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Abstract

Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with

single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data.

Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles

from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from

different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the

problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated

pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We

show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To

illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our

method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more

consistent with experimental designs and that reproduce more significant associations between cell-type proportions and

measured phenotypes.
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Introduction

Bulk RNA sequencing (RNA-seq) has been the method of

choice for profiling transcriptomic variations under different

conditions such as disease states [1–3]. However, in complex

tissues with multiple heterogeneous cell types, bulk RNA-seq

measures the average gene expression levels by summing over

the population of cells in the tissue and variability in cell-

type compositions confounds with analysis such as detecting

differential gene expression [4]. While multiple statistical and

computational methods have been developed for cell-type

decomposition of bulk RNA-seq data [5–7], most of these have

limitations. Many require a priori knowledge, either of gene

expression profiles of purified cell types [6, 7] or of cell-type

compositions [5]. Methods that do not take these information

as input instead require a list of pre-selected marker genes
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[8, 9]. Finally, completely unsupervised approaches based on

non-negativematrix factorization suffer from lowdeconvolution

accuracy and have identifiability and multicollinearity issues

[10].

Recent advances in single-cell RNA sequencing (scRNA-seq)

circumvent averaging artifacts associated with the traditional

bulk RNA-seq data by enabling characterization of transcrip-

tomic profiles at the single-cell level [11]. While scRNA-seq

data has greatly increased resolution in the characterization of

transcriptomic heterogeneity, its relatively high cost and tech-

nical challenges pose difficulties in generating scRNA-seq data

across a large population of samples [12, 13]. Association testing

performed on single-cell data from a small number of subjects

has only limited statistical power. Large collaborations, on the

other hand, have successfully sequenced an enormous number

of bulk samples [14, 15],making cell-type decomposition on bulk

RNA-seq data aided by scRNA-seq an appealing analysis scheme.

Several methods exploiting single-cell expression reference

datasets have been developed for bulk gene expression

deconvolution [16–20]. Specifically, both Bseq-SC [16] and DWLS

[20] first use scRNA-seq data to build a cell-type specific gene

expression signature matrix with or without requiring a set

of pre-selected marker genes, respectively. They then apply

a support vector regression-based deconvolution framework

adapted fromCIBERSORT [7] or aweighted least square approach

to estimate cell compositions. MuSiC [17] proposes a weighted

non-negative least squares (W-NNLS) regression framework

utilizing all genes shared between the bulk and the single-cell

data, while weighting each gene by cross-subject and cross-cell

variations. Empirical evidence suggests that this leads to higher

deconvolution accuracy. Recently developed methods, Bisque

[19] and CIBERSORTx [18], perform additional gene expression

transformations to explicitly account for the technical variation

in either the single-cell signature matrix or the observed

bulk expression. Supplementary Table S1 gives a summary

of the existing deconvolution methods utilizing scRNA-seq

data.

Despite this progress, to the best of our knowledge, all

existing methods reconstruct the gene expression signature

matrix using only one single-cell reference. These methods

therefore cannot use additional scRNA-seq data of the same

tissue from the same model organism that may be available

from other studies and laboratories (Supplementary Table S2

and Supplementary Figure S1). These methods also cannot take

advantage of the extensive transcriptomic reference maps

at the cellular level that have been generated by multiple

large consortia, including the Human Cell Atlas [21] and the

Mouse Cell Atlas [22]. Borrowing information from existing data

could potentially boost the performance of and increase the

robustness of deconvolution. This has been demonstrated by

[23], who showed that leveraging heterogeneity across multiple

reference datasets could increase deconvolution accuracy

and reduce biological and technical biases for microarray

data. For scRNA-seq data, however, significant batch effect

prevails across data collected from different sources and as

we demonstrate later, the naive pooling of multiple scRNA-seq

datasets to build a ‘mega’ reference profile performs poorly.

One potential solution is to correct for the batch effect in the

data. However, existing batch correction methods for scRNA-

seq data either adopt a dimension reduction technique for

visualization and clustering [24, 51] or change the scale of the

original gene expression measurements [25, 52, 53], both of

which make subsequent deconvolution difficult—perhaps even

infeasible.

Here, we introduce a new framework, SCDC, to leverage mul-

tiple scRNA-seq reference sets for bulk gene expression decon-

volution. Specifically, when multiple scRNA-seq reference sets

are available, SCDC adopts an ENSEMBLE method to integrate

deconvolution results across datasets; it implicitly addresses the

problem of batch-effect confounding by giving higher weights

to the scRNA-seq data that are more closely related to the

bulk RNA-seq data. We benchmark our method against existing

methods using pseudo-bulk samples generated in silico, whose

true underlying cell type identities are known. We also evaluate

the performance of SCDC on an RNA-seq dataset of paired single

cells and bulk samples, the latter of which have experimentally

controlled cell-type proportions as ground truths. SCDC is shown

to outperform existing methods by integrating multiple scRNA-

seq datasets; even with only one single-cell dataset, SCDC yields

enhanced deconvolution accuracy. To further demonstrate the

ENSEMBLEmethod, SCDC is applied to two real datasets, human

pancreatic islets and mouse mammary glands, using multiple

scRNA-seq inputs.We show that, compared to existingmethods,

SCDC returns results that are more consistent with experimen-

tal designs and that reproduce more significant associations

between cell-type proportions and measured phenotypes. SCDC

is available as an open-source R package at http://meichendong.

github.io/SCDC.

Results

Overview of SCDC’s deconvolution via ENSEMBLE

Figure 1 gives an overview of SCDC. The same set of bulk RNA-

seq samples can be deconvoluted using different single-cell

reference datasets. Empirically, we show that this may return

distinct cell-type proportion estimations, due to both intrinsic

biological variation and technical noise (Supplementary Table S2

and Supplementary Figure S1) [26]. It is further shown that

naively pooling all available single cells from different sources

suffers from the prevalent batch effects and the biological het-

erogeneity that are present in the data (Supplementary Table S3).

To resolve this discrepancy while making full use of all

available scRNA-seq reference datasets, SCDC adopts an

ENSEMBLE method to combine the deconvolution results from

individual datasets. The weights for each dataset are selected

via optimization, with higher weights assigned to single-cell

reference datasets that better recapitulate the true underlying

gene expression profiles of the bulk samples.

In the following, we begin by giving a review of the exist-

ing regression-based deconvolution framework [16–20]. We then

describe the model for SCDC, leaving algorithmic details to the

Methods section and Supplemental Information. Consider an

observed bulk gene expression matrix Y ∈ R
N×M for N genes

acrossM samples, each containingKdifferent cell types.The goal

of deconvolution is to find two non-negative matrices B ∈ R
N×K

and P ∈ R
K×M such that

Y ≈ BP,

where each column of P represents the mixing proportions

of the K cell types of one sample and each column of the

‘basis’ matrix B represents the average gene expression levels

in each type of cells. As described earlier, different methods

have been developed to integrate both bulk-tissue and single-

cell gene expression measurements for deconvolution [16–20].

These methods obtain

Ŷ = B̂P̂,

where each matrix is estimated as the final output.
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SCDC: Bulk Gene Expression Deconvolution by Multiple scRNA Sequencing References 3

Fig. 1. Overview of deconvolution via ENSEMBLE by SCDC.Whenmultiple single-cell reference datasets are available, batch effect confounding is avoided by performing

deconvolution on each scRNA-seq reference set separately. SCDC then integrates the deconvolution results with dataset-specific optimized weights, which are used to

derive the final cell-type proportions.

In the presence of multiple scRNA-seq datasets, one can

adopt the aforementioned deconvolution strategies to each

single-cell dataset r ∈ {1, . . . ,R} separately to obtain the predicted

gene expression level Ŷr, the estimated basis matrix B̂r and the

estimated cell-type proportion matrix P̂r. Empirical evidence

suggests that, depending on the scRNA-seq data adopted,

the estimates of P can differ drastically and that naively

pooling all the single-cell data with or without batch-effect

correction leads to overall bad and unstable performance

(Supplementary Table S2 and Supplementary Table S3). Tomake

full use of all available single-cell data and to give higher

weights to the reference that more closely recapitulates the true

underlying cell compositions, we propose SCDC, an ENSEMBLE

method to integrate all deconvolution results as P̂ = ŵ1P̂1 + · · · +

ŵRP̂R with different weights ŵr (1 ≤ r ≤ R), which are optimized

via:

(

ŵ1, ŵ2, . . . , ŵR

)

= argmin
(w1 ,w2 ,...,wR)

∥

∥

∥P− w1P̂1 − w2P̂2 − ... − wRP̂R

∥

∥

∥

1
. (1)

However, the above objective function cannot be minimized

given that the actual cell-type proportions P are unknown. To

overcome this problem, SCDC adopts a ‘surrogate’ metric on the

observed Y to substitute on the unknown P. That is, we instead

optimize the weights via

(

ŵ1, ŵ2, . . . , ŵR

)

= argmin
(w1 ,w2 ,...,wR)

∥

∥

∥Y − w1Ŷ1 − w2Ŷ2 − ... − wRŶR

∥

∥

∥

1
. (2)

Intuitively, if a single-cell reference data truly recapitulates the

cellular expression profiles of the bulk samples, it should provide

high-quality estimates of both P and Y. Empirically, we show

that the estimation errors on P are positively correlated with

those on Y (Supplementary Figure S1), confirming that a refer-

ence set that leads to higher deconvolution accuracy also has

lower residuals of Y from the regression. We also show that

the L1 norm of the difference in the above equations can be

replaced by other dissimilarity measurements such as correla-

tion or L2 norm of the difference (Supplementary Figure S1). For

optimization of weights {w1, . . . ,wR}, SCDC, by default, adopts

a numerical method based on grid search to maximize the

Spearman correlation between Y and Ŷ. Given P̂, one can subse-

quently adopt a regression-based framework, in a similar fash-

ion to csSAM [5], to derive a more accurate estimate of the basis

matrix B.

Performance on simulated data

To assess the performance of SCDC, we carried out extensive

simulation studies, which also illustrate the ENSEMBLE method

by SCDC inmore details. In these simulations, pseudo-bulk sam-

ples were generated in silico by aggregating well-characterized

single cells from existing scRNA-seq studies. The known cell-

type proportions of these samples were used as ground truths;

the deconvolution accuracy was assessed by Pearson correlation

and mean absolute deviation (mAD) between the actual and the

deconvoluted cell-type proportions. Figure 2A gives an outline

of the simulation setup. We started with a scenario where bulk

RNA-seq data was paired with scRNA-seq data generated from

the same study on the same subjects (Figure 2B).We thenmoved

onto a more difficult case where the bulk RNA-seq data was

generated from a different source than the scRNA-seq data

(Figure 2C).

In Figure 2B, pseudo-bulk samples were constructed by

aggregating well characterized single cells of four cell types

human pancreatic alpha, beta, delta and gamma cells from

[27]. A total of 100 simulations were run. Within each run,
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Fig. 2. Prediction errors of Y serve as a surrogate for the estimation errors of P. (A) Outline of simulation setup, where single cells of human pancreatic islets are

aggregated to generate pseudo-bulk samples, whose cell-type proportions are known. We examine the results of deconvolution via ENSEMBLE, both with and without

paired single-cell reference dataset. (B) mAD (P− P̂) andmAD (Y− Ŷ) with three varying dataset-specific weights for deconvolution of bulk samples with paired scRNA-

seq. The two metrics agreed on the assignment of the optimal weights, which were around (ŵ1, ŵ2, ŵ3) = (0, 0, 1). (C) mAD(P − P̂) and mAD(Y − Ŷ) with two varying

dataset-specific weights for deconvolution of bulk samples without paired scRNA-seq. The twometrics are highly correlated with varying weights for reference dataset

from [16].

100 pseudo-bulk samples were generated by sampling single

cells without replacement from a randomly selected subject. For

deconvolution, we further adopted three scRNA-seq datasets of

human pancreatic islets: [16, 27, 28], the last of which is from

the same source as the pseudo-bulk samples. In Figure 2B, we

demonstrate how different weights for the three scRNA-seq

reference sets (only two weights are shown since the three sum

up to one) lead to different deconvolution results accuracies,

as measured by the mAD of P − P̂ (top panel) and the mAD

of Y − Ŷ (bottom panel), respectively. We show that the two

metrics, given varying weights for the three single-cell reference

datasets, are highly correlated, indicating that themeasurement

error of Y serves as a good proxy to that of P. This signifies the

feasibility of the ENSEMBLE framework by SCDC when the true

underlying P remains unknown. Indeed, our findings further

reveal that SCDC was able to derive a set of optimal weights

with the highest one being close to one, which corresponds to

the single-cell data from the same source as the bulk samples.

The same pattern is observed when we switch the source of the

pseudo-bulk samples (Supplementary Figure S2).

Figure 2C shows results from another set of simulations.

These simulations are similar to the previously described set,

but there was no scRNA-seq reference set from the same source

as the pseudo-bulk samples. For pseudo-bulk samples generated

from [16] and [27], the scRNA-seq dataset from [28] is weighted

most heavily by SCDC (Figure 2C, Supplementary Table S2C),

potentially due to the high sequencing depth and full-transcript

coverage by the Smart-seq2 protocol [29] that was adopted.
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Performance on mixtures of three cell lines

While we have successfully demonstrated that SCDC allows

accurate deconvolution of pseudo-bulk samples, the in silico

reconstruction procedure is over simplified and does not

mimic how real bulk RNA-seq samples are collected and

sequenced. Therefore, we carried out a set of well controlled

experiments, where cell lines were mixed at a fixed ratio,

followed by both bulk and single-cell RNA-seq. These known

cell-type proportions served as ground truths to benchmark

SCDC against existing methods without bias. Specifically,

human breast cancer cell lines MDA-MB-468, MCF-7 and human

fibroblast cells were independently cultured and then mixed

at a fixed ratio of 6 : 3 : 1. This was followed by traditional

bulk RNA-seq as well as scRNA-seq by 10X Genomics. More

experimental details are available in the Methods section.

Single-cell clustering was performed using the Seurat pipeline

[24] with t-SNE visualization shown in Figure 3A (see details

in Supplemental Information). The cell-type ratio by scRNA-

seq is 0.661 : 0.225 : 0.114, close to but slightly different

from the experimental setup due to either the inaccuracy of

counting cells when making the mixture or the sampling bias of

scRNA-seq.

To deconvolute the bulk RNA-seq sample, we adopted the

scRNA-seq dataset that was generated from the same mixture,

which was the only available reference set. As such, this reduced

to a one-subject and one-reference deconvolution problem (see

Supplemental Information for details), and the ENSEMBLE step

was therefore not needed. In this case, we carried out direct

comparisons of SCDC without ENSEMBLE against existing meth-

ods.Given one single-cell reference dataset, SCDC largely follows

the W-NNLS framework proposed by MuSiC but also differs

in several ways. First, SCDC starts by scaling the raw single-

cell read-count matrix by a gene- and subject-specific maxi-

mal variance weight (MVW) so that residuals from genes with

larger weights have smaller impact on cell-type composition

estimation. Second, SCDC does not take cell-type memberships

as granted; instead, it removes potentially misclassified cells

and doublets using a first-pass SCDC run to improve robustness.

Third, it allows single-subject scRNA-seq input, in which cross-

subject variance cannot be directly estimated. (Refer to Methods

for more details.) However, since MDA-MB-468 and MCF-7 are

both human breast cancer cell lines with relatively similar tran-

scriptomic profiles, deconvolution of the bulk mixture by SCDC

in a single run fails to estimate the correct relative proportions.

To solve this issue, we applied the tree-guided deconvolution

procedure proposed by MuSiC [17] to separate the closely related

cell types. Refer to Supplemental Information for details.
The estimated cell-type proportions by SCDC with the tree-

guided approach are 0.64 : 0.26 : 0.11, close to the ratio of

6 : 3 : 1 with a Pearson correlation of 0.991 Figure 3B. We

also benchmarked SCDC against Bseq-SC [16], CIBERSORTx

[18], Bisque [19], DWLS [20] and MuSiC [17] and showed that,

even without ENSEMBLE, SCDC achieved the highest correlation

coefficient. This is consistent with the simulations results

shown in Supplementary Table S2: overall, SCDC achieved the

most accurate deconvolution results when only one single-cell

reference set was available.

Performance on human pancreatic islet data

To demonstrate the proposed ENSEMBLE framework when

multiple reference datasets are available, we used SCDC to

deconvolute 77 bulk RNA-seq samples of human pancreatic

islets, of which 51 are from healthy individuals and 26 are from

diabetic individuals [30]. Two scRNA-seq reference datasets

were adopted, each harvesting six cell types of interest:

alpha, beta, delta, gamma, acinar and ductal cells [16, 28]. To

allow the basis matrix B to reflect the potentially different

gene expression patterns between the cases and controls,

we performed the ENSEMBLE weight selection procedures

separately for the samples from the two classes. The final

ENSEMBLE weights for the two reference datasets were derived

using least absolute deviation (LAD) regression and grid search

method. Supplementary Table S4 shows the final weights for

the single-cell reference from [16], which vary from 0.17 to

0.40 for the healthy samples and 0.33 to 0.48 for the diabetic

samples. Figure 4A shows the cell-type proportions estimated

with ENSEMBLE (using weights selected by grid search method

to maximize Spearman correlation) compared to the cell-type

proportions estimated using single reference sets without

ENSEMBLE. SCDC recovered the proportions of beta cells that

were grossly underestimated previously [16] at much higher

levels, in concordance with the previous reports that adult

human islet consists of around 50%beta cells [31–33]. In addition,

our results suggested that the beta cell proportions were slightly

higher in the healthy donors than in the diabetic donors,

although the difference was insignificant (P = 0.1007).

To evaluate the performance of SCDC and to compare against

other existingmethods, we sought to replicate previous findings

on the negative correlation between the levels of hemoglobin

A1c (HbA1c, an important biomarker for type 2 diabetes) and

the beta cell functions [34, 35]. We constructed a linear model

using the estimated cell-type proportions as the response vari-

able and the other covariates (age, gender, BMI and HbA1c)

as predictors. With only one single-cell reference, DWLS [20]

returned the smallest P-values, while Bisque [19], CIBERSORTx

[18] and BseqSC [16] failed to detect the association, regardless

which scRNA-seq reference dataset was adopted (Figure 4B).

MuSiC [17] returned insignificant associations for the scRNA-

seq reference dataset from [16] (Figure 4B). Without ENSEMBLE,

SCDC returned significant P-values of 0.031 and 0.038 from each

deconvolution; with ENSEMBLE, SCDC led to more significant

associations between the HbA1c levels and the beta cell propor-

tions, with P-values of 0.001 and 0.0018 with weights estimated

from LAD and grid search, respectively (Supplementary Table S5,

Figure 4B). In sum, the cell-type proportion estimates via ENSEM-

BLE more accurately reproduced the previously reported associ-

ation between the two orthogonal measurements.

Performance on mouse mammary gland data

We further illustrate the performance of SCDC on a dataset

of mouse mammary gland. Figure 5A gives an overview of the

experimental design. For this experiment, mouse mammary

glands were harvested from two 12-week-old FVB/NJ mice,

FVB3 and FVB4. Bulk RNA-seq was performed on the fresh

frozen tissues. Meanwhile, single-cell suspension was prepared

for the two samples; both scRNA-seq by 10X Genomics and

bulk RNA-seq were performed on the pooled cell suspensions.

(Refer to Methods for details on experimental setup including

animal model, cell suspension preparation, library preparation

and sequencing.) To illustrate the ENSEMBLE method for

deconvolution, we adopted another single-cell reference dataset

of mouse mammary glands from Tabula Muris [36], generated

by the microfluidic droplet-based method (see Key Resources

Table). For clarity, the scRNA-seq data generated at the Perou

Lab will be denoted as ‘Perou’ and the scRNA-seq data from

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbz166/5699815 by guest on 30 April 2020



6 Dong et al.

Fig. 3. Performance assessment on bulk and single-cell RNA-seq of cell line mixtures with experimentally controlled proportions. (A) Visualization by t-SNE after

single-cell clustering. The cells are clustered into three groups,MDA-MB-468,MCF-7 and normal fibroblast cells, in a ratio close to 6:3:1. (B) Benchmark of deconvolution

results for the bulk RNA-seq sample, produced by different methods. Among all benchmarked methods, the proportions estimated by SCDC using the tree-guided

approach has the highest Pearson correlation (0.99) with the ground truth.

Tabula Muris will be denoted as ‘T.Muris’; the bulk RNA-seq data

generated from the fresh frozen tissue will be denoted as ‘fresh

frozen’ and the bulk RNA-seq data from the pooled suspended

cells will be denoted as ‘10X bulk’. We aimed to use SCDC to

deconvolute each of the two bulk RNA-seq samples using the

two scRNA-seq reference sets.

Following bioinformatic pre-processing (refer to Methods

for details), we first adopted Seurat [24] to perform single-

cell clustering for the two scRNA-seq datasets, Perou and

T. Muris, and then applied additional quality control (QC)

procedures (outlined in the Methods section). The final cell

types of interest consisted of immune, endothelial, fibroblast,

luminal cells and basal cells; t-SNE visualization is shown in

Supplementary Figure S3. As with the example of the three-

cell-line mixture, we observed cell types with transcriptomic

profiles that were highly similar (Supplementary Figure S4A);

we therefore adopted a tree-guided approach for deconvolution

[17] in order to distinguish the closely related cell types

(Supplementary Figure S4B,C). This two-step deconvolution

approach was applied using the Perou and T. Muris scRNA-

seq references, respectively. Through ENSEMBLE, SCDC chose

dataset-specific weights, which are shown in Table S6. As

expected, a higher weight was assigned to the Perou refer-

ence dataset, which was from the same source as the bulk

samples.

Figure 5B shows the final deconvolution results, both with

and without ENSEMBLE, of the two bulk samples. The figure also

includes Pearson correlations between the cell-type proportions

estimated by scRNA-seq and those estimated by deconvolution.

We found that the ENSEMBLE method produced higher corre-

lation coefficients than approaches that use only one scRNA-

seq dataset as reference (Figure 5B). This finding demonstrates

the advantage of integrating data through SCDC. We also found

that, compared to the fresh frozen bulk samples, the decon-

voluted cell-type proportions from the 10X bulk samples were

more highly correlated with the scRNA-seq fractions (Figure 5B).

While the decrease of correlation coefficient from around 0.98 to

around 0.92 is reassuring due to the order of the experiments, it

also strikingly indicates a potential cell type-specific bias intro-

duced by the 10X Genomics protocol, for it has been previously

reported that adipocyte cells tend to get lost during the single-

cell library preparation step [37]. As such, cell-type proportions

from the single-cell experiment do not necessarily reflect those

in the bulk tissues due to the sampling bias and the technical

artifacts that are associated with the library preparation and

sequencing step of scRNA-seq [38]. This makes in silico decon-

volution a compelling approach to unbiased recovery of true

underlying cell-type composition.

Discussion

Here,we propose amethod for deconvoluting bulk RNA-seq data

accurately by exploiting multiple scRNA-seq reference datasets

through ENSEMBLE.We show that such data integration leads to

higher deconvolution accuracy via both extensive simulations

and experimental validations. Existing batch correctionmethods

for scRNA-seq data either do not return a batch-corrected

gene expression matrix (but rather components for dimension

reduction) [24] or return one with a drastically different range of

measurements (between zero and one) [25], making subsequent

modeling based on read count/TPM/CPM challenging. In our

benchmark analysis, we systematically investigated how batch-

effect correction affects deconvolution accuracy by including

an optional pre-processing step to correct for batch effect in

scRNA-seq data using MNN [25]. Given our observations of

unstable performances of the existing deconvolution methods

on batch-corrected data (Supplementary Table S3), the utility of

scRNA-seq batch-effect correction on improving deconvolution

accuracy remains unclear. SCDC does not directly address this

nontrivial issue; rather, it opts to integrate deconvolution results

derived separately from each available scRNA-seq dataset with

different weights, so as to reflect the degree of similarity

between the bulk data and the reference data. SCDC let the

data decide whether a reference data is close to the bulk data

or not. Similarly, for bulk RNA-seq data, which are also subject

to batch factors, SCDC can select an optimal combination of

scRNA-seq reference sets for each sample separately to achieve

more accurate cell-type decomposition.
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Fig. 4. Gene expression deconvolution of human pancreatic islet samples. (A) Estimated pancreatic islet cell-type composition in healthy and type 2 diabetic (T2D)

human samples. The boxplot shows discrepancies in the deconvoluted proportions across different reference datasets. The ENSEMBLE method recovered the grossly

underestimated beta cell proportions by deconvolution using only scRNA-seq data from [16]. (B) Association of beta cell proportions and HbA1c levels by a linear

model: beta cell proportion ∼ HbA1c + age + BMI + sex. Each benchmarked method was applied using reference datasets from [16] and [28] separately. The ENSEMBLE

method by SCDC is additionally applied using both reference datasets simultaneously. Bisque, CIBERSORTx and BseqSC fail to recover the previously reported negative

correlations; SCDC with ENSEMBLE returns more significant P-values, compared to single-reference deconvolution.

While in this paper we have focused on integrating results

from multiple scRNA-seq datasets, the same framework can be

applied to integrate results from different deconvolution meth-

ods. In Supplementary Table S2, we showed that no one method

universally performed better than the others across all simula-

tion setups. To address this instability issue, SCDC’s weighting

principle can be applied similarly, where different weights are

assigned to different deconvolution methods.

For weight optimization, we would ideally hope that the sets

of weights selected by differentmethods offered by SCDC always
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Fig. 5. Gene expression deconvolution of mouse mammary gland samples. (A) Flowchart of experimental design. Mouse mammary glands from two replicates, FVB3

and FVB4, were processed in two ways to generate both fresh-frozen bulk samples and single-cell suspensions. The single-cell suspensions were further divided into

two parts: one for scRNA-seq by 10X Genomics and the other for pooled bulk RNA-seq. To deconvolute the bulk samples through ENSEMBLE, another scRNA-seq dataset

of mouse mammary gland from the Tabula Muris Consortium was adopted. (B) Bulk gene expression deconvolution with and without ENSEMBLE. Pearson correlation

of the cell-type proportions estimated by deconvolution and by scRNA-seq are shown. The ENSEMBLE method using LAD or grid search method results in higher

correlations for both bulk samples of the two replicates.

agree with each other. However, sometimes, the performances

of candidate reference datasets could resemble in one metric

but diverge in another metric (Supplementary Figure S2C, S2F).

When significant discrepancies exist among the sets of weights

selected by different existing metrics, we introduce an optional

metric to aid the users to choose a set of weights in the spirit

of meta analysis [39, 40]. Specifically, we propose to use the pro-

portions of inverse sum of squared errors (SSEs) between Y and Ŷ

from reference datasets toweight them such that higherweights

are assigned to references with higher estimation accuracy of Y.

More details can be found in Supplemental Information.

Identifying cell-type composition of disease-relevant tissues

allows identification of cellular targets for treatment and offers

a better understanding of disease mechanism. For downstream

analysis following deconvolution, hypothesis testing on differ-

ential gene expression in a case-control setting needs to account

for the variability of cell-type composition. As [5] have described,

differential gene expression analysis in the presence of cellular

heterogeneity can be performed through the following testing

schemes: (i) whole tissue differences (i.e. testing on Y); (ii) differ-

ences in cell-type compositions (i.e. testing on P); (iii) differences

in cell type-specific gene expression patterns (i.e. testing on B:k

for each cell type k); (iv) differences in cell type-specific gene

expression patterns while accounting for cell-type proportions

(i.e. testing on B:kPk: for each cell type k); and (v) an omnibus

test across all cell types (i.e. testing on B across all cell types

simultaneously). All of these testing schemes (except for the

testing on Y by traditional methods developed for bulk RNA-

seq data) must be adapted when scRNA-seq data is used to

aid deconvolution: neither B nor P is pre-known, and one must

take into consideration their estimation uncertainties through

deconvolution.The questions of how to jointly perform differen-

tial testing when multiple scRNA-seq datasets are available and

how to jointly model both bulk and single-cell RNA-seq data [41]

with high computational efficiency require further investigation.

Methods

Contact for reagent and resource sharing

Further information and requests for resources and reagents

should be directed to and will be fulfilled by Charles M. Perou

(chuck_perou@med.unc.edu), Fei Zou (feizou@email.unc.edu)

and Yuchao Jiang (yuchaoj@email.unc.edu)

Experimental model and subject details

Cell-line mixture

MCF-7 and MDA-MB-468 cells were purchased from ATCC.

Human dermal fibroblasts were isolated from skin. All cell
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lines were maintained independently in culture medium DMEM

(Gibco) supplementedwith 10%FBS (Millipore) and 1%penicillin-

streptomycin (Gibco) and grown in incubators maintained at

37◦C with 5% CO2. Cells were mixed together so that MCF-7 cells

comprised 60% of the mixture, MDA-MB-468 cells comprised

30% of the mixture and dermal fibroblasts comprised 10% of the

mixture.

Animal model

All animal studies were performed with approval and in accor-

dance with the guidelines of the Institutional Animal Care and

Use Committee (IACUC) at the University of North Carolina at

Chapel Hill. Female FVB/NJ mice were obtained in collaboration

with the UNC Lineberger Comprehensive Cancer Center (LCCC)

Mouse Phase I Unit (MP1U). Animals were cared for according

to the recommendations of the Panel on Euthanasia of the

American Veterinary Medical Association. Mice were housed in

a climate controlled Department of Laboratory Animal Medicine

facility with a 12-h light:dark cycle and ad libitum access to food

andwater [42]. Themammary glandswere harvested at 12weeks

for FVB/NJ mice.

Method Details

Cell suspension preparation

The FVB/NJ mammary glands were placed in 10 ml of a diges-

tion medium containing EpiCulttrademark-B Mouse Medium

Kit (#05610, StemCell Technologies), Collagenase/Hyaluronidase

(#07912, StemCell Technologies) and 1% penicillin-streptomycin

(Gibco). The mammary gland was digested overnight in a ther-

mocycler maintained at 37◦C with continuous rotation. The cell

pellets retrieved from these suspensions were treated with a

1:4 solution of hanks balanced salt solution and ammonium

chloride to remove the RBCs. After RBC removal, the cell sus-

pensions were trypsinized with 0.05% Trypsin and a mix of

Dispase andDNAse.A portion of this cell suspensionwas stained

with trypan blue and counted using the Countess Automated

Cell Counter (Invitrogen). Based on the counting, the cells were

diluted to the appropriate cell stock concentration for running

on the 10X Chromium machine. Based on the 10X Genomics

pre-defined cell stock concentrations, each experiment was run

to retrieve ∼5000 cells after the single-cell experiment. The

remaining cell stock solution was used for making bulk mRNA

seq libraries.

Single-cell library construction, sequencing and bioinformatics

pipeline

The cell suspensions were loaded on a 10X Genomics Chromium

instrument to generate single-cell gel beads in emulsion (GEMs)

for targeted retrieval of approximately 5000 cells. scRNA-Seq

libraries were prepared following the Single Cell 3′ Reagent Kits

v2 User Guide (Manual Part # CG00052 Rev A) using the following

Single Cell 3′ Reagent Kits v2: Chromiumtrademark Single Cell 3′

Library & Gel Bead Kit v2 PN-120237, Single Cell 3′ Chip Kit v2 PN-

120236, and i7MultiplexKit PN-120262” (10XGenomics). Libraries

were run on an Illumina HiSeq 4000 as 2 × 150 paired-end reads.

The Cell Ranger Single Cell Software Suite (version 1.3) was used

to perform sample de-multiplexing, barcode and unique molec-

ular identifiers processing and single-cell 3′ gene counting. All

scRNAseq data by 10X Genomics are available at GEO database

(GSE136148).

Bulk mRNA-seq pre-processing

RNA was isolated using the RNeasy Mini Kit (#74104, Qiagen)

according tomanufacturer protocol.mRNA quality was assessed

using the Agilent Bioanalyzer and libraries for mRNA-seq were

made using total RNA and the Illumina TruSeq mRNA sample

preparation kit. Paired end (2×50bp) sequencing was performed

on the Illumina HiSeq 2000/2500 sequencer at the UNC High

Throughput Sequencing Facility (HTSF). Resulting fastq files

were aligned to the mouse mm10 reference genome using the

STAR aligner algorithm [43]. Resulting BAM files were sorted and

indexed using Samtools [44] and QC was performed using Picard

[45]. Transcript read counts were determined using Salmon [46].

Genes with zero read counts across all samples were removed.

All bulkmRNAseq data is available at GEO database (GSE136148).

Clustering QC of scRNA-seq data

To construct the basis matrix B from the single-cell reference

dataset, SCDC takes as input gene expression measurements

and cluster memberships of all cells that are sequenced by

scRNA-seq. While much efforts have been devoted to cell type

clustering by scRNA-seq, it has been shown that different

approaches can potentially generate varying single-cell cluster

assignments [47]. To make SCDC robust to single-cell clustering,

a QC procedure is performed as a first step to remove cells

with questionable cell-type assignments, as well as cells with

low library preparation and sequencing quality. Specifically,

each single cell is treated as a ‘bulk’ sample and its cell-type

composition can be derived by a first-pass run of SCDC. For

well classified cells with good quality, the estimated proportions

should be sparse and contain a single non-zero estimate close

to one; for questionable cells such as doublets, the estimated

proportions would not result in a unique cluster assignment

(Supplementary Figure S5A). Therefore, we remove cells whose

estimated cell-type proportions have a maximum less than a

user-defined threshold (Supplementary Figure S5B). After this

initial QC step of the single-cell input, the Pearson correlation

of the actual and the deconvoluted cell-type proportions is

improved for simulation runs, especially when pseudo-bulk

samples and reference datasets are from different sources

(Supplementary Table S2).

Construction of basis matrix differs from MuSiC

For deconvolution using each single-cell reference dataset, SCDC

estimates cell-type proportions following the W-NNLS frame-

work proposed byMuSiC [17], but differs in theway of calculating

the basis matrix. The contribution of each subject to the con-

struction of a basismatrixmay vary according to the data quality

(Supplementary Figure S6). Hence, MVW per gene is calculated

to reflect the data quality [48]. In detail, using scRNA-seq data,

SCDC first estimates σ̂ 2
gkd, which captures the cross-cell variation

for gene g of cell type k within individual d. Within-subject

variance for subject d is then calculated as σ ∗2
gd = max

k
{σ̂ 2

gkd} and

the MVW 1gd is given by:

1gd =
σ ∗2
gd

median
g′

{σ ∗2
g′d}

.

SCDC proceeds to scale the raw single-cell read count matrix

by
√

1gd. Under this construction, genes with larger variance

will have larger variance weights. Larger variance weights
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ensure that residuals from such genes will have smaller impact

on estimation of cell-type composition [48]. To control for

excessively large or small variance weights, we set the bottom

15% of variance weights to be the 15th percentile variance

weight, and similarly, the top 15% of variance weights are

replaced by the 85th percentile variance weight. The rest of

the estimation procedure largely follows MuSiC. The perfor-

mances of SCDC and MuSiC were compared via simulations

by Pearson correlation and mAD between P̂ and P shown in

Supplementary Table S2.

ENSEMBLE: a linear combination of deconvolution results

Assume R single-cell reference datasets are available for the

tissue of interest. For each reference dataset r ∈ {1, . . . ,R},

SCDC deconvolutes the bulk gene expression data as a matrix

decomposition problem. Let Pr and Br denote the cell-type

proportion matrix and the basis matrix using the rth reference

dataset, respectively. The bulk gene expression Y can be

deconvoluted into the form of Y = BrPr + ǫr with a reference-

specific error term ǫr. The predicted gene expression levels from

the rth reference dataset is Ŷr = B̂rP̂r. In the ENSEMBLE step, SCDC

aims to solve for equation (2). As we stated in the Result session,

we make the assumption that the solutions for equations (1)

and (2) are approximately equivalent based on the concordance

between the metrics on the cell-type proportions (Pearson

correlation and mAD between P̂ =
∑R

r=1 wrP̂r and P) and the

metrics on the gene expression levels (Spearman correlation and

mAD between Ŷ =
∑R

r=1 wrŶr and Y) via simulations (Figure 2,

Supplementary Figure S2). See Supplemental Information for

equation details. In practice, SCDC, by default, chooses the L1

norm of (Y − Ŷ) as the criteria for ENSEMBLE weight selection.

For optimization,we can redirect the problem to LADs regres-

sion with constraints on the weights (w1, ...,wR):

Minimize
1

N

∣

∣

∣

∣

∣

∣

Y −

R
∑

r=1

wrB̂rP̂r

∣

∣

∣

∣

∣

∣

1, subject to
R

∑

r=1

wr = 1,wr ≥ 0, r ∈ {1, ...,R}.

LAD regression does not have an analytical solving method [49],

hence we applied the method adopted by [50]. While solving

for wr’s, an LAD regression with no constraint is first fit. Any

negative ŵr is set to zero, and the estimates are finally scaled

to satisfy the constraint. Since the re-scaling step can be prob-

lematic, SCDC additionally adopts another numerical method

via grid search to determine the optimal ENSEMBLE weights.

Supplementary Figure S7 summarizes the computing time of

SCDC with the number of single-cell reference datasets ranging

from two to five. A total of 100 simulations are performed. For

each simulation, the number of pseudo-bulk samples is set to

50, and the step size in grid search is fixed at 0.05. We show

that with less than four references, both grid search and LAD can

finish within ∼200 seconds. As the number of reference datasets

increases, the grid search can take longer to run while the

computing time for LAD remains nearly constant. Regardless,

the optimal weights selected by LAD and by grid search generally

agree with each other, as demonstrated in real data analysis

(Supplementary Table S4, Supplementary Table S6).

Data and software availability

SCDC is compiled as an open-source R package available at

http://meichendong.github.io/SCDC, together with vignettes

and toy examples for demonstration. Raw and processed

bulk and single-cell RNA-seq data generated in this study are

available at GEO with accession number GSE136148. Other data

that we adopted include the following: (i) scRNA-seq data of

human pancreatic islets from [16] with GEO accession number

GSE84133, from [28] with GEO accession number GSE81608 and

from [27] with EMBL-EBI ArrayExpress accession number E-

MTAB-5061; (ii) bulk RNA-seq of human pancreatic islet from

[30] with GEO accession GSE50244; and (iii) scRNA-seq of mouse

mammary gland from Tabula Muris Consortium [36] with GSE

accession number GSE106273.

Key Points

• Bulk RNA sequencing measures average gene expres-

sion levels across a population of cells and in complex

tissues, the variability in cell-type compositions con-

foundswith analysis such as detecting differential gene

expression.

• Single-cell RNA sequencing circumvents the averaging

artifacts by enabling characterization of transcriptomic

profiles at the single-cell level and has been adopted to

aid bulk gene expression deconvolution.

• While multiple methods exploiting scRNA-seq data for

bulk gene expression deconvolution have been devel-

oped, they are restricted to only one single-cell refer-

ence, while borrowing information from other existing

data could potentially boost the performance of and

increase the robustness of deconvolution.

• We propose SCDC, a deconvolution method for bulk

RNA-seq data that leverages cell-type specific gene

expression profiles from multiple scRNA-seq reference

datasets.

• SCDC adopts an ENSEMBLE method to integrate decon-

volution results across datasets and gives higher

weights to single-cell reference data that are more

closely related to the bulk RNA-seq data, implicitly

addressing the problem of batch-effect confounding.

Supplementary Data

Supplementary data are available online at https://academic.

oup.com/bib.
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