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ABSTRACT We developed generalized functional linear models (GFLMs) to perform a meta-analysis of multiple case-control studies to
evaluate the relationship of genetic data to dichotomous traits adjusting for covariates. Unlike the previously developed meta-analysis
for sequence kernel association tests (MetaSKATs), which are based on mixed-effect models to make the contributions of major gene
loci random, GFLMs are fixed models; i.e., genetic effects of multiple genetic variants are fixed. Based on GFLMs, we developed chi-
squared-distributed Rao’s efficient score test and likelihood-ratio test (LRT) statistics to test for an association between a complex
dichotomous trait and multiple genetic variants. We then performed extensive simulations to evaluate the empirical type I error rates
and power performance of the proposed tests. The Rao’s efficient score test statistics of GFLMs are very conservative and have higher
power than MetaSKATs when some causal variants are rare and some are common. When the causal variants are all rare [i.e., minor
allele frequencies (MAF) , 0.03], the Rao’s efficient score test statistics have similar or slightly lower power than MetaSKATs. The LRT
statistics generate accurate type I error rates for homogeneous genetic-effect models and may inflate type I error rates for heteroge-
neous genetic-effect models owing to the large numbers of degrees of freedom and have similar or slightly higher power than the
Rao’s efficient score test statistics. GFLMs were applied to analyze genetic data of 22 gene regions of type 2 diabetes data from a meta-
analysis of eight European studies and detected significant association for 18 genes (P , 3.10 3 1026), tentative association for
2 genes (HHEX and HMGA2; P � 1025), and no association for 2 genes, while MetaSKATs detected none. In addition, the traditional
additive-effect model detects association at gene HHEX. GFLMs and related tests can analyze rare or common variants or a combi-
nation of the two and can be useful in whole-genome and whole-exome association studies.
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FOR association studies of many complex traits, multiple
studies may have been conducted that have collected the

same phenotypic traits. For example, a large number of studies
of type 2 diabetes (T2D) have been conducted to evaluate the

relationship between single-nucleotide polymorphisms
(SNPs) and T2D (Morris et al. 2012; Scott et al. 2012; Li
et al. 2014). The sample size of an individual study can be
small or moderate and may not always lead to a significant
association signal at a genome-wide requirement. It is desir-
able to combine multiple studies for a unified meta-analysis
in order to reach rigorous significant threshold levels (Zeggini
and Ioannidis 2009; Evangelou and Ioannidis 2013; Liu et al.
2014). By combining multiple studies together, one can get a
sample with a large sample size, and it is more likely to pro-
duce significant results. However, different studies may con-
tain different genetic data or covariates, which make analysis
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of the combined data difficult. It is important to develop sta-
tistical methods that analyze the combined data of multiple
studies.

To performanassociationmeta-analysis for complex traits,
onemay take two strategies: (1) single-genetic-variant-based
approaches and (2) gene-based-variant-analysis approaches.
The single-genetic-variant approaches use only one genetic
variant at a time and are useful to analyze common variants
(Zeggini et al. 2008; Hindorff et al. 2009; Stahl et al. 2010).
Gene-based association analysis uses multiple genetic vari-
ants to detect an association. In recent years, there has been a
great deal of interest in developing statistical methods and
tests for gene-based association analysis of complex traits
(Hu et al. 2013; Liu et al. 2014). Gene-based analysis can
lead to higher power and improvemultiple-comparison prob-
lems compared to single-marker analysis because fewer tests
are required. More important, gene-based analysis can be the
only way to analyze rare variants that have minor allele fre-
quencies (MAFs) , 0.01–0.05 because it could be powerless
to use a single rare variant in an analysis.

Burden tests and kernel-based test methods are popular
approaches toperforming rarevariant-gene-basedassociation
analyses. Burden tests collapse rare variants into a single
variable to test for an association with a complex trait and to
reduce the high dimensionality of genetic data (Li and Leal
2008; Madsen and Browning 2009; Han and Pan 2010;
Morris and Zeggini 2010; Price et al. 2010; Neale et al. 2011).
Kernel-based test methods are based on mixed-effect models
in which the regression coefficients of multiple genetic vari-
ants are random with means of zero and constant variance.
The association is tested by testing a null hypothesis of zero
variance by a sequence kernel association test (SKAT). The
SKAT and its optimal unified test (SKAT-O) were found to
have higher power than burden tests (Wu et al. 2011; Lee
et al. 2012). By extending SKAT and SKAT-O to perform
meta-analyses, Lee et al. (2013) developed the meta-analysis
for sequence kernel association test (MetaSKAT) and its op-
timal unified test (MetaSKAT-O) to carry out meta-analyseis.

The regressioncoefficientsofgenetic terms in themodelsof
SKAT andMetaSKATwere assumed to be random because the
number of genetic variants is usually large formodern genetic
data. In population genetics, however, the genetic effects of
major gene loci are usually assumed to be fixed, while the
contributions of polygenic loci are modeled as a random term
(Fisher 1918). The high dimensionality of modern genetic
data does not necessarily imply that traditional population
genetics theory is not correct because the number of causal
variants may not be large. A fixed model should be fine to
analyze the major gene locus data in most cases if the dimen-
sion of the genetic data can be properly reduced.

By viewing genetic variant data as realizations of an un-
derlying stochastic process, functional regression models
were proposed to reduce the dimensionality and to perform
a gene-based association analysis of quantitative, qualitative,
and survival traits (Luo et al. 2011, 2012, 2013; Fan et al. 2013,
2014, 2015, 2016; Vsevolozhskaya et al. 2014; Zhang et al.

2014; Wang et al. 2015). For quantitative traits, functional
linear models lead to both F- and chi-squared-distributed test
statistics that are almost always more powerful than SKAT
and SKAT-O (Luo et al. 2012; Fan et al. 2013, 2015; Wang
et al. 2015). For dichotomous and survival traits, functional
regression models lead to test statistics that are more power-
ful than SKAT and SKAT-O except in some cases where the
causal variants are all rare (Luo et al. 2011, 2013; Fan et al.
2014, 2016; Vsevolozhskaya et al. 2014). Therefore, functional
regression models are found to outperform other methods
and potentially to be useful in gene-based association analy-
sis of complex traits.

In our functional regressionmodels, the genetic effects are
treated as a function of the physical position, and the genetic-
variant data are viewed as stochastic functions of the physical
position, so any orders of linkage disequilibrium (LD) are
taken care of in the models (Ross 1996). The regression co-
efficients of genetic terms in the SKAT and MetaSKAT models
do no depend on the physical position, while our genetic-
effect function depends on the physical position and is
actually a function of physical position. Hence, the func-
tional regression models can fully use LD and physical
position information. The functional regression models
are a natural extension of traditional population genetics
because we model the genetic effects of major gene loci as
fixed functions.

In this paper, generalized functional linear models
(GFLMs) are developed for ameta-analysis of multiple studies.
GFLMs can analyze rare or common variants or a combina-
tion of the two. Both chi-squared-distributed Rao’s efficient
score test statistics and likelihood-ratio test (LRT) statistics
are introduced to test for an association between disease
traits and multiple genetic variants. Extensive simulations
are performed to evaluate the type I error rates and power
performance of the GFLMs and tests. The proposed methods
were applied to analyze T2D data from a meta-analysis of
eight European studies.

Materials and Methods

Consider a meta-analysis with L case-control studies in a ge-
nomic region. For the ℓth study, we assume that there are nℓ
individuals who are sequenced in the genomic region at mℓ

variants. We assume that the mℓ variants are located with
ordered physical positions 0# tℓ1 ,⋯, tℓmℓ . To make the
notation simpler, we normalized the region ½tℓ1; tℓmℓ � to be
[0, 1]. For the ith individual in the ℓth study, let yℓi denote
his or her dichotomous trait (here yℓi ¼ 1 indicates that the
individual is an affected case of the disease of interest, yℓi ¼ 0
indicates that the individual is a normal control individual),
Gℓi ¼ ½Xℓiðtℓ1Þ; . . . ;XℓiðtℓmℓÞ�9 denotes his or her genotypes of
the mℓ variants, and Zℓi ¼ ðzℓi1; . . . ; zℓicℓÞ9 denotes his or her
cℓ covariates. Hereafter in this paper, a prime denotes the
transpose of a vector or matrix. For the genotypes, we assume
that XℓiðtℓjÞ (= 1, 2, 3) is the number of minor alleles of the
individual at the jth variant located at position tℓj.
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Traditional additive-effect models

By using logistic regression, an additive-effect model (AEM) can
be used to analyze the relation between the disease trait yℓi and
the mℓ variants in the ℓth study as (Cordell and Clayton 2002)

logit ðpℓiÞ ¼ aℓ0 þ Z9ℓiaℓ þ
Xmℓ

j¼1

X ℓiðt ℓjÞbℓj;

ℓ ¼ 1; 2; . . . ; L; i ¼ 1; 2; . . . ; nℓ (1)

where pℓi ¼ Pðyℓi ¼ 1Þ is the disease probability, aℓ0 is the
regression intercept, aℓ ¼ ðaℓ1; . . . ;aℓcℓÞ9 is a cℓ 3 1 column
vector of regression coefficients of covariates, and bℓj is the
additive genetic effect of variant j for the ℓth study. The num-
ber of the parameters of the model (1) can be large, so it may
not be powerful. Despite the potential drawbacks, the model
(1) can be easily implemented by standard statistical soft-
ware such as R. If the number of genetic variants is large,
one may decompose the genotype matrix into the product of
an orthogonal matrix Q and a triangular matrix R via Gram-
Schmidt process to remove the redundancy to facilitate com-
putation in applications, i.e., the QR decomposition.

b-Smooth-only GFLMs

To model the relation between the disease trait yℓi and themℓ

variants, we propose the following functional logistic regres-
sion model:

logit ðpℓiÞ ¼ aℓ 0 þ Z9ℓiaℓ þ
Xmℓ

j¼1

X ℓiðt ℓjÞbℓðt ℓjÞ;

ℓ ¼ 1; 2; . . . ; L; i ¼ 1; 2; . . . ; nℓ (2)

where bℓðtℓjÞ is the genetic effect of the variant at position tℓj,
and the other terms are similar to those in the AEM (1). Note
that we have L studies, so the effect of a common covariate
can be either the same or different across the studies: (1)
heterogeneous: we treat aℓ as different for different studies,
i.e., aℓ; ℓ ¼ 1; . . . ; L; are all different; and (2) homogeneous: if
a covariate is present in different studies, we model its re-
gression coefficient by one common coefficient.

In the model (2), bℓðtℓjÞ is introduced as the genetic effect
of the variant at position tℓj. We assume that bℓðtÞ is a contin-
uous function of the physical position t. One may expand
it by B-spline or Fourier or linear spline basis functions.
Formally, let us expand the genetic-effect function bℓðtÞ
by a series of Kb basis functions cðtÞ ¼ ½c1ðtÞ; . . . ;cKb

ðtÞ�9
as bℓðtÞ ¼ ½c1ðtÞ; . . . ;cKb

ðtÞ�ðbℓ1; . . . ;bℓKb
Þ9 ¼ cðtÞ9bℓ, where

bℓ ¼ ðbℓ1; . . . ;bℓKb
Þ9 is a vector of coefficients bℓ1; . . . ;bℓKb

.
We consider two types of basis functions: (1) the B-spline
basis ckðtÞ ¼ BkðtÞ; k ¼ 1; . . . ;Kb and (2) the Fourier basis
c1ðtÞ ¼ 1;  c2rþ1ðtÞ ¼ sinð2prtÞ, and c2rðtÞ ¼ cosð2prtÞ;
 r ¼ 1; . . . ; ðKb 21Þ=2. Here, for Fourier basis, Kb is taken as
a positive odd integer (de Boor 2001; Ramsay and Silverman
2005; Ramsay et al. 2009; Ferraty and Romain 2010; Horváth
and Kokoszka 2012). Replacing bℓðtℓjÞ by the expansion, the
model (2) can be revised as

logit ðpℓiÞ ¼ aℓ0 þ Z9ℓiaℓ þ
Pmℓ

j¼1
X ℓiðtℓjÞ

h
c1ðt ℓjÞ; . . . ;cKb

ðt ℓjÞ
i( )

3
�
bℓ1; . . . ;bℓKb

�
9 ¼ aℓ 0 þ Z9ℓiaℓ þW9

ℓibℓ (3)

where W9
ℓi ¼

Pmℓ
j¼1XℓiðtℓjÞ½c1ðtℓjÞ; . . . ;cKb

ðtℓjÞ�. In the model
(2) and its revised version (3), we use the raw genotype data
Gℓi ¼ ½Xℓiðtℓ1Þ; . . . ;XℓiðtℓmℓÞ�9 directly in the analysis.

General GFLM

In this subsection we view the ith individual’s genotype data
as a genetic variant function (GVF) XℓiðtÞ;  t 2 ½0; 1� in addi-
tion to treating the genetic effects as functions bℓðtÞ. To relate
the GVF to the phenotypic traits adjusting for covariates, we
consider the following functional logistic regression model:

logit ðpℓiÞ ¼ a ℓ 0 þ Z9ℓiaℓ þ
Z 1

0
XℓiðtÞbℓðtÞdt;

ℓ ¼ 1; 2; . . . ; L; i ¼ 1; 2; . . . ; nℓ (4)

where bℓðtÞ is the genetic effect of GVF XℓiðtÞ at position t, and
the other terms are similar to those in the b-smooth-only
model (2). In this model, the integration term

R 1
0 XℓiðtÞbℓðtÞdt

is used to replace the summation term
Pmℓ

j¼1XℓiðtℓjÞbℓðtℓjÞ in the
b-smooth-only model (2).

Estimation of GVF: Let fkðtÞ;  k ¼ 1; . . . ;K; be a series of K
basis functions, such as the B-spline basis and Fourier basis func-
tions. Let F denote the mℓ 3 K matrix containing the values
fkðtℓjÞ, where j 2 1; . . . ;mℓ. Denote fðtÞ ¼ ½f1ðtÞ; . . . ;fKðtÞ�9.
Using the discrete realizations Gℓi ¼ ½Xℓiðtℓ1Þ; . . . ;XℓiðtℓmℓÞ�9, we
may estimate the GVF XℓiðtÞ using an ordinary linear square
smoother as follows (Ramsay and Silverman 2005, Chapter 4):

X̂ ℓi ðtÞ ¼
�
X ℓiðt ℓ1Þ; . . . ;X ℓiðt ℓmℓÞ

�
F
�
F9F

�21
fðtÞ (5)

Revised GFLM: As in the b-smooth-only case, the genetic
effect bℓðtÞ is expanded by a series of basis functions
bℓðtÞ ¼ cðtÞ9bℓ. Replacing XℓiðtÞ in (4) by X̂ ℓiðtÞ in (5) and
bℓðtÞ by the expansion, we have the following revised logistic
regression model:

logit ðpℓiÞ ¼ aℓ 0 þ Z9ℓiaℓ þ
8<
:
h
X ℓiðt ℓ1Þ; . . . ;X ℓiðt ℓmℓÞ

i
F
h
F9F

i21

3

Z1
0

fðtÞc9ðtÞdt
9=
;bℓ

¼ aℓ0 þ Z9ℓiaℓ þW9
ℓibℓ (6)

where W9
ℓi ¼ ½Xℓi ðtℓ1Þ; . . . ;XℓiðtℓmℓÞ�F½F9F�21 R 1

0 fðtÞc9ðtÞdt.
In this revised regression model, one needs to calculate
F½F9F�21 and

R 1
0 fðtÞc9ðtÞdt in order to getWℓi. In the statis-

tical package R, there are readily available codes to calculate
them (Ramsay et al. 2009).
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Test statistics of association

We consider the revised regression models [(3) and (6)] as
usual logistic regressions that model the genetic effect of
GVFs adjusted for covariates. First, assume that the genetic
effects among the L studies are heterogeneous. To test for
an association between the genetic variants and the dis-
ease trait, the null hypothesis is H0:  bℓ ¼ ðbℓ1; . . . ;bℓKb

Þ9 ¼ 0;
 ℓ ¼ 1; . . . ; L. We may test the null hypothesis by a chi-
squared-distributed Rao’s efficient score statistic with a de-
gree of freedom of LKb. The Rao’s efficient score statistic is
denoted by GFLMHet-Rao. An alternative approach is to use
a LRT statistic to test for association, which is also chi-squared
distributed with LKb degrees of freedom and is denoted by
GFLM Het-LRT.

If the genetic effects are homogeneous, i.e., bℓ ¼
ðbℓ1; . . . ;bℓKb

Þ9 ¼ b ¼ ðb1; . . . ;bKb
Þ9;  ℓ ¼ 1; . . . ; L, we may

test for association by testing a simplified null hypothesis
H0:  b ¼ ðb1; . . . ;bKb

Þ9 ¼ 0. Again, one may use a chi-
squared-distributed Rao’s efficient score statistic and a chi-
squared-distributed LRT statistic to test the null hypothesis.
Both the chi-squared-distributed Rao’s efficient score statistic
and the LRT statistic have a degree of freedom of Kb and
are denoted by GFLM Hom-Rao and GFLM Hom-LRT,
respectively.

For the AEM (1), the null hypothesis is H0:  bℓ ¼
ðbℓ1; . . . ;bℓmℓ

Þ9 ¼ 0;  ℓ ¼ 1; . . . ; L, under an assumption of

heterogeneous genetic effect. The corresponding chi-
squared-distributed Rao’s efficient score test and LRT sta-
tistics are chi-squared distributed with

PL
ℓ¼1mℓ degrees of

freedom. The tests are denoted as AEM Het-Rao and AEM Het-
LRT, respecyively. Assume that each individual of the L stud-
ies is sequenced at the same variants at 0# t1 ,⋯, tm and
so m1 ¼ ⋯ ¼ mℓ ¼ m. In addition, assume that the genetic
effects are homogeneous, i.e., bℓ ¼ ðbℓ1; . . . ;bℓmℓ

Þ9 ¼ b ¼
ðb1;⋯;bmÞ9. Then the AEM (1) is simplified as

logit ðpℓiÞ ¼ a ℓ0 þ Z9ℓiaℓ þ
Xm
j¼1

XℓiðtjÞbj;

ℓ ¼ 1; 2; . . . ; L; i ¼ 1; 2; . . . ; nℓ (7)

The null hypothesis of no association between the genetic
variants and the disease trait is H0:  b ¼ ðb1; . . . ;bmÞ9 ¼ 0.
The corresponding Rao and LRT statistics are chi-squared
distributed withm degrees of freedom. The tests are denoted
as AEM Hom-Rao and AEM Hom-LRT, respectively.

Parameters of functional data analysis

In thedata analysis and simulations,weused a functional data
analysis procedure in the statistical package R. We use two
functions in library fda of R package as follows to create basis:
basis = create.bspline.basis(norder = order, nbasis = bbasis)
basis = create.fourier.basis(c(0,1), nbasis = fbasis)

Table 1 Association analysis of T2D status in eight European cohorts by heterogeneous Rao’s efficient score test statistics (Het-Rao), Het-
MetaSKAT-O, and Het-MetaSKAT

Gene

P-values of Het-Rao

P-values of Het-Meta
Basis of both GVF and bℓðtÞ Basis of b-smooth-only

Additive effect
B-spline Fourier B-spline Fourier Model (1) SKAT SKAT-O

PCSK9 3:23310211a 4:60310211a 3:23310211a 4:60310211a 1025 0.792 0.059
APOB 1:13310222a 2:52310220a 1:13310222a 2:52310220a 6:49310215a 0.499 0.517
IGF2BP2 7:0631029a 3:10310211a 7:0631029a 3:10310211a 9:29310217a 0.531 0.503
CDKAL1 9:07310220a 9:01310222a 9:07310220a 9:01310222a 2:1131029a 0.961 0.800
JAZF1 8:03310229a 2:61310227a 8:03310229a 2:61310227a 1:91310212a 0.032 0.046
LPL 4:9231025 5:0931028a 4:9231025 5:0931028a 7:34310212a 0.590 0.795
CDKN2B 2:94310235a 9:98310228a 2:94310235a 9:98310228a 6:17310225a 0.554 0.410
CDC123 1:66310218a 6:98310218a 1:66310218a 6:98310218a 1:31310214a 0.039 0.072
IDE 1:47310221a 6:62310223a 1:47310221a 6:62310223a 3:66310216a 0.414 0.630
KIF11 1:57310223a 1:91310223a 1:57310223a 1:91310223a 1:68310221a 0.768 0.913
HHEX 3:4831025 2:973 1025 5:1031026 2:9731025 2:9531026a 0.480 0.691
TCF7L2 7:51310211a 6:06310210a 7:51310211a 6:06310210a 1:0231024 0.021 0.042
KCNQ1 3:67310231a 4:94310229a 3:67310231a 4:94310229a 2:6431028a 0.572 0.797
MTNR1B 2:09310217a 2:27310215a 2:09310217a 2:27310215a 8:54310214a 0.295 0.456
HMGA2 1:6831025 1:993 1024 1:6831025 1:9931024 6:1831022 0.699 0.887
TSPAN8 4:78310238a 9:39310238a 5:89310238a 1:48310237a 1:01310236a 0.747 0.923
HNF1A 1:71310216a 1:10310215a 1:71310216a 1:10310215a 3:56310226a 0.272 0.441
OASL 6:01310235a 1:06310228a 6:01310235a 1:06310228a 8:85310224a 0.530 0.416
FTO 1:26310225a 1:14310226a 1:26310225a 1:14310226a 1:17310221a 0.048 0.090
LDLR 0.373 0.477 0.373 0.477 0.427 0.233 0.400
APOE 2:07310231a 2:19310227a 2:07310231a 2:19310227a 7:19310230a 0.042 0.082
GIPR 5:9931023 9:563 1023 5:9931023 9:5631023 0.013 0.808 0.303

The results of “Basis of both GVF and bℓðtÞ” were based on smoothing both GVF and genetic-effect functions bℓðtÞ of model 6, and the results of “Basis of b-smooth-only”
were based on the smoothing bℓðtÞ only approach of model 3, and the P-values of Het-MetaSKAT and Het-MetaSKAT-O were based of the R package MetaSKAT. GVF,
genetic variant function.
a Associations that attain a threshold significance of P , 3.1 3 1026.
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The three parameterswere taken as order=4, bbasis= 10,
fbasis = 11 for the heterogeneous genetic-effect model and as
order = 4, bbasis = 12, fbasis = 13 for the homogeneous
genetic-effect model in all data analyses and simulations.
To make sure that the results are valid and stable, we tried
a wide range of parameters: (1) 8#K ¼ Kb #13 for the het-
erogeneous genetic-effect model and (2) 10#K ¼ Kb # 21
for the homogeneous genetic-effect model. The results are
similar to each other (data not shown).

Data availability

Computer Program: The methods proposed in this paper are
implementedbyusing theprocedureof functional dataanalysis
(fda) in the statistical package R. The R codes for data analysis
and simulationsare available fromhttp://www.nichd.nih.gov/
about/org/diphr/bbb/software/fan/Pages/default.aspx.

Results

Meta-analysis of T2D in eight European cohorts

Theproposedmethodswere applied to analyze a set of studies
investigating T2D that includes eight European cohorts: the
FIN-D2D 2007 study (D2D2007), the Diabetes Genetic study
(DIAGEN), the Finnish Diabetes Prevention Study (DPS), the
Finland–United States Investigation of NIDDM Genetics
study (FUSION Stage 2), the Nord-Trøndelag Health Study
2 (HUNT), theMetabolic Syndrome inMen study (METSIM),

and the Tromsø study (TROMSO). The sample sizes of cases
and controls for each study are provided in Supporting In-
formation, Table S1. For each cohort, 54,741 genetic variants
are genotyped and are located in 97 genetic regions across
the 22 autosomes. For our analysis, we used the literature on
T2D as a reference for gene selection and found that 22 gene
regions were fine mapped (Zeggini et al. 2008; Voight et al.
2010; Morris et al. 2012; Scott et al. 2012; Li et al. 2014; Liu
et al. 2014). We used Builder Mar. 2006 (NCBI36/hg18) to
determine gene positions, and 5 kb was used to extend the
gene region on each side of a gene. A summary of the 22
genes and the number of genetic variants in each gene region
are given in Table S2.

Association analysis between T2D status and each of the
22 genes was performed by the proposed methods and
MetaSKAT. Except for METSIM, age and sex were used as
covariates. For METSIM, age was used as a covariate because
no femaleswere included in the study.Asignificance threshold
of P , 3.1 3 1026 was taken from Liu et al. (2014). If a
P-value is around 1025 but larger than 3.1 3 1026, we call
it a “tentative significant association signal.”

Table 1 reports the results of association analysis of the
eight European cohorts by heterogeneous Rao’s efficient
score test (Het-Rao), Het-MetaSKAT-O, and Het-MetaSKAT,
and Table 2 reports the results by homogeneous Rao’s effi-
cient score test (Hom-Rao), Hom-MetaSKAT-O, and Hom-
MetaSKAT. The results of Het-LRT andHom-LRT are reported

Table 2 Association analysis of T2D status in eight European cohorts by homogeneous Rao’s efficient score test statistics (Hom-Rao),
Hom-MetaSKAT-O, and Hom-MetaSKAT

Gene

P-values of Hom-Rao

P-values of Hom-Meta
Basis of both GVF and bℓðtÞ Basis of b-smooth only

Additive effect
B-spline Fourier B-spline Fourier Model (1) SKAT SKAT-O

PCSK9 0.079 0.034 0.181 0.229 0.780 0.063 0.025
APOB 0.035 0.081 0.012 0.021 0.873 0.807 0.623
IGF2BP2 0.017 4:4831023 1:1331023 2:3031024 0.041 0.417 0.368
CDKAL1 0.190 0.214 0.056 0.081 0.416 0.473 0.646
JAZF1 0.446 0.422 0.199 0.302 0.476 0.352 0.094
LPL 0.075 0.013 0.080 0.011 0.148 0.416 0.559
CDKN2B 0.001 5:6331025 6:0431023 0.015 0.147 0.325 0.430
CDC123 0.039 0.027 0.076 0.071 0.040 0.129 0.210
IDE 0.241 0.138 0.155 0.308 0.368 0.252 0.389
KIF11 0.040 0.036 0.065 0.187 0.864 0.667 0.802
HHEX 0.020 0.004 0.030 0.034 0.378 0.684 0.711
TCF7L2 2:67310214a 4:36310214a 1:94310216a 1:07310215a 8:1131027a 1:3731024 3:0331024

KCNQ1 0.061 0.143 0.106 0.142 0.103 0.420 0.601
MTNR1B 6:7031024 4:5531024 0.012 4:9031029a 0.357 0.523 0.641
HMGA2 0.757 0.911 0.671 0.903 0.598 0.880 1
TSPAN8 0.448 1:4731025 2:4031023 3:8431024 0.910 0.991 0.836
HNF1A 0.135 0.046 0.087 7:8331023 0.194 0.661 0.363
OASL 0.075 0.026 0.032 0.030 0.371 0.477 0.305
FTO 7:0231024 1:8331024 3:7031026 2:0731027a 0.283 0.291 0.428
LDLR 0.951 0.916 0.933 0.933 0.907 0.876 0.727
APOE 0.449 0.155 0.024 4:7731023 0.045 0.038 0.070
GIPR 0.058 0.038 0.037 0.128 0.034 0.306 0.250

The results of “Basis of both GVF and bℓðtÞ” were based on smoothing both GVF and genetic-effect functions bℓðtÞ of model 6, and the results of “Basis of b-smooth-only”
were based on the smoothing bℓðtÞ only approach of model 3, and the P-values of Hom-MetaSKAT and Hom-MetaSKAT-O were based of the R package MetaSKAT. GVF,
genetic variant function.
a Associations that attain a threshold significance of P , 3.1 3 1026.
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in Table S3 and Table S4, respectively. At the significance
threshold of P , 3.1 3 10 26, we observe associations for
17 genes, PCSK9, APOB, IGF2BP2, CDKAL1, JAZF1I CDKN2B,
CDC123, IDE, KIF11, TCF7L2, KCNQ1, MTNR1B, TSPAN8,
HNF1A, OASL, FTO, and APOE, by both Het-Rao and Het-
LRT in both the revised b-smooth-only GFLM (3) and the
revised general GFLM (6) for both B-spline and Fourier basis
functions in Table 1 and Table S3. For the LPL gene, a signif-
icant association signal is observed by both Het-Rao and Het-
LRT in both the b-smooth-only GFLM (3) and the revised
general GFLM (6) for Fourier basis functions, while B-spline
basis functions lead to tentative association signals. Tentative
association signals are observed for two genes, HHEX and
HMGA2, in Table 1 and Table S3, respectively. Only two
genes, LDLR and GIPR, show no association signal.

By both Hom-Rao and Hom-LRT in both the revised
b-smooth-only GFLM (3) and the revised general GFLM (6)
for both B-spline and Fourier basis functions in Table 2 and
Table S4, association is observed for gene TCF7L2 at the
significance threshold of P , 3.1 3 1026. By both Hom-Rao
and Hom-LRT in the b-smooth-only GFLM (3) for Fourier
basis functions, significant association signals are observed
for two genes, MTNR1B and FTO, in Table 2 and Table S4.
Tentative association signals are observed for two genes,
CDKN2B and TSPAN8, by both Hom-Rao and Hom-LRT in
Table 2 and Table S4 for Fourier basis functions in the revised
general GFLM (6), respectively.

The P-values of Hom-LRT in Table S4 are very similar to
those of Hom-Rao in Table 2, and the P-values of Het-LRT in
Table S3 are slightly smaller than those of Het-Rao in Table 1.
Hence, the LRT statistics can be slightly more powerful than
the Rao’s efficient score test statistics. It is noteworthy that
most association signals are detected by Het-LRT and Het-
Rao, but Hom-LRT and Hom-Rao only detect association sig-
nals for three genes, TCF7L2, MTNR1B, and FTO, reflecting
the presence of heterogeneity of the genetic effects.

In addition to the results of GFLMs 3 and 6,MetaSKAT, and
MetaSKAT-O, Table 1, Table 2, Table S3, and Table S4 report
the results of traditional additive-effect models 1 and 7.
Additive-effect models 1 and 7 detect most association sig-
nals of GFLMs 3 and 6 in Table 1 and Table 2. In particular,
the Het-Rao and Het-LRT of the AEM (1) detect association
for HHEX in Table 1 and Table S3.

It is noteworthy that Het-MetaSKAT-O, Het-MetaSKAT,
Hom-MetaSKAT-O, and Hom-MetaSKAT do not detect any

significant signals in any of the 22 genes. The 22 genes are
from the literature on T2D, and each of them contains SNPs
that are associated with T2D. Thus, significant association
signals for T2D are expected formost of the 22 genes if a gene-
based method is sensitive. However, MetaSKAT detected no
associations for the 22 genes, although our GFLMs and AEM
detect associations for 19 genes. Therefore, MetaSKAT is less
sensitive than the proposed LRT and Rao’s efficient score test
statistics for the T2D data in the European cohorts. In Table
S5, Table S6, Table S7, and Table S8, we report the results of
Rao’s efficient score tests by dividing the data between rare
and common variants based on a cutoff of 0.03. It is worth
noting that the 22 genes contain both rare and common var-
iants and that the associations are mainly from common var-
iants. SKAT and MetaSKAT are designed to analyze rare
variants, while the GFLMs and the AEM can analyze rare or
common variants or a combination of the two.

Whenwe analyze the data sets separately for each study by
the method proposed in Fan et al. (2014), significant associa-
tion is only detected at TCF7L2 in the study of Norway byRao’s
efficient score test and the LRT (data not shown). Thus, it is
advantageous to perform a meta-analysis of multiple studies.

A simulation study

Simulations were performed to evaluate the performance of
the proposedmethods for two cases: (1) all causal variants are
rare, and (2) some causal variants are rare and some are
common. Three scenarios listed in Table 3 were considered
for the simulations. Scenarios 1 and 2 used the European-like
(EUR) sequence data, which are the same as those in Lee
et al. (2012). Scenario 3 used both the EUR and African-
American-like (AA) sequence data. The EUR sequence data
were generated using COSI’s calibrated best-fit models, and
the generated European haplotypes mimick CEPH Utah indi-
viduals with ancestry from northern and western Europe in
terms of site-frequency spectrum and LD pattern (Schaffner
et al. 2005, Figure 4; International HapMap Consortium
2007). Similarly, the AA sequence data mimick the Yoruba
from Ibadan (YRI) (Nigeria in Africa) individuals with a
20:80 mixture of Europeans and Africans, together with pa-
rameters calibrated to model realistic demographic history
(including bottleneck, population expansion, and migration
events). The EUR data included 10,000 chromosomes cover-
ing 1-Mb regions, and the AA data included 45,000 chromo-
somes covering 0.1-Mb regions.

Table 3 Simulation study settings

Scenario Population

Sample sizes Covariates

Study 1 Study 2 Study 3 Study 1 Study 2 Study 3

1 EUR 1600 2200 3200 (z1; z2) (z1; z2) (z1; z2)
2 EUR 1600 2200 3200 (z1; z2; z3) (z1; z2; z3) (z1; z2; z3)
3 EUR + AA 1600 2200 3200 (z1; z2; z3) (z1; z2; z3) (z1; z2; z3)

Sample sizes are total sample sizes in each study, in which half are cases and the rest half are control individuals. Covariates represent covariates in each study. EUR refers to
the scenario where all three studies had EUR samples. EUR + AA refers to the scenario where studies 1 and 2 had EUR samples and study 3 had AA samples. z1 is a binary
covariate taking values 0 and 1 each with probability 0.5, and z2 and z3 are continuous covariates and distributed as standard normal.
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Type I error simulations: To evaluate the type I error rates of
the proposedmodels and tests, we generated phenotype data
sets by using the model

logit ðpℓiÞ ¼ a0 þ 0:5z ℓi1 þ 0:5z ℓi2; ℓ ¼ 1; 2; 3 (8)

for scenario 1 in Table 3 and

logit ðpℓiÞ ¼ a0 þ 0:5z ℓi1 þ 0:5z ℓi2 þ 0:5z ℓi3; ℓ ¼ 1; 2; 3
(9)

for scenarios 2 and 3 in Table 3, where zℓi1 is a dichotomous
covariate taking values 0 and 1 with a probability of 0.5, zℓi2
and zℓi3 are continuous covariates from standard normal dis-
tributions Nð0; 1Þ, and a0 ¼ 2 4:60 ¼ log½0:01=ð12 0:01Þ�
was chosen to provide a disease prevalence of 0.01 under a
null hypothesis zℓij ¼ 0. To obtain genotype data, 3-kb subre-
gions were randomly selected in the 1-Mb regions of EUR and
AA data. The ordered genotypes were these variants in the
3-kb subregions. Note that the trait values are not related to
the genotypes, so the null hypothesis holds. We calculated
empirical type I error rates for both Rao’s efficient score test
and LRT statistics.

The sample sizes of the data setswere taken as 1600 (study
1), 2200 (study 2), and 3200 (study 3), respectively. For each
study, half the sample consists of cases, and the remaining half
consists of control individuals. The simulation settings are
summarized in Table 3. For each sample-size combination,
106 phenotype-genotype data sets were generated to fit the
proposed models and to calculate the test statistics and re-
lated P-values. Then an empirical type I error rate was calcu-
lated as the proportion of 106 P-values that were smaller
than a given a level (i.e., 0.05, 0.01 and 0.001, 0.0001,
respectively).

Empirical power simulations: To evaluate the power per-
formance of the proposedmodels and tests,we simulateddata
sets under the alternative hypothesis by randomly selecting
3-kb subregions to obtain causal variants for the disease traits
as follows: once a 3-kb subregion was selected, a subset of p
causal variants located in the 3-kb subregion was then ran-
domly selected to obtain ordered genotypes [gðt1Þ; . . . ; gðtpÞ].
Then we generated the disease traits by

logit ðpℓiÞ ¼ a0 þ 0:5z ℓi1 þ 0:5z ℓi2 þ b ℓi1gðt1Þ
þ⋯þ bℓipg

�
tp
�
; ℓ ¼ 1; 2; 3 (10)

for scenario 1 in Table 3 and by

logit ðpℓiÞ ¼ a0 þ 0:5z ℓi1 þ 0:5z ℓi2 þ 0:5z ℓi3 þ bℓi1gðt1Þ þ⋯
þ bℓipg

�
tp
�
;

ℓ ¼ 1; 2; 3 (11)

for scenarios 2 and 3, where a0 and zℓij are the same as
in models 8 and 9, and b is as follows: we used
jbℓijj ¼ cℓjlog10ðMAFjÞj=2, where MAFj is the MAF of the jth
variant. Three different settings were considered: 5, 10, and

20% of variants in the 3-kb subregion are chosen as causal
variants. When 5, 10, and 20% of the variants were causal,
two parameter settings of genetic effects were considered for
cℓ: (1) homogeneous and (2) heterogeneous (Table 4). In the
homogeneous case, the genetic effects are the same for the
three studies, i.e., c1 ¼ c2 ¼ c3. In the heterogeneous case,
the genetic effects are different for the three studies, i.e.,
c2 ¼ c1 þ 0:15 and c3 ¼ c1 20:15. For each setting, 1000
data sets were simulated to calculate the empirical power
as the proportion of P-values that are smaller than an
a ¼ 0:0001 level.

Type I error simulation results: The empirical type I error
rates are reported in Table 5 and Table 6. In Table 5, only rare
variants were used to generate genotype data, but none of
them relates to the trait. In Table 6, all variants were used to
generate genotype data. For the GFLMs Hom-Rao and Het-
Rao, all empirical type I error rates are below the nominal
a levels for both B-spline and Fourier basis functions (columns
4–7 of Table 5 and Table 6). Therefore, the chi-squared-
distributed Rao’s efficient score statistics are very conserva-
tive and can be useful in whole-genome and whole-exome
association studies.

For the GFLMHom-LRT, all empirical type I error rates are
around the nominal a levels for both B-spline and Fourier
basis functions when all variants were used to generate ge-
notype data (bottom parts of columns 8–11 of Table 6). For
the GFLM Het-LRT, the empirical type I error rates are
slightly higher than the nominal a levels when all variants
were used to generate genotype data (top parts of columns 8–
11 of Table 6), and the GFLM Het-LRT statistics can inflate
type I error rates.

When only rare variants were used to generate genotype
data, the empirical type I error rates aremuch higher than the
nominal a levels for both B-spline and Fourier basis functions
for GFLM Het-LRT statistics (top parts of columns 8–11 of
Table 5). Relatively, the empirical type I error rates of GFLM
Hom-LRT statistics are only slightly higher than the nominal
a levels for both B-spline and Fourier basis functions (bottom
parts of columns 8–11 of Table 5).

In Fan et al. (2014), it was found that the Rao’s efficient
score test statistics are very conservative when the sample is
small or moderate from a single study (i.e., the sample ranges

Table 4 Simulation parameter settings

Genetic effect Study (cℓ)

Percent of causal variants

5 10 20

Homogeneous 1 (c1)
2 (c2) 0.60 0.46 0.35
3 (c3)

Heterogeneous 1 (c1) 0.60 0.46 0.35
2 (c2) 0:60þ 0:15 0:46þ 0:15 0:35þ 0:15
3 (c3) 0:6020:15 0:462 0:15 0:3520:15

The constants cℓ in bℓ ¼ cℓ=log10ðMAFÞ of power simulations, ℓ ¼ 1; 2; 3, are given
in this table for two cases: (1) homogeneous genetic effect and (2) heterogeneous
genetic effect.
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from 200 to 2000). Hence, the results of this paper are con-
sistent with those of Fan et al. (2014) for the Rao’s efficient
score test statistics. When the sample is smaller than or equal
to 2000, Fan et al. (2014) found that the LRT statistics inflate
the type I error rates. In this paper, we have a very big sample
size of 7000 by combining three studies for a unified analysis,
and the GFLM Hom-LRT controls the type I error rates cor-
rectly, but the GFLM Het-LRT still may inflate the type I error
rates.

In short, the chi-squared-distributed Rao’s efficient score
test statistics of GFLMs Hom-Rao and Het-Rao are very con-
servative. If the sample size is large, GFLMHom-LRT statistics
control the type I error rates well when all variants were used
to generate genotype data and can slightly inflate the type I
error rates when only rare variants were used to generate
genotype data. The GFLM Het-LRT statistics may inflate the
type I error rates, which may be due to the large degrees of
freedom.

Statistical power results: We compared the power perfor-
mance of the proposed tests with MetaSKAT based on the
simulated COSI sequence data. The empirical power levels at
the a ¼ 0:0001 level are plotted in Figure 1, Figure 2, Figure
3, Figure 4, Figure S1, Figure S2, Figure S3, and Figure S4. In
all theses figures, “GVF&Beta, B-sp” (or “GVF&Beta, F-sp”)
means that both GVF and the genetic-effect function bðtÞ

were smoothed by B-spline (or Fourier) basis functions, and
“Beta, B-sp” (or “Beta, F-sp”) means that only the genetic-
effect function bðtÞ was smoothed by B-spline (or Fourier)
basis functions (i.e., b-smooth-only). Moreover, the results
of Het-MetaSKAT, Het-MetaSKAT-O, Hom-MetaSKAT, and
Hom-MetaSKAT-O using the R packageMetaSKAT are report-
ed for power comparison (Lee et al. 2013).

In Figure 1, Figure 2, Figure 3, and Figure 4, the results of
GFLM Hom-Rao are reported, and the Rao’s efficient score
test statistics are constructed using the homogeneous effect
model. In Figure S1, Figure S2, Figure S3, and Figure S4, the
results of GFLM Het-Rao are reported, and the Rao’s effi-
cient score test statistics are constructed using the hetero-
geneous effect model. Moreover, the results of AEMHet-Rao
for the additive-effect model (1) are reported in each figure
for a comparison. In Figure 1, Figure 2, Figure S1, and Fig-
ure S2, the simulated data are generated under the assump-
tion of homogeneous genetic effect, and in Figure 3, Figure
4, Figure S3, and Figure S4, the simulation data are gener-
ated under the assumption of heterogeneous genetic effect
(Table 4).

When some causal variants are rare and some are common,
the GFLM Hom-Rao has higher power than MetaSKAT and
MetaSKAT-O for scenarios 1 and 2 and has similar power as
MetaSKAT and MetaSKAT-O for scenario 3 in Figure 1 and
Figure 3. The GFLM Het-Rao also has higher or similar power

Table 5 Empirical type I error rates of Rao’s efficient score test statistics and LRT statistics at different a levels based on 106 simulated data
sets when only rare variants were used to generate genotype data

Type of test Scenario a Level

Rao’s efficient score test statistics of GFLMs LRT statistics of GFLMs

Basis of both
GVF and bℓðtÞ

Basis of
b-smooth-only

Basis of both
GVF and bℓðtÞ

Basis of
b-smooth-only

B-spline Fourier B-spline Fourier B-spline Fourier B-spline Fourier

GFLM Het-Rao
or

GFLM Het-LRT

Scenario 1 0.05 0.040308 0.041429 0.040307 0.041429 0.107753 0.094461 0.107752 0.094468
0.01 0.006502 0.006787 0.006502 0.006787 0.029244 0.024788 0.029243 0.024790
0.001 0.000442 0.000489 0.000442 0.000489 0.004305 0.003603 0.004305 0.003603
0.0001 0.000024 0.000032 0.000024 0.000032 0.000606 0.000548 0.000606 0.000548

Scenario 2 0.05 0.041607 0.042350 0.041607 0.042349 0.104186 0.090845 0.104186 0.090849
0.01 0.006992 0.007279 0.006992 0.007279 0.027457 0.023561 0.027457 0.023563
0.001 0.000543 0.000574 0.000543 0.000574 0.003972 0.003349 0.003972 0.003349
0.0001 0.000032 0.000041 0.000032 0.000041 0.000570 0.000503 0.000570 0.000503

Scenario 3 0.05 0.042585 0.043306 0.042585 0.043306 0.095901 0.085546 0.095895 0.085547
0.01 0.007270 0.007443 0.007270 0.007443 0.024544 0.021358 0.024543 0.021359
0.001 0.000568 0.000585 0.000568 0.000585 0.003431 0.002897 0.003431 0.002897
0.0001 0.000041 0.000058 0.000041 0.000058 0.000443 0.000395 0.000443 0.000395

GFLM Hom-Rao
or

GFLM Hom-LRT

Scenario 1 0.05 0.046652 0.047087 0.047218 0.047167 0.058747 0.056513 0.058836 0.057511
0.01 0.008560 0.008799 0.008629 0.008713 0.012600 0.012024 0.012507 0.012261
0.001 0.000737 0.000828 0.000775 0.000794 0.001454 0.001364 0.001428 0.001366
0.0001 0.000051 0.000070 0.000066 0.000064 0.000161 0.000144 0.000163 0.000166

Scenario 2 0.05 0.047177 0.047423 0.047544 0.047543 0.058428 0.056090 0.058055 0.057137
0.01 0.008855 0.008809 0.008910 0.008838 0.012636 0.011741 0.012536 0.012229
0.001 0.000760 0.000761 0.000841 0.000783 0.001355 0.001198 0.001440 0.001289
0.0001 0.000071 0.000079 0.000077 0.000069 0.000151 0.000160 0.000174 0.000146

Scenario 3 0.05 0.048264 0.048039 0.048500 0.048655 0.056015 0.054683 0.053643 0.052776
0.01 0.008940 0.008962 0.009228 0.009348 0.011540 0.011083 0.010987 0.010708
0.001 0.000759 0.000769 0.000846 0.000839 0.001173 0.001099 0.001130 0.001081
0.0001 0.000060 0.000064 0.000059 0.000084 0.000122 0.000111 0.000105 0.000116

The results of “Basis of both GVF and bℓðtÞ” were based on smoothing both the GVF and genetic-effect functions bℓðtÞ of model 6, and the results of “Basis of b-smooth-
only” were based on the smoothing bℓðtÞ only approach of model 3. GVF, genetic variant function.
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as MetaSKAT and MetaSKAT-O in Figure S1 and Figure S3.
Therefore, the proposed Rao’s efficient score test statistics have
good power performance when some causal variants are rare
and some are common. By a comparison of power levels in
Figure 1 vs. Figure S1 and Figure 3 vs. Figure S3, the power
levels of the GFLMHom-Rao are generally higher than those of
GFLM Het-Rao, which may be due to the large degrees of
freedom of the GFLM Het-Rao. The AEM Het-Rao has slightly
lower power levels than GFLM Hom-Rao and GFLM Het-Rao
but performs well.

When the causal variants are all rare, the GFLM Hom-Rao
has slightly lower or similar power levels as MetaSKAT and
MetaSKAT-O in Figure 2, Figure 4, Figure S2, and Figure S4.
Again, the power levels of the GFLM Hom-Rao in Figure 2
and Figure 4 are generally higher than the corresponding
power levels of GFLM Het-Rao in Figure S2 and Figure S4.
The AEM Het-Rao has low power levels.

In each graph, we compared five Rao’s efficient score test
statistics: one is based on the additive-effect model (1), two
are based on B-spline basis functions, and two are based on
Fourier basis functions. In the two Rao’s efficient score test
statistics to use B-spline (or Fourier) basis functions, one is to
smooth both the GVFs and the genetic-effect function bðtÞ,
and the other is only to smooth the genetic-effect function
bðtÞ (i.e., b-smooth-only). The four Rao’s efficient score test

statistics of the GFLMs have similar power. The power levels
of b-smooth-only are almost identical to those of smoothing
both the GVFs and genetic-effect function bðtÞ by B-spline
basis (or Fourier basis). Thus, the tests do not strongly de-
pend on whether the genotype data are smoothed or not. In
addition, the Rao’s efficient score test statistics do not
strongly depend on which basis functions are used. We also
calculated the empirical power levels of the LRT statistics,
which provide very similar empirical power levels as the
Rao’s efficient score test statistics (data not shown).

Discussion

In this paper, GFLMs are developed to perform a meta-
analysis of multiple case-control studies to connect genetic
data to dichotomous traits adjusting for covariates. Based
on the GFLMs, chi-squared-distributed Rao’s efficient
score test and LRT statistics are introduced to test for an
association between a complex trait and multiple genetic
variants. Extensive simulations are performed to evaluate
empirical type I error rates and the power performance of
the proposed GFLMs and tests. We show that the proposed
Rao’s efficient score test statistics are very conservative. The
Rao’s efficient score test statistics have higher power than
MetaSKAT when some causal variants are rare and some

Table 6 Empirical type I error rates of Rao’s efficient score test statistics and LRT statistics at different a levels based on 106 simulated data
sets when all variants were used to generate genotype data

Type of test Scenario a Level

Rao’s efficient score test statistics of GFLMs LRT statistics of GFLMs

Basis of both
GVF and bℓðtÞ

Basis of
b-smooth-only

Basis of both
GVF and bℓðtÞ

Basis of
b-smooth-only

B-spline Fourier B-spline Fourier B-spline Fourier B-spline Fourier

GFLM Het-Rao
or

GFLM Het-LRT

Scenario 1 0.05 0.038922 0.040414 0.038922 0.040414 0.070972 0.061845 0.070972 0.061845
0.01 0.006645 0.007022 0.006645 0.007022 0.016140 0.013552 0.016140 0.013552
0.001 0.000518 0.000573 0.000518 0.000573 0.001946 0.001558 0.001946 0.001558
0.0001 0.000041 0.000056 0.000041 0.000056 0.000227 0.000177 0.000227 0.000177

Scenario 2 0.05 0.040400 0.041604 0.040400 0.041604 0.069546 0.061199 0.069546 0.061199
0.01 0.007057 0.007462 0.007057 0.007462 0.015841 0.013613 0.015841 0.013613
0.001 0.000550 0.000665 0.000550 0.000665 0.001863 0.001560 0.001863 0.001560
0.0001 0.000044 0.000041 0.000044 0.000041 0.000208 0.000193 0.000208 0.000193

Scenario 3 0.05 0.040580 0.041450 0.040580 0.041450 0.064665 0.058161 0.064666 0.058161
0.01 0.007031 0.007417 0.007031 0.007417 0.014029 0.012416 0.014029 0.012416
0.001 0.000550 0.000637 0.000550 0.000637 0.001528 0.001390 0.001528 0.001390
0.0001 0.000036 0.000050 0.000036 0.000050 0.000172 0.000156 0.000172 0.000156

GFLM Hom-Rao
or

GFLM Hom-LRT

Scenario 1 0.05 0.045807 0.045358 0.047004 0.046821 0.051164 0.048432 0.052932 0.051544
0.01 0.008605 0.008461 0.008918 0.008894 0.010409 0.009512 0.010960 0.010461
0.001 0.000842 0.000779 0.000852 0.000898 0.001107 0.000938 0.001167 0.001111
0.0001 0.000078 0.000086 0.000069 0.000078 0.000119 0.000110 0.000111 0.000126

Scenario 2 0.05 0.045847 0.045606 0.046779 0.046988 0.050780 0.048540 0.052439 0.051368
0.01 0.008598 0.008638 0.008938 0.009000 0.010240 0.009649 0.010825 0.010428
0.001 0.000768 0.000752 0.000799 0.000821 0.001023 0.000922 0.001080 0.001043
0.0001 0.000074 0.000056 0.000077 0.000072 0.000103 0.000081 0.000132 0.000116

Scenario 3 0.05 0.043291 0.043601 0.043397 0.043609 0.045600 0.045334 0.045182 0.044837
0.01 0.008050 0.008195 0.008154 0.008286 0.008801 0.008745 0.008737 0.008715
0.001 0.000742 0.000790 0.000709 0.000746 0.000873 0.000877 0.000797 0.000805
0.0001 0.000072 0.000061 0.000070 0.000070 0.000084 0.000079 0.000079 0.000078

The results of “Basis of both GVF and bℓðtÞ” were based on smoothing both the GVF and genetic-effect functions bℓðtÞ of model 6, and the results of “Basis of b-smooth-
only” were based on the smoothing bℓðtÞ only approach of model 3. GVF, genetic variant function.
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are common. When the causal variants are all rare (i.e.,
MAF, 0.03), the Rao’s efficient score test statistics have sim-
ilar or slightly lower power thanMetaSKAT. For homogeneous
genetic effect models, the GFLM Hom-LRT generates accurate
type I error rates. For heterogeneous genetic models, the
GFLM Het-LRT may inflate type I error rates owing to large
degrees of freedom. The GFLMs and related test statistics can
be useful in whole-genome and whole-exome association
studies.

The GFLMs and AEM were applied to analyze the genetic
data of 22 gene regions of T2D data from a meta-analysis of
eight European studies and detected significant associations
for 19 genes (P , 3.1 3 1026), tentative association for 1
gene (P� 1025), and no association for 2 genes, while Meta-
SKAT detected none. Because the 22 genes are from the lit-
erature on T2D showing that each of them contains SNPs that
are associated with T2D, the association is confirmed by our
fixed models and related tests for the 19 genes, although
MetaSKAT failed to confirm any of the associations. One
may note that the European cohorts were analyzed by Meta-

SKAT in Lee et al. (2013), but no results were reported for the
dichotomous traits of T2D.

Unlike other methods such as SKAT or MetaSKAT, which
are based on mixed-effect models, GFLMs are fixed-effect
models, and the genetic effects of multiple genetic variants
are assumed to be fixed. The formulation of the b-smooth-
only model (2) is similar to that of SKAT and MetaSKAT.
However, the assumptions are totally different. Specifically,
the regression coefficients bℓ of genetic variant terms in the
models of SKAT and MetaSKAT are random, while the ge-
netic effects bℓðtℓjÞ in model 2 are fixed unknown functions.
Our GFLMs are a natural extension of traditional population
genetics without a polygenic term because we consider the
population data. By using functional data-analysis tech-
niques, we develop procedures to estimate the genetic-
effect functions bℓðtÞ and introduce test statistics to test for
an association.

If the causal genetic variants are all rare, the number of
causal rarevariants is large,andeachcontributesasmallamount
to the trait, it would be reasonable to assume the genetic

Figure 1 The empirical power of the
GFLM Hom-Rao of models (3) and (6)
as well as the AEM Het-Rao of the
additive-effect model (1) and MetaSKAT
at a ¼ 0:0001 when some causal vari-
ants are rare and some are common
and the genetic effect is simulated as
homogeneous. When Neg pct = 0, all
causal variants had positive effects;
when Neg pct = 20, 20/80% of causal
variants had negative/positive effects;
when Neg pct = 50, 50/50% of causal
variants had negative/positive effects.
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contribution of major gene loci to be random, and then the
mixedmodelsofSKATandMetaSKATcanbevalid. Inourpower
comparison, we found that the proposed Rao’s efficient score
test statistics have similar or slightly lower power than Meta-
SKAT when the causal variants are all rare. However, the pro-
posed Rao’s efficient score test statistics have higher power
than MetaSKAT when some causal variants are rare and some
are common (in this case, it is likely that the effects of a few
genetic variants of the major gene locus are large, so fixed-
effect models perform well). It is noteworthy that this paper
deals with dichotomous traits. For quantitative traits, it was
found that functional linear models lead to both F- and chi-
squared-distributed score test statistics that are more powerful
than SKAT and MetaSKAT (Luo et al. 2012; Fan et al. 2013).

In the proposed models and tests, we do not make any
assumptions about whether the genetic variants are rare or
common variants or a combination of the two. The proposed
modelsareveryflexibleandcananalyze rareorcommonvariants
or a combination of the two. We do assume that the number of
genetic variants in a genetic region is large, which is true for

modern genetic data. When a large number of genetic variants
areavailable inageneticregion,estimationof theGVFisaccurate,
whichmakesourGFLMsvery reliable. Inour simulationanddata
analysis, models 2 and 4 perform very close to each other.

In Fan et al. (2013, 2014), we investigated the perfor-
mance of the mixed models by making the regression coeffi-
cients b of genetic-effect function random in the frameworks
of our functional regression models. It was found that the
mixed models perform well only when the causal genetic
variants are all rare and the traits are dichotomous (for rare
variants, we used an artificial cutoff of 0.03). For most dis-
eases, the causal variants can be both rare and common.
Because the proposed models are very flexible in analyzing
rare or common variants, we focus on fixed-effect models in
this paper. In our simulations, we treat the regression effect of
covariates as heterogeneous. We also investigate the perfor-
mance of the proposed models by treating the regression
effect of covariates as homogeneous, and we find that the
results are similar in terms of empirical power performance
and type I error rates.

Figure 2 The empirical power of the
GFLM Hom-Rao of models (3) and (6)
as well as the AEM Het-Rao of the
additive-effect model (1) and MetaSKAT
at a ¼ 0:0001 when all causal variants
are rare and the genetic effect is simu-
lated as homogeneous. When Neg
pct = 0, all causal variants had positive
effects; when Neg pct = 20, 20/80%
of causal variants had negative/positive
effects; when Neg pct = 50, 50/50% of
causal variants had negative/positive
effects.
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For small- and moderate-sample-size single studies when
the sample sizes are smaller than or equal to 2000, the LRT
statistics of GFLMswere found to inflate the type I error rates,
while chi-squared-distributed Rao’s efficient score test statis-
tics control type I error rates correctly (Fan et al. 2014).
Hence, Rao’s efficient score test statistics were recommended
for small- and moderate-sample-size single studies. In this
paper, we show that Rao’s efficient score test statistics control
the type I error rates correctly when the sample sizes of com-
bined multiple studies are large. For homogeneous genetic-
effect models, the LRT statistics were found to have correct
type I error rates; for heterogeneous genetic-effect models,
the LRT statistics inflated the type I error rates. Therefore,
one needs to be cautious about using LRT statistics for di-
chotomous traits. For quantitative traits, both the LRT and
F-distributed statistics have correct type I error rates and
good power performance for a sample with a sample size $

1500 (Fan et al. 2013).
The proposed method requires individual genotype data

and is more powerful thanMetaSKAT andMetaSKAT-Owhen
genotype data are available from all studies. However, the

proposed method cannot meta-analyze summary statistics. If
only summary statistics of GFLMs are available from different
studies using Fan et al. (2014), it is still an open question as to
how to use them for a meta-analysis.
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Supporting Information: “Meta-analysis of
Complex Diseases at Gene Level by Generalized

Functional Linear Models”

Information Of the Eight European Cohorts

For the eight European cohorts, we performed association analysis between T2D and 22 genes. The

sample sizes of each study are presented in Table S.1. The information of the 22 genes is given in Table

S.2. The results of association analysis by Het-LRT and Hom-LRT are reported in Tables S.3 and S.4.

Table S.1: Sample sizes of the cases and controls for each of the seven studies.

Study # of Cases # of Controls Total

D2d-2007 281 1794 2075
DIAGEN 429 1042 1471

DPS 193 219 412
DRs EXTRA 108 1049 1157

FUSION Stage 2 806 1694 2500
METSIM 572 774 1346
Norway 1143 1347 2490

Total 3532 7919 11451

1



Table S.2: Summary of 22 genes and the number of genetic variants in each gene region by
Mar. 2006 (NCBI36/hg18). The number of variants is the number of genetic variants in a region of
Start (-5Kb) - End (+5Kb) Positions. ∗ The gene region of PCSK9 is (55277737, 55303114), and
(55271537, 55286109) is the region in the database. # The Length is the length of the region in bp.

Gene
Chromosome Gene Start (-5Kb) - End (+5Kb) Number of

Region Positions (bp) Positions (Length#) Variants

PCSK9∗ 1 55277737 - 55303114 55271537 - 55286109 (14572) 74
APOB 2 21077806 - 21120450 21072806 - 21125450 (52644) 223

IGF2BP2 3 186844221 - 187025521 186839221 - 187030521 (191300) 231
CDKAL1 6 20642667 - 21340613 20637667 - 21345613 (707946) 560
JAZF1 7 27836718 - 28186962 27831718 - 28191962 (360244) 384
LPL 8 19840862 - 19869050 19835862 - 19874050 (38188) 212

CDKN2B 9 21992902 - 21999312 21987902 - 22004312 (16410) 64
CDC123 10 12277971 - 12332593 12272971 - 12337593 (64622) 265
IDE 10 94201421 - 94323832 94196421 - 94328832 (132411) 327
KIF11 10 94342805 - 94405132 94337805 - 94410132 (72327) 216
HHEX 10 94439661 - 94445388 94434661 - 94450388 (15727) 30
TCF7L2 10 114699999 - 114917426 114694999 - 114922426 (227427) 258
KCNQ1 11 2422797 - 2826916 2417797 - 2831916 (414119) 660
MTNR1B 11 92342437 - 92355596 92337437 - 92360596 (23159) 106
HMGA2 12 64504507 - 64646338 64499507 - 64651338 (151831) 214
TSPAN8 12 69805144 - 69838046 69800144 - 69843046 (42902) 54
HNF1A 12 119900932 - 119924697 119895932 - 119929697 (33765) 71
OASL 12 119942478 - 119961428 119937478 - 119966428 (28950) 108
FTO 16 52295376 - 52705882 52290376 - 52710882 (420506) 191
LDLR 19 11061038 - 11105505 11056038 - 11110505 (54467) 43
APOE 19 50100879 - 50104490 50095879 - 50109490 (13611) 35
GIPR 19 50863342 - 50877557 50858342 - 50882557 (24215) 37
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Figure S.1: The empirical power of the heterogeneous Rao’s efficient score test statistics
(Het-Rao) of the models (1), (3), and (6) and MetaSKAT at α = 0.0001, when some causal
variants are rare and some are common and the genetic effect is simulated as homogeneous.
When Neg pct = 0, all causal variants had positive effects; when Neg pct = 20, 20%/80% causal variants
had negative/positive effects; when Neg pct = 50, 50%/50% causal variants had negative/positive effects.
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Figure S.2: The empirical power of the heterogeneous Rao’s efficient score test statistics
(Het-Rao) of the models (1), (3), and (6) and MetaSKAT at α = 0.0001, when all causal
variants are rare and the genetic effect is simulated as homogeneous. When Neg pct = 0, all
causal variants had positive effects; when Neg pct = 20, 20%/80% causal variants had negative/positive
effects; when Neg pct = 50, 50%/50% causal variants had negative/positive effects.
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Figure S.3: The empirical power of the heterogeneous Rao’s efficient score test statistics
(Het-Rao) of the models (1), (3), and (6) and MetaSKAT at α = 0.0001, when some causal
variants are rare and some are common and the genetic effect is simulated as heterogeneous.
When Neg pct = 0, all causal variants had positive effects; when Neg pct = 20, 20%/80% causal variants
had negative/positive effects; when Neg pct = 50, 50%/50% causal variants had negative/positive effects.
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Figure S.4: The empirical power of the heterogeneous Rao’s efficient score test statistics
(Het-Rao) of the models (1), (3), and (6) and MetaSKAT at α = 0.0001, when all causal
variants are rare and the genetic effect is simulated as heterogeneous. When Neg pct = 0, all
causal variants had positive effects; when Neg pct = 20, 20%/80% causal variants had negative/positive
effects; when Neg pct = 50, 50%/50% causal variants had negative/positive effects.
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