
sequencing libraries were pooled and sequenced (single-end 50 bp) on one lane of
the Illumina HiSeq 2500. mRNA were quantified through pseudo-alignment with
salmon57 mapped to the GENCODE Release 31 (GRCh37) reference tran-
scriptome. miRNA expression profiles were assessed using the HTG EdgeSeq
miRNA Whole Transcriptome Assay (HTG Molecular Diagnostics, Tucson, AZ).
miRNA were aligned to probe sequences and quantified using the HTG EdgeSeq
System83.

Genes and miRNAs with <5 counts for each sample were filtered, resulting in
12,020 genes and 2047 miRNAs for downstream analysis. We only consider
autosomal genes and miRNAs. Distributional differences between lanes were first
upper-quartile normalized84,85. Unwanted technical and biological variation (e.g.,
tissue heterogeneity) was then estimated using RUVSeq86, where we empirically
defined transcripts not associated with outcomes of interest as negative control
housekeeping probes87. One dimension of unwanted variation was removed from
the variance-stabilized transformation of the gene expression data using the limma
package59,86–88. We obtained pre-processed RNA expression data from the Rhode
Island Children’s Health Study, as described before36. Pre-processing steps for
RNA expression data from the RICHS are different from those employed here in
the ELGAN study (e.g., using EDASeq and edgeR for GC bias correction and
normalization35); differences in pre-processing may affect inferred distal-eQTL
architecture, as cell-type heterogeneity is captured and removed differently across
ELGAN and RICHS22,89,90.
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Methylation data. Extracted DNA sequences were bisulfate-converted using the EZ
DNA methylation kit (Zymo Research, Irvine, CA) and followed by quantification
using the Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA), which
measures CpG loci at a single nucleotide resolution, as previously described91–94.
Quality control and normalization were performed resulting in 856,832 CpG
probes from downstream analysis, with methylation represented as the average
methylation level at a single CpG site (β-value)92,95–98. DNA methylation data was
imported into R for pre-processing using the minfi package96,97. Quality control
was performed at the sample level, excluding samples that failed and technical
duplicates; 411 samples were retained for subsequent analyses.

Functional normalization was performed with a preliminary step of normal-
exponential out-of band (noob) correction method99 for background subtraction
and dye normalization, followed by the typical functional normalization method
with the top two principal components of the control matrix96,97. Quality control
was performed on individual probes by computing a detection P-value and
excluded 806 (0.09%) probes with non-significant detection (P > 0.01) for 5% or
more of the samples. A total of 856,832 CpG sites were included in the final
analyses. Lastly, the ComBat function was used from the sva package to adjust for
batch effects from sample plate100. In addition, to account for cell-type
heterogeneity, 5 surrogate values were estimated and removed from the data to
account using the sva package, as previously described15,92,100. The data were
visualized using density distributions at all processing steps. Each probe measured
the average methylation level at a single CpG site. Methylation levels were
calculated and expressed as β values, with

β ¼ M
U þM þ 100

ð1Þ

where M is the intensity of the methylated allele and U is the intensity of the
unmethylated allele. β-values were logit transformed to M values for statistical
analyses101. Overall, after QC and normalization, we considered 846,233 CpG sites,
only on autosomes.

Differences in inclusion/exclusion criteria between ELGAN and RICHS. We high-
light some differences in inclusion and exclusion criteria employed by ELGAN and
RICHS. ELGAN enrolled children born extremely pre-term (<28 weeks gestation)
and surviving 28 days postnatally, with full details of the study recruitment and
descriptive statistics of the cohort in O’Shea et al.21. In contrast, as mentioned in
Peng et al.36, the RICHS sample consists of term infants (≥37 weeks gestation, not
twins) born without serious pregnancy complications or congenital and chromo-
somal abnormalities. In addition, RICHS oversampled for large-for-gestational age
(LGA, >90% 2013 Fenton Growth Curve) and small-for-gestational age
(SGA, <10% 2013 Fenton Growth Curve) infants.

GWAS summary statistics. Summary statistics were downloaded from the following
consortia: the UK Biobank23, Early Growth Genetics Consortium24, Genetic
Investigation of Anthropometric Traits25, Psychiatric Genomics Consortium26, and
the Complex Trait Genetics Lab27 (Supplementary Data 1). Genomic coordinates
were transformed to the hg38 reference genome using liftOver102,103. SNP herit-
ability for each trait and genetic correlations for all pairwise combinations of traits
were estimated using LD-score regression with the European ancestry sample from
the 1000 Genomes Project as a reference for LD scores31,32.

QTL mapping. The first step in the MOSTWAS pipeline is to scan for associations
between SNPs and genes (genome-wide eQTL analysis) and between mediators and
genes. We conducted genome-wide eQTL mapping between all genotypes and all
genes in the transcriptome using a standard linear regression in MatrixeQTL104.
Here, we ran an additive model with gene expression as the outcome, SNP dosage
as the primary predictor of interest, with covariate adjustments for 20 genotype
PCs (for population stratification), sex, gestational duration, maternal age,
maternal smoking status, and 10 expression PEER factors105. Mediators here are
defined as RNA expression of genes that code for regulatory proteins (curated in
TFcheckpoint33), miRNAs, and monomorphic CpG methylation sites. In sum, we
call the expression or methylation of a mediator its intensity. We also conducted
genome-wide mediator-QTL mapping with the intensity of mediators as the out-
come with the same predictors as in the eQTL mapping. Lastly, we also assessed
associations between mediators and gene expression using the same linear models,
with mediator intensity as the main predictor. All intensities were scaled to zero
mean and unit variance.

Estimation of SNP heritability of gene expression. An important step in a
TWAS pipeline is estimation of SNP heritability of expression, as SNP heritability
is a strong determinant of TWAS study power17,106. Heritability using genotypes
within 1 Megabase of the gene of interest and any prioritized distal loci was
estimated using the GREML-LDMS method, proposed to estimate heritability by
correction for bias in LD in estimated SNP-based heritability107. Analysis was
conducted using GCTA v1.93.1108. Briefly, Yang et al. shows that estimates of
heritability are often biased if causal variants have a different minor allele fre-
quency (MAF) spectrums or LD structures from variants used in analysis. They
proposed an LD and MAF-stratified GREML analysis, where variants are stratified

into groups by MAF and LD, and genetic relationship matrices (GRMs) from these
variants in each group are jointly fit in a multi-component GREML analysis.

Gene expression models. We used MOSTWAS to train predictive models of gene
expression from germline genetics, including distal variants that were either close
to associated mediators (transcription factors, miRNAs, CpG sites) or had large
indirect effects on gene expression22 (Supplemental Fig. S1). Our assumption here
is that distal-eQTLs of a gene that are local to transcription factor-encoding genes,
miRNAs, or regulatory features local to CpG methylation sites may be potentially
mediated by cis-QTLs to these local features. This assumption has been employed
by multiple studies previously to identify trans-eQTLs in multiple tissues89,109–111.
For CpG methylation sites, we used the maxprobes R package to filter out cross-
reactive or polymorphic probes, which may induce bias112–114. MOSTWAS con-
tains two methods of predicting expression: (1) mediator-enriched TWAS (MeT-
WAS) and (2) distal-eQTL prioritization via mediation analysis. For MeTWAS, we
first identified mediators strongly associated with genes through correlation ana-
lyses between all genes of interest and a set of distal mediators (FDR-adjusted
P<0:05). We then trained local predictive models (using SNPs within 1Mb) of each
mediator using either elastic net or linear mixed model, used these models to
impute the mediator in the training sample, and included the imputed values for
mediators as fixed effects in a regularized regression of the gene of interest. For
DePMA, we first conducted distal-eQTL analysis to identify all distal-eQTLs at
P<10�6 and then local mediator-QTL analysis to identify all mediator-QTLs for
these distal-eQTLs at FDR-adjusted P<0:05. We tested each distal-eQTL for their
absolute total mediation effect on the gene of interest through a permutation test
and included eQTLs with significantly large effects in the final expression model.
Full mathematical details are provided in Bhattacharya et al.22. We considered only
genes with significantly positive heritability at nominal P<0:05 using a likelihood
ratio test and fivefold McNemar’s adjusted cross-validation R2 ≥ 0:01, a cross-
validation cutoff used by many previous TWAS analyses16,17,28,36,75,115,116.
McNemar’s adjustment to the traditional R2 is computed as

R2
adjusted ¼ 1� 1� R2

� � n� 1
n� ν � 1

ð2Þ

where n is the sample size and ν is the number of predictors in this linear model.
Since this R2 is computed only between the observed and predicted expression
values, ν ¼ 1.

TWAS tests of association
Overall TWAS test. In an external GWAS panel, if individual SNPs are available,
model weights from either MeTWAS or DePMA can be multiplied by their cor-
responding SNP dosages to construct the Genetically Regulated eXpression (GReX)
for a given gene. This value represents the portion of expression (in the given
tissue) that is directly predicted or regulated by germline genetics. We run a linear
model or test of association with phenotype using this GReX value for the eventual
TWAS test of association.

If individual SNPs are not available, then the weighted burden Z-test, proposed
by Gusev et al., can be employed using summary statistics17. Briefly, we compute

eZ ¼ wGZ

wGΣs;sw
T
G

� �1=2 ð3Þ

Here, Z is the vector of Z-scores of SNP-trait associations for SNPs used in
predicting expression. The vector wG represents the vector of SNP-gene effects
from MeTWAS or DePMA and Σs;s is the LD matrix (correlation matrix between

genotypes) between the SNPs represented in wG. The test statistic eZ can be
compared to the standard Normal distribution for inference.

Permutation test. We implement a permutation test, condition on the GWAS effect
sizes, to assess whether the same distribution of SNP-gene effect sizes could yield a
significant associations by chance17. We permute wG 1000 times without repla-
cement and recompute the weighted burden test to generate a null distribution foreZ. This permutation test is only conducted for overall associations at P<2:5 ´ 10�6.

Distal-SNPs added-last test. Lastly, we also implement a test to assess the infor-
mation added from distal-eSNPs in the weighted burden test beyond what we find
from local SNPs. This test is analogous to a group added-last test in regression
analysis, applied here to GWAS summary statistics. Let Zl and Zd be the vector of
Z-scores from GWAS summary statistics from local and distal-SNPs identified by a
MOSTWAS model. The local and distal-SNP effects from the MOSTWAS model
are represented in wl and wd . Formally, we test whether the weighted Z-scoreeZd ¼ wdZd from distal-SNPs is significantly larger than 0 given the observed
weighted Z-score from local SNPs eZl ¼ wlZl . We draw from the assumption that
ðeZd ; eZlÞ follow a bivariate Normal distribution. Namely, we conduct a two-sided
Wald-type test for the null hypothesis:

H0 : wdZdjwlZl ¼ eZl ¼ 0 ð4Þ
We can derive a null distribution using conditionals of bivariate Normal

distributions; see Bhattacharya et al.22.
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Genetic heritability and correlation estimation. At the genome-wide genetic
level, we estimated the heritability of and genetic correlation between traits via
summary statistics using LD-score regression31. On the predicted expression level,
we adopted approaches from Gusev et al.17 and Mancuso et al.28 to quantify the
heritability (h2GE) of and genetic correlations (ρGE) between traits at the predicted
placental expression level. We assume that the expected χ2 statistic under a
complex trait is a linear function of the LD-score31. The effect size of the LD-score
on the χ2 is proportional to h2GE :

E χ2
� � ¼ 1þ NTl

M

� 	
h2GE þ NTa ð5Þ

where NT is the GWAS sample size, M is the number of genes, l is the LD scores
for genes, and a is the effect of population structure. We estimated the LD scores of
each gene by predicting expression in European samples of 1000 Genomes and
computing the sample correlations and inferred h2GE using ordinary least squares.
We employed RHOGE to estimate and test for significant genetic correlations
between traits at the predicted expression level28.

Multi-trait scans in UKBB and ELGAN. For nine genes with three or more
associations across traits of different categories, we conducted multi-trait TWAS
scans in UK Biobank. Here, we used the weighted burden test in UKBB GWAS
summary statistics from samples of European ancestry for 296 traits grouped by
ICD code blocks (circulatory, congenital malformations, immune, mental dis-
orders, musculoskeletal, neonatal, neurological, and respiratory). We also imputed
expression for these genes in ELGAN using 729 samples with individual genotypes
and conducted a multi-trait scan for 6 neonatal traits: neonatal chronic lung dis-
ease, head circumference Z-score, fetal growth restriction, birthweight Z-score,
necrotizing enterocolitis, and Bayley II Mental Development Index (MDI) at
24 months. For continuous traits (head circumference Z-score, birthweight Z-score,
and mental development index), we used a simple linear regression with the GReX
of the gene as the main predictor, adjusting for race, sex, gestational duration (in
days), inflammation of the chorion, and maternal age. For binary traits, we used a
logistic regression with the same predictors and covariates. These covariates have
been previously used in placental genomic studies of neonatal traits because of their
strong correlations with the outcomes and with placental transcriptomics and
methylomics15,92,117.

Validation analyses in RICHS. Using genotype and RNA-seq expression data
from RICHS36, we attempted to validate RP-TWAS gene associations prioritized
from the distal-SNPs added-last test in MOSTWAS. We first ran GBAT, a trans-
eQTL mapping method from Liu et al.52 to assess associations between the loci
around RPs and the expression of TWAS genes in RICHS. GBAT tests the asso-
ciation between the predicted expression of a RP with the expression of a TWAS
gene, improving power of trans-eQTL mapping118. We also conduct directional
Egger regression-based Mendelian randomization to estimate and test the causal
effects of the expression of the RP on the expression of the TWAS gene119.

Human Mouse Diversity Panel. To provide some functional evidence of gene
associations with metabolic traits, we evaluated the 109 metabolic trait-associated
genes from our human placental TWAS in the Hybrid Mouse Diversity Panel
(HMDP) for correlations with obesity-related traits in mice47. This panel includes
100 inbred mice strains with extensive collection of obesity-related phenotypes
(e.g., cholesterol, body fat percentage, insulin, etc) from over 12,000 genes, with
expression measured in a variety of adult tissues (liver, adipose, aorta). We note
that the HMDP only considers adult tissues and does not include placental gene
expression. In the HMDP, we consider both trait correlation to tissue-specific gene
expression and cis-GReX (genetically regulated expression controlled by cis-
eQTLs).

In vitro functional assays
Cell culture and treatment. The JEG-3 choriocarcinoma cells were purchased from
the American Type Culture Collection (Manassas, VA; ATCC HTB-36). Cells were
grown in Gibco RMPI 1640, supplemented with 10% fetal bovine serum (FBS), and
1% penicillin/streptomycin at 37 °C in 5% CO2. Cells were plated at 2.1 × 106 cells
per 75 cm3 flask and incubated under standard conditions until achieving roughly
90% confluence. To investigate the effects of gene silencing, we used AUMsilence
FANA oligonucleotides for mRNA knockdown of EPS15 (AUM Bio Tech, Phila-
delphia, PA) and subsequent analysis of predicted downstream target genes
SPATA13 and FAM214A. On the day of treatment, cells were seeded in a 24-well
culture plate at 0.05 × 106 cells per well. Cells were plated in biological duplicate.
FANA oligos were dissolved in nuclease-free water to a concentration of 500 µM,
added to cell culture medium to reach a final concentration of 20 µM and incu-
bated for 24 h at 37 °C in 5% CO2.

mRNA expression by quantitative real-time polymerase chain reaction and RNA
Sequencing. Treated and untreated JEG-3 cells were harvested in 350 µL of buffer
RLT plus. Successive RNA extraction was performed using the AllPrep DNA/RNA/
miRNA Universal Kit according to the manufacturer’s protocol. RNA was

quantified using a NanoDrop 1000 spectrophotometer (Thermo Scientific, Wal-
tham, MA). RNA was then converted to cDNA, the next step toward analyzing
gene expression. Next, mRNA expression was measured for EPS15, SPATA13, and
FAM214A using real-time qRT-PCR and previously validated primers. Samples
were run in technical duplicate. Real-time qRT-PCR Ct values were normalized
against the housekeeping gene B-actin (ACTB), and fold-changes in expression
were calculated based on the ΔΔCT method120. Each sample was prepared in
biological duplicate and technical duplicate. These samples were pooled together
for sequencing to yield data representing four samples per exposure group. Fold-
change calculations using the Delta Delta CT method was calculated for each
sample individually:

Delta CTtreated ¼ CTGOI;treated � CTHouse;treated ð6Þ
Treated and untreated samples of JEG-3 RNA previously extracted using the

AllPrep DNA/RNA/miRNA Universal Kit were submitted to the High-Throughput
Sequencing Facility at UNC Chapel Hill for RNA sequencing. Total RNA samples
were submitted for sequencing using the HS4000 HO platform. Samples were
sequenced in duplicate, and libraries were prepped with the Kapa Stranded mRNA-
Seq kit from Illumina Platforms. Sequencing was performed after all samples
passed QAQC, with a paired-end read type, with a read length of 2 × 75.

Statistical analysis. Statistical analysis was performed using a one-way ANOVA
(with nominal significance level α ¼ 0:05). Post-hoc pairwise t-tests (three degrees
of freedom for biological and technical duplicate) were utilized to investigate direct
comparisons within sample groups.

Differential expression analysis. RNA-seq quantified counts (transcripts per kilo-
base million) were imported using tximeta58 and summarized to the gene-level.
Differential expression analysis between EPS15 knockdown samples and scramble
oligo controls was conducted using DESeq259. Although false-positive rates are
well-controlled even at low sample sizes121, true-positive rates at such a low sample
size are low for smaller thresholds of log-transformed fold-changes. Thus, guided
by Schurch et al.’s analysis, due to very limited sample size, we considered a gene to
be differentially expressed if the absolute log2-fold-change is greater than 1 and
P < 0.05/37,788= 1:32 ´ 10�6. This P-value threshold is a strict Bonferroni
threshold across 37,788 quantified genes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
ELGAN mRNA, miRNA, and CpG methylation data can be accessed from the NCBI Gene
Expression Omnibus GSE154829 and GSE167885. ELGAN genotype data is protected, as
subjects are still enrolled in the study; any inquiries or data requests must be made to RCF
and HPS. Specifically generated for this study, RNA-seq data for placental JEG-3 cells are
deposited in the NCBI GEO Database under accession code GSE185071. GWAS summary
statistics can be accessed at the following links: UK Biobank (https://pan.ukbb.broadinstitute.
org/downloads), GIANT consortium (https://portals.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium_data_files), PGC (https://www.med.unc.edu/pgc/download-
results/), EGG consortium (https://egg-consortium.org/), and CTG Lab (https://ctg.cncr.nl/
documents/p1651/SavageJansen_IntMeta_sumstats.zip). The RICHS eQTL dataset can be
accessed via dbGaP accession number phs001586.v1.p1. Placental epigenomic annotations
from the ENCODE Project are available from https://www.encodeproject.org/, with specific
accession numbers in Supplementary Data 17 (13 different accession numbers). All models
and full TWAS results can be accessed at https://doi.org/10.5281/zenodo.4618036122.

Code availability
Sample scripts for analysis are provided at https://github.com/bhattacharya-a-bt/
dohad_twas. The MOSTWAS software is accessible at https://bhattacharya-a-
bt.github.io/MOSTWAS/articles/MOSTWAS_vignette.html. We use the following
software in this study: PLINK v1.9 (https://zzz.bwh.harvard.edu/plink/), eagle v2.4.1
(https://alkesgroup.broadinstitute.org/Eagle/), minimac4 (https://genome.sph.umich.edu/
wiki/Minimac4), Salmon 1.5.1 (https://salmon.readthedocs.io/en/latest/salmon.html),
HTG EdgeSeq System (https://www.htgmolecular.com/systems/edgeseq), RUVSeq 3.12
(https://bioconductor.org/packages/release/bioc/html/RUVSeq.html), limma 3.12
(https://bioconductor.org/packages/release/bioc/html/limma.html), minfi 3.12 (https://
bioconductor.org/packages/release/bioc/html/minfi.html), sva 3.40 (https://
bioconductor.org/packages/release/bioc/html/sva.html), liftover 1.16.0 (https://
www.bioconductor.org/packages/release/workflows/html/liftOver.html), ldsc 1.0.1
(https://github.com/bulik/ldsc), MOSTWAS 1.0.0 (https://github.com/bhattacharya-a-bt/
MOSTWAS), MatrixEQTL 2.3 (https://cran.r-project.org/web/packages/MatrixEQTL/
index.html), GCTA GREML-LDMS v1.93.1 (https://yanglab.westlake.edu.cn/software/
gcta/#Overview), RHOGE 2018-02-28 (https://github.com/bogdanlab/RHOGE),
maxprobes 0.0.1 (https://github.com/markgene/maxprobes), tximeta 3.14 (https://
bioconductor.org/packages/release/bioc/html/tximeta.html), DESeq2 3.14 (https://
bioconductor.org/packages/release/bioc/html/DESeq2.html), MendelianRandomization
0.5.1 (https://cran.r-project.org/web/packages/MendelianRandomization/index.html),
and GBAT (https://github.com/xuanyao/GBAT).
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