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SUMMARY

Identification of human disease signature genes typi-
cally requires samples from many donors to achieve
statistical significance. Here, we show that single-
cell heterogeneity analysis may overcome this hurdle
by significantly improving the test sensitivity. We
analyzed the transcriptome of 39,905 single islets
cells from 9 donors and observed distinct b cell het-
erogeneity trajectories associated with obesity or
type 2 diabetes (T2D). We therefore developed
RePACT, a sensitive single-cell analysis algorithm
to identify both common and specific signature
genes for obesity and T2D. We mapped both
b-cell-specific genes and disease signature genes
to the insulin regulatory network identified from a
genome-wide CRISPR screen. Our integrative anal-
ysis discovered the previously unrecognized roles
of the cohesin loading complex and the NuA4/Tip60
histone acetyltransferase complex in regulating
insulin transcription and release. Our study demon-
strated the power of combining single-cell heteroge-
neity analysis and functional genomics to dissect the
etiology of complex diseases.

INTRODUCTION

Pancreatic islets provide the endocrine function of the pancreas

and are comprised of at least five hormone-producing cell types:

a cells (secreting glucagon, GCG), b cells (insulin, INS), g/PP

cells (pancreatic polypeptide, PPY), d cells (somatostatin, SST),

and ε cells (ghrelin, GHRL). Malfunction of pancreatic islets,

especially b cells, is associated with obesity and type 2 diabetes
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(T2D). However, because obesity and T2D are two highly related

diseases (i.e., many patients have both diseases), understanding

the commonality and differences between the two diseases at

cellular level is challenging. Conventional transcriptome analysis

requires pure endocrine cell subpopulations from a large number

of patients to achieve statistical significance, which can be pro-

hibitively difficult.

Single-cell RNA sequencing (scRNA-seq) technologies allow

transcriptome profiling in individual cells and are revolutionizing

the analyses of rare or complex tissues, including pancreatic is-

lets (Baron et al., 2016; Dorajoo et al., 2017; Lawlor et al., 2017; Li

et al., 2016; Muraro et al., 2016; Segerstolpe et al., 2016; Wang

et al., 2016; Xin et al., 2016). However, although these previous

studies have clearly demonstrated the great potential of

scRNA-seq in islet biology, limitations remain. First, most of

these studies only analyzed up to a few hundred cells from

each donor, therefore had low sensitivity mapping rare cell sub-

populations. Second, due to the limited availability of human islet

samples, especially from diabetic patients, the sensitivity of

detecting disease relevant gene signatures is low. Finally, the

cellular functions of identified signature genes remain to be

validated.

In this study, we used Drop-Seq (Macosko et al., 2015) to

generate massively parallel single-cell transcriptome data from

thousands of islet cells. The improved throughput allowed us

tomap the heterogeneity of endocrine cell subpopulations sensi-

tively. Importantly, even though there is no a or b cell subpopu-

lation correlated with obesity or T2D, we observed obvious tra-

jectories of continuous cellular heterogeneity associated with

diseases. We therefore developed a general single-cell analysis

algorithm named RePACT (regressing principle components for

the alignment of continuous trajectory) and demonstrated that it

is feasible to identify both common and specific signature genes

associated with obesity and T2D with a limited supply of human

islets. Additionally, we also used an unbiased genome-wide
r(s).
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Figure 1. Single Islet Cell Transcriptomes

Generated by Drop-Seq

(A) Table of donor information.

(B) Two-dimensional t-SNE plot of the top 11,697

STAMPs with non-endocrine cells highlighted in

color.

(C) Expression levels of KRT19 (duct marker) and

COL1A2 (PSC marker) were overlaid onto the

t-SNE plot in (B).

(D) Two-dimensional t-SNE plot of distinct endo-

crine cell types.

(E) Expression levels of endocrine cell markers and

DNAJB1 are overlaid onto the t-SNE plot in (D).

(F) Bar graphs demonstrating the percentage of all

cell types in each donor.
CRISPR screen to validate the insulin regulatory functions of dis-

ease signature genes. Our integrative analyses uncovered previ-

ously uncharacterized b-cell-specific insulin regulator modules,

including the MAU2-NIPBL cohesin loading complex, and the

NuA4/TIP60 histone acetyltransferase (HAT) complex. Taken

together, our study provides a general strategy for systematically

characterizing disease genes in pancreatic islets as well as other

complex tissues.

RESULTS

Drop-Seq Analysis of Human Islet Samples
We prepared Drop-Seq libraries with fresh human islet samples

from 6 healthy (3 overweighed with BMI >30) and 3 T2D donors

(2 overweighed). In total, we obtained transcriptome data from

39,905 single cells (1,206–9,409 cells from each donor, Fig-

ure 1A) and used a very stringent clustering-based analysis

pipeline to determine the types of 28,026 ‘‘clean’’ cells without

ambiguity (Figure S1; Data S1). When projecting the cells to a

two-dimensional t-distributed stochastic neighbor embedding

(tSNE) plot, we observed a clear distinction between endocrine

cells and a few non-endocrine cell types, mainly pancreatic
Cell Rep
ductal cells (PDCs) marked by several

keratin genes (KRTs), and pancreatic

stellate cells (PSCs) marked by collagen

genes (Figures 1B and 1C). We

observed very few acinar cells marked

by REG1A and PRSS1 genes, which

were identified as PCA outliers but failed

to form a distinct cluster in t-SNE due to

the scarcity (n = 108, Figures 2A–2D).

We further performed a second-round

unsupervised clustering with the endo-

crine cells and distinguished four major

endocrine clusters, which are recog-

nized as a, b, d, and PP cells based on

the enrichment of corresponding marker

genes (Figures 1D and 1E). We could not

observe a distinct cluster of ε cells in

tSNE due to the extreme scarcity of

this cell type in our samples: only 13

of the 28,026 ‘‘clean’’ cells express
the ε cell hormone gene GHRL (Figures 2A–2D). Taken

together, all of the samples contain 10%–20% non-endocrine

cells (Figure 1F), consistent with an estimated 80%–90% islet

purity, and �90% of endocrine cells in every donor are a or

b cells (Figure 1F).

Gene Signatures of Non-endocrine Cell Types
We first used a negative binomial model to define the non-

endocrine cell marker genes (STAR Methods), including a

number of transcription factors (TFs) that may function as

master cell type regulators (Figures 2E and 2F; a complete

gene list is included in Data S2). As expected, PSCs express

collagen genes; ductal cells express keratins, CFTR, and

TSPAN8; and exocrine acinar cells express REG1A, REG1B,

REG3A, and a number of digestive enzymes (Figures 2E and

2G). Interestingly, we also observed duct-exclusive expression

of inflammation genes such as CCL2, CXCL2, MMP7, and

DEFB1 (Figures 2E and 2G). It is not clear whether these

duct-expressed inflammatory genes may contribute to disease

initiation or development, although the elevated levels of

cytokines in pancreatitis and pancreatic cancer is well

documented.
orts 26, 3132–3144, March 12, 2019 3133
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Figure 2. Non-endocrine Cell Populations and Their Marker Genes

(A–D) PCA analysis of all STAMPs with unique cell type assignment. (A) After 1st round PCA, PC1, and PC2 distinguish ductal cells and PSCs. (B) PC3 and PC4

distinguish a and b cells (ductal cells and PSCs are masked). (C) PC1-PC2 in 2nd round PCA (after removing ductal cells, PSCs, a and b cells) distinguished the

acinar cells. (D) A 3rd round PCA can further distinguish ε, d, and PP populations after removing acinar cells.

(E) Heatmaps demonstrating the non-endocrine cell marker genes. The rightmost column shows the average expression of all endocrine cells.

(F) Bubble plot showing the expression patterns of top non-endocrine cell-type-specific TFs. The size of each bubble indicates the percentage of single cells with

detectable transcripts. The color indicates one gene’s average transcripts number in the cell population.

(G) Gene Set Enrichment Analysis (GSEA) of each set of non-endocrine cell-type-specific genes.

(H) Bar graph showing the top genes specifically expressed in quiescent versus activated PSCs.

(I) GSEA results of activated PSC-specific genes.
We observed two clusters of PSCs representing activated and

quiescent populations;�70% of PSCs are activated (Figure 1B).

Both populations contain cells from multiple donors (comparing

Figures 1B with S2A). It is known that under quiescent state, the

PSCs contain abundant lipid droplets in the cytoplasm, and

pancreatic injury or other pathogenic insults can activate

PSCs, leading to increased migration and proliferation, more

production of extracellular matrix (ECM) proteins, metalloprotei-

nase (MMPs), and tissue inhibitors of metalloproteinase (TIMPs)

(Omary et al., 2007). Indeed, we found that the activated PSCs

expressed more collagen, TIMPs, and stem cell or cancer signa-

ture genes but lost the expression of lipid-processing or adipo-

genesis genes such as FABP4 and ADIRF (Figures 2H and 2I).
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Gene Signatures of Endocrine Cell Types
We next defined hundreds of genes specifically expressed in

various endocrine cell types (Figure 3A; Data S2). As ex-

pected, b-cell-specific genes are associated with insulin

secretion and diabetes (Figure 3B). We identified a number

of endocrine-specific transcription factors with dramatic spec-

ificity between different endocrine cell types (Figure 3C). For

example, PAX6, NEUROD1, and INSM1 are expressed in all

four, and MAFB is expressed in three endocrine cell types.

Our top list includes many classically known cell identity mas-

ter transcription factors, such as PDX1, MAFA, and NKX6-1 in

b cells, ARX and IRX2 in a cells, and HHEX in d cells (Fig-

ure 3C). Consistent with a few other single-cell results (Baron
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Figure 3. Endocrine Cell-Type-Specific Genes
(A) Heatmaps demonstrating the endocrine cell marker genes. The column on the right shows the average expression of all non-endocrine cells.

(B) GSEA results of four major cell-type-specific genes. The ε cell was not included in the analysis due to its extreme scarcity.

(C–E) Bubble plots demonstrating examples of endocrine cell-type-specific TFs (C), endocrine cell-type-specific GWAS risk genes (D), and endocrine cell-type-

specific cell surface proteins (E).
et al., 2016; Lawlor et al., 2017; Segerstolpe et al., 2016), we

also observed dual specificity of PDX1 (b and d) and ARX

(a and PP). Some signaling-dependent TFs are also cell-

type-specific, such as ESR1 (b cell) and EGR2, EGR3, and

STAT4 (PP cell) (Figure 3C). These signal-dependent TFs

may have important physiological functions. For example,

studies in both human and mouse have shown that the activa-

tion of estrogen receptor a (ESR1) protects b cells from

apoptosis and preserves functional b cell mass in diabetes

(Tiano and Mauvais-Jarvis, 2012).

Diabetes and obesity are two complex multigene disorders

contributed by many tissues. We collected over 1,000 GWAS

risk genes (Data S3) and reasoned that knowing their expression

pattern in endocrine cells, especially b cells, would be helpful for

the understanding the disease etiology. We found 163 GWAS

risk genes specifically expressed in one or more endocrine cell

types (Figure 3D; Data S3) including some well-known b cell

genes RNF6, PDX1, SLC2A2, MEG3, and DLK1. Interestingly,

a number of risk genes are d-cell-specific, including HHEX,

LEPR, ERBB4, etc., suggesting a particularly important role

of d cells to diabetes or obesity (Figure 3D).
Last, we examined the endocrine-specific cell surface genes

due to their potential as cellular markers, or targets for pharma-

cological intervention (Figure 3E; Data S3). Interestingly, we

noticed that d cells specifically express several important

hormone receptor genes, including LEPR (receptor of leptin),

GHSR (receptor of Ghrelin), GHR (receptor of growth hormone),

ERBB4 (receptor of EGF), and two GABA receptors (GABRG2

and GABRA1) (Figure 3E). Receptor activity is actually one of

the top functional categories for the d-cell-specific genes (Fig-

ure 3B). These results suggested a key regulatory role of d cells

by integrating multiple cell signaling (Segerstolpe et al., 2016).

Identifying a or b Cell Subpopulations
Previous studies, including several recent single-cell RNA-seq

analyses, have investigated b cell heterogeneity but reached

discrepant conclusions regarding the existence of b cell subpop-

ulations, partly due to the low cell numbers analyzed (Gutierrez

et al., 2017). We posited that Drop-Seq would be more sensitive

in resolving distinct cell populations with greatly improved

throughput. In this study, we pooled a or b cells from all donors

and used principle component analysis (PCA) to identify cell
Cell Reports 26, 3132–3144, March 12, 2019 3135



subpopulations as outliers (Figures S2B and S2C) then projected

the cells onto t-SNE plots to confirm their presence in multiple

donors (Figures S2D and S2E). Marker genes for these subpop-

ulations are listed in Data S2.

The most obvious a cell subpopulation consists of a small

number of proliferating a cell expressing TOPA1, CENPF, and

AURKB (Figures 2F and S2B). Importantly, proliferating a cell is

a reproducible population that can be found from multiple do-

nors including H1, H3, H4, H5, H6, and T2D3 (Figure S2E, cells

in dark green). Notably, the proliferating a cells were also re-

ported in another recent single-cell study but with low sensitivity

due to limited cell throughput (Segerstolpe et al., 2016). Our

study has therefore confirmed the existence of this rare a cell

population, which may also play an important role in b cell

replenishment (Thorel et al., 2010).

The biggest subpopulations are a-HS and b-HS cells express-

ing the same set of heat shock genes including DNAJA1,

DNAJB1, HSPAs, and HSPBs, etc. (Figures 1E, 2F, 2G, and

S2B–S2E). However, both a-HS and b-HS cells are mainly found

in donor H3 and T2D3 (Figure S2E). Many types of stresses can

activate heat shock genes (HSPs). Reduced expression of HSPs

is associated with diabetes, and upregulation of HSPs may pro-

vide a cytoprotective effect to b cells (Hooper andHooper, 2009).

Interestingly, a recent single-cell study also observed a correla-

tion between stress gene expression and aging (Enge et al.,

2017). Last, we also identified two other minor cell clusters

(a-KCNQ1OT1 and b-KCNQ1OT1), both of which were exclusive

to donor H5 (Figure S2). More donors are necessary to eval-

uate the physiological relevance of these individual-specific

subpopulations.

Importantly, we did not find any of these subpopulations

correlate with the BMI or T2D status of the donors, leading to

a conclusion that disease-associated effect on a or b cells

does not create distinctive cell subpopulations. Therefore, we

excluded the minor cell populations in the following disease as-

sociation analysis and focused on the continuous changes of a

or b transcriptome associated with disease status.

Obesity and T2D Cause Different Single-Cell
Transcriptome Heterogeneity
We next investigated the molecular differences between cells

from healthy, obese, and T2D donors. A few recent single-cell

studies have explored this question (Lawlor et al., 2017; Seger-

stolpe et al., 2016; Xin et al., 2016). These studies used conven-

tional statistical models comparing cells from normal and pa-

tients and looked for differentially expressed genes correlated

with disease states. However, these models do not account for

cellular heterogeneity and treat all cells from the same donor

equally, which may result in low sensitivity for the following rea-

sons: (1) disease-causing cells can be too rare to be detected

when a majority of cells are normal (Figure 4A); and (2) the differ-

ence between normal and patient cells can be small andmasked

by large individual variance. In both scenarios, many human

samples become necessary to increase the statistical power.

Here, we propose a strategy to improve the sensitivity to iden-

tify disease signature genes by dissecting disease-associated

single-cell heterogeneity. Our strategy is based on a funda-

mentally different concept assuming the presence of disease
3136 Cell Reports 26, 3132–3144, March 12, 2019
relevant cellular heterogeneity from the same donor. Specifically,

obesity or T2D may cause different transcriptome heterogeneity

at single-cell level. Theoretically, by ranking and directly

comparing cells at normal, transitional, and disease states, it is

possible to improve the sensitivity even if very few donors are

available (Figure 4A). Figure 4B shows scatterplots of all the

b cells in the space of top three principle components (PCs).

Remarkably, although cells from different donors do not segre-

gate in the PCA plots, there is a clear continuous shift correlated

with BMI or T2D status. Importantly, the two disease conditions

show different trajectories, indicating different effects on the

transcriptome.

RePACT: A Sensitive Approach to Identify Disease-
Relevant Gene Signatures from Single-Cell Data
We therefore developed RePACT (regressing principle compo-

nents for the assembly of continuous trajectory), to identify

genes associated with disease relevant cellular heterogeneity.

In this algorithm, we first performed PCA to reduce the dimen-

sion of transcriptome data. Next, we used regression analysis

to draw two optimal trajectory lines reflecting the obesity- or

T2D-relevant variation. Figure 4B is an example when we only

used the top three PCs to plot the trajectory lines. In this study,

we actually used top 10 PCs as predictors (STAR Methods).

The numeric projection of each cell on the obesity or T2D trajec-

tory (BMI index and T2D index) served as a measurement of the

degree to which the cell has transformed during disease devel-

opment. We then binned the cells into a number of pseudo-

states according to the index values (Figure 4C). By comparing

cells from different pseudo-states, RePACT greatly improved

the statistical power to identify gene signatures for obesity or

T2D status in a or b cell (Figures 4D and S3A–S3C; STAR

Methods). To evaluate the robustness of RePACT method, we

called top 200 T2D signature genes in a or b cells using data

from all three T2D donors and then compared them to the results

when only two T2D donors were included (dropout analyses). We

found that 91%–95% of the T2D signature genes can be recov-

ered from at least two of the three dropout analyses (Figures

S3D–S3E), proving that the signature genes identified from

RePACT were highly reproducible.

RePACT Identifies Common and Specific b Cell Gene
Signatures Associated with Obesity and T2D
We identified 1,368 T2D trajectory genes and 1,188 obesity tra-

jectory genes in b cells (Figure 4D; Data S4). It is known that

obesity increases diabetes risk, and as expected, the two signa-

tures shared many common genes (Figure 4E). For example,

GAPDH, IAPP, SPP1, and CPE are downregulated in both

obesity and T2D trajectories (Figure 4D).GAPDH is a key enzyme

for glycolysis and glucosemetabolism. IAPP,SPP1, andCPE are

all well-known diabetes or obesity risk genes. Particularly, IAPP

forms islet amyloid, which is linked to cellular toxicity in T2D

(Clark and Nilsson, 2004); SPP1 mediates the obesity-induced

macrophage infiltration into adipose tissue and insulin resistance

(Nomiyama et al., 2007); andCPE is important for proinsulin pro-

cessing and its mutation leads to obesity and hyperproinsuline-

mia inmouse (Naggert et al., 1995). With the single-cell trajectory

data, we also determined the transcription dynamics of 149
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Figure 4. A Sensitive RePACT Algorithm to Identify T2D or Obesity Signature Genes in b Cells

(A) Schematic demonstrating how RePACT may improve the sensitivity identifying disease relevant genes with small sample size.

(B) All b cells are plotted in the 3D space of the top 3 principle components. Left: cells are colored based on the BMI of donor. Right: cells were colored based on

whether the donor was a T2D patient.

(C) Left: comparison of the BMI index values of cells from each donor; the color of the violin plots represents the actual BMI of each donor. Right: comparison of

the T2D index distribution of each donor. The color of the plots represents the T2D status of the donors. Vertical dash lines demonstrate how cells are binned into

pseudostates.

(D) Heatmaps demonstrating the top obesity trajectory genes (left) and T2D trajectory genes (right). Each row in the heatmaps represent the transcriptional

changes from low-index pseudostates to high-index pseudostates.

(E) Venn diagram showing the overlap between obesity and T2D signature genes identified from RePACT analyses.

(F) Function categories enriched among genes with agreeing or opposite tends.
GWAS risk genes (Figure S4A), which may help the dissection of

etiology of obesity or T2D.

Most interestingly, we found many genes specific to one tra-

jectory but not the other, including genes with opposite trends

in the two trajectories (Figure 4E). The best example is probably

the insulin gene (INS) itself, which is upregulated in obesity

(consistent with the hyperinsulinemia in obesity) but downregu-

lated in T2D (consistent with the b cell dysfunction in T2D) (Mar-

chetti et al., 2008; Templeman et al., 2017). On the contrary, two

ferritin genes (FTL and FTH1) are downregulated in obesity but

upregulated in T2D (Figure 4D). Ferritin is the major intracellular

iron storage protein. Clinical results have shown that low-serum

iron concentration is associated with obesity (Lecube et al.,

2006; Nead et al., 2004), while iron overload is a risk factor for

T2D (Simcox and McClain, 2013).

Another interesting observation is that although only 15

obesity-upregulated genes are downregulated in T2D (including

INS), many more (99) obesity-downregulated genes shift their

trends in to upregulation in T2D (Figure 4E). We therefore per-

formed a gene set enrichment analysis (GSEA) on genes with

common or opposite trends in obesity or T2D (Figure 4F). For

example, consistent with the connection to hypoxia in both
T2D and BMI (Ye, 2009), we found upregulation of hypoxia,

glycolysis, and HIF1A target genes, but downregulation of aer-

obic respiration pathways in both trajectories (Figure 4F). Sur-

prisingly, the proteasome genes or pathway are elevated in

T2D but downregulated in obesity trajectory (Figure 4F). Poly-

morphisms at proteasome genes have been associated to

obesity (Kupca et al., 2013), and proteasome activity is weak-

ened in obese liver that can induce endoplasmic reticulum

(ER) stress and insulin resistance (Otoda et al., 2013). However,

a recent study showed that in b cells, the inhibition of protea-

some activity improves insulin production (Weisberg et al.,

2016). Our results therefore suggest an important mechanism

that is differentially presented in obesity and T2D governing

b cell function.

A Genome-Wide Gene Deletion Analysis to Identify
Insulin Regulators
The primary functions of b cell are to produce, store, and secrete

insulin. Although we have identified a number of signature genes

in b cells with Drop-Seq, the remaining question is whether these

genes affect b cell functions. To address this problem, we

decided to perform an unbiased genome-wide CRISPR screen
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Figure 5. Genome-wide CRISPR Screen of Insulin Regulators

(A) Schematic of genome-wide CRISPR screening in the MIN6 cells.

(B) Distribution of intracellular insulin intensity before and after GeCKO viral library infection.

(C) Scatterplot showing the enrichment of sgRNAs in two replicated CRISPR screens. Top hits are highlighted in orange.

(D) Validation of top insulin regulators with individual cloned sgRNAs. Grey lines, cells with control sgRNAs; blue, sgRNAs of negative regulators; red, sgRNAs of

positive regulators.
to identify insulin regulators. We choose to use the MIN6 insuli-

noma cell because it is one of the most robust b cell lines for

the study of glucose sensing and insulin secretion (Skelin et al.,

2010). Although MIN6 is a mouse cell line, and the functions of

screen hits eventually need to be test in native human islets,

we reasoned that most of the mouse insulin-regulatory genes

should have conserved functions with their human orthologs.

Therefore, the genome-wide mouse CRISPR data should still

serve the purpose of providing an additional layer of information

about gene functions.

Briefly, we packaged a lentiviral library using the mouse

GeCKOv2 single guide RNA (sgRNA) library that contains

�130 K sgRNAs (6 sgRNAs per protein-coding gene in the

mouse genome), and transduced >100 million MIN6 cells at

low MOI so that most cells were infected with only one virus. Af-

ter 7 days of puromycin selection expansion of transduced cells,

we fixed and permeabilized the cells and sorted �200 million

cells based on the intracellular insulin protein level (Figure 5A;

STAR Methods). Flow cytometry analysis demonstrated an

increased variation of the insulin signal among the infected cells,

suggesting that the screen has successfully targeted both posi-

tive and negative insulin regulators (Figure 5B). We collected

top (InsHi) and bottom (InsLo) 10% cells and amplified the sgRNA

sequences from integrated viral DNA for next generation

sequencing. By comparing the abundance of each sgRNA in
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the two cell populations, we can determine the effect of target

genes on insulin level in the cells.

We performed two independent screens and called hit sgRNAs

only if they are reproducible between two replicates. Based on

their significance and reproducibility, (Figure 5C; STARMethods),

we classified hit sgRNAs into five tiers (tier one sgRNAs have p <

0.001 in both replicates, false discover rate [FDR] = 0.1) andcalled

373 hit genes with at least one tier-one sgRNA. The design of

sgRNA redundancy (6 sgRNAs per gene) also allowed us to eval-

uate the off-target risk for all hit genes from the screen. We found

that most tier-one hit genes (223 of 373, or 59.8%) are supported

by two or more sgRNAs (Data S5). However, the more likely

reason for a sgRNA to fail the significance test is its under-repre-

sentation in the GeCKO sgRNA library: the concentration of most

abundant sgRNAscanbeover 100-fold higher than the low-abun-

dance ones (Figure S5E). Therefore, in this study, we choose to

report all tier 1 genes, but also divide tier 1 hit genes into sub tiers

to indicate if they are supported by multiple sgRNAs: 1A (119

genes, R3 supporting sgRNAs, FDR = 0.001), 1B (104 genes,

2 supporting sgRNAs, FDR = 0.038), and 1C (150 genes, 1 sup-

porting sgRNA, FDR = 0.28). Note that there is a significant off-

target risk for Tier 1C genes because they only have one support-

ing sgRNA (STAR Methods). Proteins from the same complexes,

such as Nelfa-Nelfb-Nelfe and Mau2-Nipbl, were often identified

together, suggesting that our CRISPR screen is sensitive and



Figure 6. The Network of Insulin Regulators

Top insulin regulator genes from CRISPR screen were analyzed by search tool for the retrieval of interacting genes or proteins (STRING). Oval shape, negative

insulin regulators; rectangle, positive regulators. The b cell signature genes identified from Drop-Seq data are highlighted in color: purple, diabetes or obesity

trajectory genes; red, b-cell-specific genes. Enlarged are the nine subnetworks with signature genes.
robust (Figure 5C). We called a gene ‘‘positive regulator’’ if its’

sgRNA was enriched in InsLo population, meaning that the gene

increased the intracellular insulin amount. As expected, the stron-

gest positive insulin regulator was Ins2, themouse ortholog of hu-

man insulin gene INS. Conversely, we also called ‘‘negative regu-

lators’’ from sgRNAs enriched in the InsHi population (Figure 5C).

Multiple mechanisms may regulate the intracellular insulin

levels. Among the top hits (Figure 5C), we found transcriptional

regulators (such as Glis3 and Nelfs), translational regulators

(such as Eef2), and post-translational regulators (such as

unfolded protein response regulator gene Xbp1) (Lee et al.,

2011). Importantly, our screen also identified regulators of insulin

secretion, especially genes involved in glucose induced insulin

secretion (GSIS). For example, Glp1r (Trujillo and Nuffer, 2014),

a knownGSIS regulator, was identified as one of the top negative

regulators (Figure 5C). Notably, although 74 of 373 insulin regu-

lators are also ‘‘fitness genes’’ (leading to slow growth upon

deletion) (Hart et al., 2015), the distribution of fitness genes

among positive (17 of 117, 15%) or negative insulin regulators

(57 of 256, 22%) is not biased (p = 0.094, Fisher’s exact test) sug-

gesting that slow-growing cells do not cause a bias in our screen.

To validate the hits from the screen, we also infected MIN6

cells with individually cloned sgRNAs and used flow cytometry
to measure the intracellular insulin levels (STAR Methods). We

verified 13 out of 20 (65%) positive regulators and 30 out of 33

(91%) negative regulators (Figure 5D). We further test 20 of the

verified genes with newly designed sgRNAs and re-validated

19 of them, indicating a low off-target rate (Figure S5F). It is worth

noting that our genome-wide CRISPR analysis tends to report

higher fold changes than individual experiments. This is mostly

likely because in the individual experiments, a significant fraction

of cells did not obtain loss-of-function mutations, whereas the

selection of InsHi and InsLo populations in the screen enriches

the cells with successful gene knockout events. As a result, the

pooled screen had a higher sensitivity, which may also explain

why some CRISPR hits were not validated in the individual

experiments.

Integrative Analysis of Single-Cell and CRISPR Data
Revealed Disease-Relevant Insulin-Regulating Modules
We performed STRING analysis (Szklarczyk et al., 2015) on the

373 tier-one insulin regulators and drew all the functional or

physical associations between these genes (Figure 6; STAR

Methods). Compared to Drop-Seq data, we identified 100 insulin

regulators up- or downregulated in the diabetes or obesity tra-

jectory, including Cdkn2a, Cox7c, Glis3, and Xbp1 (Figure 6
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and S4B). Therefore, these transcriptional changes may play a

causal role in the disease development. We also identified 40 in-

sulin regulators specifically expressed in b cell including Glp1r.

These genes may have important selective functions in b cells

(Figure 6; Data S5). Seventeen b-cell-specific insulin regulators

also change their expression in diabetes or obesity trajectories

(Atp6v1h, Bcat2, Cct8, Cdkn2a, Cops6, Dhps, Eif3e, Gnas,

Ins2, Lmo2, Mrpl22, Nelfcd, Rph3al, Rtcb, Srp9, Taf7, and

Xbp1) (Figure 6).

The network analysis also expanded the repertoire of disease

relevant insulin regulators. Our analysis highlighted nine notable

modules of insulin regulators; each module contains at least one

diabetes or obesity signature genes in b cell, and all of them

represent multi-protein complexes with cooperative functions

(Figure 6). The identification of a whole protein complex from

the CRISPR screen is strong evidence that the complex is key

for b cell function. Alteration of signature genes in these com-

plexes may influence their normal functions and contribute to

the disease development. For example, the largest module is

the protein translation and processing network. Most of the

genes in this module are positive insulin regulators, presumably

because they positively regulate insulin protein production and

maturation. Negative regulators in this module, such as PP2A

protein phosphatase members Ppp2r1a and Ppp2ca, may func-

tion as inhibitors of protein translation or processing.

Six protein modules appear to regulate insulin release (Fig-

ure 6): (1) GPCR signaling complex (GPCR signal such as

Glp1r amplifies insulin secretion); (2) mitochondria ATP produc-

tion module (important for ATP production, therefore ATP-

dependent insulin release); (3) synaptic vesicle exocytosis mod-

ule (insulin release); (4) COP9 signalosome (protein ubiquitination

and ubiquitin-dependent endocytosis); (5) LAMTOR Ragulator

complex (late endosome or lysosome scaffold proteins); and

(6) chaperonins (promoting insulin secretion by assisting protein

folding). Interestingly, nearly all genes in these modules are

negative insulin regulators, i.e., once these genes are deleted, in-

sulin accumulates in the cells due to the impaired secretion. The

only positive regulator in these modules is Sytl4, a known inhib-

itor of exocytosis. Consistently, another exocytosis inhibitor

Stxbp5 is also a positive insulin regulator (Figure 6). It is inter-

esting that the endocytic modules are also negative insulin reg-

ulators, because this suggests that insulin granules require not

only the exocytosis process for secretion, but also the endocy-

tosis process to ensure vesicle recycle or membrane recapture

(MacDonald and Rorsman, 2007). Misregulation of either of

these two trafficking pathways will lead to the failure of sustain-

able insulin release.

Our CRISPR screen also identified two previously unrecog-

nized insulin regulators modules: the cohesin function module

and the NuA4/Tip60 histone acetyltransferase (HAT) complex

module (Figure 6). The b cell functions of these two complexes

are unknown, so we performed additional analyses to gain

further insights into the underlying mechanisms (Figure 7).

Mau2-NipblCohesin Loading Complex Regulates Insulin
Gene Transcription
Cohesin is a multifunction protein complex. During S phase and

M phase, cohesin tethers two sister chromatids together and is
3140 Cell Reports 26, 3132–3144, March 12, 2019
essential for proper chromosome segregation in mitosis (Peters

et al., 2008). In the G1 phase, cohesin is important for long-range

chromosome interactions at promoters, enhancers, and CCCTC

binding factor (CTCF)-occupied insulator elements. Our CRISPR

screen identified two cohesin proteins, Smc3 and Pds5b, as

negative regulators, but intriguingly, cohesin loading factors

Mau2 andNipblwere identified as positive insulin regulators (Fig-

ure 6). In the mammalian genome, Nipbl mainly binds to pro-

moters and enhancers, while the strongest peaks of cohesin

are at intergenic CTCF sites (Busslinger et al., 2017; Kagey

et al., 2010; Zuin et al., 2014). Therefore, the cohesin loading

complex may play a direct role regulating gene transcription in-

dependent of the CTCF-bound cohesin or mitotic cohesin

(Zuin et al., 2014). Consistent with these findings, we found

thatMau2 and Nipbl bind to Ins2 promoter, and the transcription

level of Ins2, rather than Ins1, was lower upon Mau2 or Nipbl

deletion (Figures 7A and 7B). Our single-cell data demonstrated

that in human islets,MAU2 is expressed at higher levels in b cells

than in other cell types (Figure 7C). Interestingly, from the 171

human pancreas samples collected by the Genotype-Tissue

Expression (GTEx) project (GTEx Consortium, 2015), we found

a significant positive correlation between the transcription of

MAU2 and INS gene (Figure 7D). Taken together, our results sug-

gested a b-cell-specific function of cohesin loading factors in

regulating insulin gene transcription. These results may also

shed light on the mechanism of Cornelia de Lange syndrome

(CdLS), which has been linked to protein mutations in NIPBL

and cohesin complex (Liu and Baynam, 2010; Liu et al., 2009).

NuA4/Tip60 HAT Complex Regulates Insulin Secretion
We were interested in the b cell function of NuA4/Tip60 HAT

complex module because Kat5 and Dmap1 were the strongest

hits from our CRISPR screen (Figure 5C), suggesting a direct in-

sulin regulatory function. The best-characterized function of the

NuA4/Tip60 complex is transcriptional activation by acetylation

of histones H4 and H2A. However, this trans-activity cannot

explain the increase of intracellular insulin level upon deletion

of NuA4/Tip60 complex members Kat5, Dmap1, and Brd8 (Fig-

ures 5D and 7F). We therefore tested the possibility that the

NuA4/Tip60 complex may control insulin secretion. First, we

observed compromised GSIS when treating either MIN6 cells

or primary human islets with NU9056, a KAT5-specific acetyl-

transferase inhibitor (Coffey et al., 2012). Acetate can enhance

GSIS, presumably by increasing the cellular level of acetyl-

CoA, the substrate of all acetyl-transferases including KAT5 (Fig-

ure 7E) (Shimazu et al., 2010). Furthermore, deletion of NuA4/

Tip60 complex proteins (Kat5, Dmap1, and Brd8) as well as

known insulin secretion regulators (Glp1r, Gnas, and Stxbp1)

all led to accumulation of intracellular insulin, lower baseline in-

sulin secretion, and GSIS defect (Figures 7F–7H). As a control,

deletion of positive regulator Mau2 and Nipbl did not affect

glucose responses. Interestingly, the baseline insulin secretion

from Mau2 and Nipbl knockout cells increased (Figure 7G); the

reason remains elusive because knocking out these two proteins

may cause widespread effects on gene transcription, genome

architecture, and cell cycle. Taken together, these data strongly

suggest that the acetyltransferase activity of NuA4/Tip60 com-

plex is key for insulin secretion from b cell. It will be interesting
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Figure 7. Mau2-Nipbl and NuA4/Tip60

Complex Are Insulin Regulators

(A) Fold change of Ins1 and Ins2 genes in mouse

MIN6 cells after CRISPR deletion of Mau2 and

Nipbl. Expression levels are normalized to control

sgRNA. **p < 0.01; *p < 0.05, t test.

(B) MIN6 cells chromatin immunoprecipitation

sequencing (ChIP-seq) data with H3K4me3,

H3K27ac, Mau2, and Nipbl at Ins1 and Ins2 loci.

(C) Drop-Seq demonstrates b-cell-specific

expression of the MAU2 gene.

(D) Correlation between human MAU2 and INS

gene in the GTEx cohort of 171 human pancreas

tissue.

(E) GSIS is measured by the fold change of

extracellular insulin levels between low glucose

and high glucose challenge: human islet (1.6 mM/

16.6 mM); MIN6 (1.25 mM/25 mM). The cells were

pretreated with DMSO, 5 nM NU9056, or 1 mM

acetate for 24 h as indicated.

(F) ELISA quantification of intracellular insulin

levels in CRISPR knockout MIN6 cells. Gray,

control sgRNAs; orange, positive regulators; blue,

negative regulators.

(G) Insulin secretion from MIN6 knockout cells are

measured as fraction of total intracellular insulin

levels.

(H) GSIS are computed as secreted insulin levels

between low and high glucose conditions

(2.5 mM/25 mM). All error bars in this figure are SD

from triplicated assays.
to elucidate the downstream targets of NuA4/Tip60 complex

responsible for insulin release.

DISCUSSION

Higher Throughput Single-Cell Analysis
We have performed an in-depth analysis of 39,905 single islet

cell transcriptome from nine human donors. To our knowledge,

this is the largest single-cell transcriptome dataset in primary hu-

man islets. The data of identified cell types and their signature

genes will serve as a valuable resource to understand islet

cell differentiation and disease development. Due to improved

throughput, we achieved high sensitivity and robustness to

detect rare cell subpopulations, such as the proliferating a cells.
Cell Rep
We also observed a few rare cell subpop-

ulations that are relatively individual-spe-

cific; more donors are necessary to

obtain a comprehensive picture of endo-

crine cell heterogeneity.

Highly Sensitive RePACT Algorithm
Identifies Disease-Specific Cellular
Changes
Obesity and T2D are two highly related

diseases that share many common char-

acteristics. Understanding the common-

ality and differences between the two dis-

eases can be challenging because many
patients have both diseases. To address this challenge, we

developed RePACT, a general single-cell analysis algorithm to

identify disease relevant genes with high sensitivity. Similar to

several published single-cell analysis methods in differentiation

systems (Trapnell et al., 2014), the key step of RePACT is to

determine a series of pseudo states best reflecting disease-rele-

vant variance. By doing this, RePACT can discern a continuous

disease trajectory that is too subtle to be detected from bulk

analysis (Figure 4A). In this study, with merely nine donors,

RePACT defined different trajectories for obesity and T2D and

further identified numerous common and specific signature

genes in b cells. We believe that the use of RePACT in future sin-

gle-cell studies with more donors will significantly improve the

sensitivity and robustness. The RePACT strategy is applicable
orts 26, 3132–3144, March 12, 2019 3141



to the studies of many other human diseases, especially when

the sample availability is an issue.

Integration of Genome-wide CRISPR Analyses to Reveal
Disease-Contributing Genes and Pathways
Recent development of CRISPR-based genome editing has

enabled pooled genome-wide screens in mammalian cells

(Gilbert et al., 2014; Konermann et al., 2015; Parnas et al.,

2015; Shalem et al., 2014; Wang et al., 2014). In this study, in or-

der to reveal the functions of b cell signature genes from Drop-

Seq data, we also performed an unbiased CRISPR screen for in-

sulin regulators. Simply using resting-state intracellular insulin

level as a readout, our screen identified not only transcriptional

and translational regulators, but also numerous genes that con-

trol energy production, protein folding, vesicle trafficking, etc.,

suggesting that insulin production and release is controlled by

a highly complex network. Importantly, the integrative analysis

of single-cell transcriptome and CRISPR screen data highlighted

potential causal genes in diabetes or obesity disease develop-

ment, among which we have identified the Mau2-Nipbl cohesin

loading complex and the NuA4/Tip60 HAT complex as two pre-

viously unrecognized insulin regulating protein modules. We

further revealed that the Mau2-Nipbl complex regulates insulin

gene transcription, and a surprising role of the NuA4/Tip60

HAT complex in regulating insulin protein release. Our study pro-

vides a general strategy for systematically characterizing dia-

betes genes in pancreatic islets, as well as disease genes in

other complex tissues.
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Segerstolpe, Å., Palasantza, A., Eliasson, P., Andersson, E.M., Andréasson,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat monoclonal Insulin (Clone 182410) R&D Systems Cat# MAB1417; RRID:AB_2126533

Anti-Scc4 antibody [EPR14390] (Mau2) 100ul Abcam Cat# ab183033; RRID:AB_2783830

Rabbit anti-NIPBL Antibody Bethyl Cat# A301-778A; RRID:AB_1211233

Bacterial and Virus Strains

NEB 10-beta electro-competent cells NEB C3020K

Biological Samples

Human islets PRODO Laboratories N/A

Chemicals, Peptides, and Recombinant Proteins

NU 9056 TOCRIS 4903

Critical Commercial Assays

Human Insulin ELISA Mercodia 10-1113-01

Mouse Insulin ELISA Mercodia 10-1247-01

Deposited Data

GSE101207 GEO GEO: GSE101207

Experimental Models: Cell Lines

293T cells ATCC CRL-3216

MIN6 cells ATCC CRL-11506

Oligonucleotides

sgRNA oligos (See Table S3) IDT N/A

PCR primers (See Table S4) IDT N/A

Recombinant DNA

Plasmid: LentiCRISPR v2 Addgene #52961

Plasmid: GeCKO Library Addgene #1000000052

Plasmid: pCMV-VSVG Addgene #8454

Plasmid: pCMV-dR8.91 Gift from Bing Ren’s Lab N/A

Software and Algorithms

MAGeCK R package Li et al., 2014 https://sourceforge.net/p/mageck/wiki/Home/

Cluego, Cytoscape package Bindea et al., 2009 http://www.ici.upmc.fr/cluego/

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

FASTX-Toolkit Hannon Lab http://hannonlab.cshl.edu/fastx_toolkit/index.html

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

SEURAT Butler et al., 2018 https://satijalab.org/seurat/

scran Lun et al., 2016 http://bioconductor.org/packages/release/

bioc/html/scran.html

STRING Szklarczyk et al., 2015 https://string-db.org

RePACT This study https://github.com/chenweng1991/RePACT
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yan Li

(yxl1379@case.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human islets and cell lines
Human Islets were purchased fromProdo Laboratories, Inc. and cultured in PIMmediumwith Human ABSerum (Prodo Laboratories)

in 6-well plates with ultralow attachment surface (Corning). MIN6 cells (female) were cultured in high glucose DMEM containing

GlutaMax (Invitrogen), 1 mM Sodium pyruvate (Invitrogen), and 50 mM b-mercaptoethanol. 293T cells (female) were cultured in

high glucose DMEM (Invitrogen) with 10% Fetal Bovine Serum (VWR Scientific). All cells were cultured at 37�C in Forma Steri-Cycle

i160 CO2 Incubator (ThermoFisher) with 5% CO2.

METHOD DETAILS

Transformation and amplification of GeCKO library
Mouse GeCKOv2 CRISPR sgRNA libraries A and B were purchased from Addgene (Addgene #1000000052). 10ng libraries were

used to transform NEB 10-beta electro-competent cells in 0.1cm electroporation cuvettes (Bio-rad) with MicroPulser (Bio-rad) at

5 kV for 2ms. Transformation efficiencies were determined by series dilution of the cells and plating the cells on LB agar plates. Trans-

formed cells with high efficiencies (> 108 cfu/10ng plasmids) are seeded into 500mL LB medium and cultured overnight. Plasmids

were prepared from the cells using Maxi preparation kits (QIAGEN).

Cloning individual sgRNAs
LentiCRISPR v2 plasmid was purchased from Addgene (Addgene #52961). 500ng LentiCRISPR v2 plasmid is linearized with BsmBI

(NEB) at 55�C for 4 hours and purified with 1% agarose gel. The sgRNA sequences are listed in Table S3. For one sgRNA, we

designed two oligos complementary to each other in the following format: 50-CACCGXXXXXXXXXXXXXXXXXXXX-30 and 50-AAAC
YYYYYYYYYYYYYYYYYYYYC-30 (X 20-mers and Y 20-mers are complementary target sequences). To anneal the complimentary

oligos, 1uL from each of the two oligos (100 uM), 1uL 10x T4 ligation buffer (NEB), 6.5uL H2O and 0.5uL T4 PNK (NEB) were mixed

together and incubated at 37�C for 30 minutes followed by incubation in 95�C for 5 minutes. After 95�C incubation, shut off the block

heater and let the reaction cooled down naturally to room temperature. Annealed oligos were then diluted at 1:200 dilution for use. To

clone the individual sgRNAs, 50ng linearized vector, 1uL diluted oligo complex, 5uL 2X quick ligase buffer (NEB) are mixed and add

water to 9uL. 1uL quick ligase (NEB) were next added into the mixture and the reaction is performed at 25�C for 10 minutes. 5uL

ligation products were transformed immediately into Stbl3 bacteria following standard transformation protocol.

Virus packaging
24 hours before transfection, 500 million 293T cells were split into 50 10cm plates so that cells reach 60% confluence the next day.

Each plate was co-transfected with 4mg GeCKOv2 library (or LentiCRISPR v2 plasmid expressing single sgRNAs), 2mg delta V8.91,

and 2mg pCMV-VSVG. For each plate, plasmids and 21mg polyethylenimine (PEI) were pre-mixed in 500uL Optium-MEM (Invitrogen)

and incubated at room temperature for 10 minutes. Meanwhile, 293T cells are switched into 6mL fresh Optium-MEM. Plasmids

mixture were added to the cells after incubation for transfection. 6 hours after transfection, each plate of 293T cells were switched

to 10 mL fresh complete medium. 3 days after transfection, cell medium containing viral particles was harvested, filtered through

0.45mM Millipore filters. For individual CRISPR experiments, the crude viral supernatant were applied directly to infect cells. For

large-scale viral infection, the viral supernatant was concentrated by centrifuging for 90 minutes at 25,000 rpm in 4�C. Virus pellets

were washed once with ice-cold PBS before re-suspended in PBS with 1mM EDTA.

Measuring virus titers
Virus titers were determined by adding 1uL of a series of diluted virus to 1 million MIN6 cells in 12-well plates, with two wells for each

viral dilution. To minimize proliferation, MIN6 cells were cultured in the medium with 1% FBS. 4 days after infection, for each viral

concentration, one well of cells were selected with 4 mg/ml puromycin (Sigma-Aldrich) for two days. Living cells and dead cells

were collected and count the viability of the cells. Total cell numbers for each dilution were also compared with the infected MIN6

cells without puromycin.

Lentiviral infection
For individual knockout, cells were seeded into 12 well plates (0.1 million per well) together with 300 mL crude viral supernatant. For

large-scale viral infection, 120 million cells were seeded into three multilayer plates (Nest, #731002, 870 cm2) together with concen-

trated GeCKO library virus; the ratio between cells and virus were calculated so that 60%of cells can be infected (MOI 0.92). 24 hours

after transduction, cells were washed once with PBS and then cultured in fresh medium. 4 days after transduction, cells were

selected with 4 mg/ml puromycin for two days. After selection, a portion of cells were fixed as input control and the rest cells were

expanded. For large scale screening, �200 million cells were fixed in permeabilization/fixation buffer (BD Biosciences) after

expansion.
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Flow cytometry and cell sorting
For flow cytometry, cells were seeded into 24 well plates at a density of 0.5 million/cm2. On the second day, for each well, cells were

trypsinated and washed once with PBS. Cells were fixed in 1% formaldehyde (Sigma) for 20 minutes and permeabilized in Perm/

Wash buffer (BD Biosciences) for 40 minutes at room temperature. Cells were then stained with Insulin antibodies, rat IgG (R&D Sys-

tems) at 1:100 dilution in 50 ul Perm/Wash buffer in 4�C overnight. On the second day, cells were washed once with Perm/Wash

buffer and stained with PE-conjugated anti-rat IgG secondary antibodies at 1:200 dilution in 50 ul Perm/Wash buffer at room tem-

perature for 30 minutes in the dark. Cells were then washed once with PBS and analyzed in BD LSR II Flow Cytometer (BD

Biosciences).

Library preparation
Genomic DNA was extracted from cells using Dneasy Blood & Tissloue Kit (QIAGEN). All sgRNA expressing cassettes within the

genomic DNA are amplified from genomic DNA using mutual GeCKO primers (See Table S3). For each PCR amplification reaction,

no more than 3 mg genomic DNA were amplified with Herculase II (Agilent) polymerase for 15 cycles. For each sample, all the PCR

products were pooled together and purified with Aline PCR Clean DX magnetic beads. Purified PCR products were then ligated to

illumine TruSeq adapters. Ligation products were purified before second-round PCR amplification using TruSeq D&E primers (Illu-

mina) for 10 cycles. The resulting DNA libraries were then sequenced with standard TruSeq sequencing primers.

Glucose-stimulated insulin secretion
For MIN6 cells, 0.5 million cells per well were seeded into 12-well plates. For fresh islet samples, approximately 200 islets were

seeded into 24-well plate with ultralow attachment surface. We changed fresh medium 24 hours before glucose challenge. Four

hours before glucose challenge, cells were starved in low glucose Krebs’ buffer (NaCl 12.8 mM, KCl 0.48 mM, KH2PO4 0.12 mM,

MgSO4 1.2 mM, CaCl2 0.25 mM, NaHCO3 5mM, HEPES 10 uM, 0.5% BSA, 1.6 mM glucose) for 4 hours before challenged with

high/low (16.6 mM/1.6 mM) glucose in fresh Krebs’ buffer for up to 6 rounds alternatively. In each round, the supernatant was har-

vested for insulin ELISA analysis. Cells were washed once with PBS before next round stimulation. After GSIS, cells were lysed in

RIPA buffer (Thermal Fisher) to measure intracellular insulin level if necessary.

RNA extraction and real-time PCR
We used TRIzol (Invitrogen) for RNA preparation. RNA was pretreated with DNase I before reverse transcription with M-MLV reverse

transcriptase (Invitrogen) following standard protocol. For quantitative PCR, 1 ul cDNA, 10 ul 2X PerfeCTa SYBR Green SuperMix

(Quanta Biosciences), 8 ul H2O, and 1 ul premixed real-time PCR primers were mixed, and PCR reactions were performed in

PTC-200 Thermal Cycler with Chromo4 Fluorescence detector (MJ Research). Relative gene expression were determined with

ddCt methods.

Preparation of human pancreatic islet single cell
To dissociate islets into single cells, cells were washed once in HBSS (Sigma-aldrich, #6648) and incubated in Accutase (Innovative

Cell Technologies, #AT104) at 37�C for 20-25 min. The islets were broken up gently with a 5 mL pipette every 5 min. When > 95% of

the islets were digested into single cells, PIM(S) medium were added to neutralize the Accutase. Single cells were washed again with

HBSS and resuspended in HBSS at the concentration of 2 3 105/mL for Drop-Seq analysis.

Drop-Seq
We performed Drop-Seq following the protocol as previously described (Macosko et al., 2015). Briefly, three pump-controlled sy-

ringes with cell suspension (200,000 cells/mL), barcoded beads in lysis buffer (200,000 beads/mL), and droplet generation oil

were connected to a microfluidic device under microscope supervision. During droplets generation, we set the cell and bead flow

speed at 4,000uL/hr, and the oil speed at 15,000uL/hr. The droplets were collected into 50mL falcon tubes (usually less than

5mL). Under this setting, most droplets had at most one beads or one cell. Following droplet breakage, we performed 1st strand

cDNA synthesis on beads following SMART-PCR protocol (Macosko et al., 2015). Finally, the resulting full-length cDNA library

were prepared for sequencing.

For mixing species Drop-seq experiments, we mixed equal number of HEK293 and 3T3 cells and load them to Drop-Seq at

different cell density. We found that at 200 cells/uL, less than 1%STAMPswere frommore than one cell (doublets) (Figure S1F). How-

ever, the rate of doublets usually increases when handling human tissues, most likely due to the incomplete digestion.We have there-

fore taken a few data filtering steps to remove potential doublets computationally (further discussed below).

QUANTIFICATION AND STATISTICAL ANALYSIS

Drop-Seq reads processing
We performed raw reads processing following the instructions described in the original Drop-Seq publication (Macosko et al., 2015).

The sequenced Drop-Seq libraries yield 50-base paired-end reads (PE50). However, since only the first 20bp of read 1 is informative

(base 1-12 cell barcode, base 13-20 UMI), we trimmed base 21-50 of read 1 before further analysis. We first remove all data with the
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quality score of read 1 (base 1-20) lower than 10. Read 2 was trimmed at 30 end to remove ployA tails of at least 6 bases, and trimmed

at 50 if template switching oligo (TSO) adaptor sequence appears. Clean reads were then aligned to hg19 or mm9 using STAR with

default settings. We only keep uniquely mapped reads on gene exons. We next filtered out PCR duplicates with the same coordi-

nates, cell barcode, and UMI. We then grouped the reads by cell barcode, and generated the digital UMI-count matrix after counting

transcripts for every genes with every cell barcode.

Distinguish cell barcodes with single cell transcriptomes
We defined STAMPs (single cell transcriptome attached to microparticles) as cell barcodes with significantly more reads than back-

ground. Under the Drop-Seq experimental settings, only 2�5% of beads are co-encapsulated with cells. Therefore, most cell barc-

odes only have a small number of transcripts from mRNA contamination during the bead breakage step. In order to distinguish

STAMPs from empty beads, we examined the density plots of transcript counts for all cell barcodes (Figure S1B). In all experiments,

we observed a major peak from empty beads and a fat right tail representing STAMPs with single cell transcriptomes. We therefore

took a simple approach by calculating mean (m) and standard deviation (s) of the major peak assuming a Gaussian distribution. Any

cell barcode with more than m+ 2 � s transcripts were called as STAMPs.

Down-sampling sequencing data
Because the Drop-Seq libraries have different sequencing depth, we observed variable sensitivity in detecting transcripts / genes

from each library (Figures S1C and S1D), which causes bias during the clustering or comparative analyses. We therefore took a

down-sampling approach to normalize the sequencing depth. We first run raw data processing as described above using full

data and estimate the total STAMP numbers for each donor. For down sampling, we only took a portion of reads from every library

so that the average per-STAMP sequencing depth are similar. New UMI-count matrices were generated again for all donors after

down sampling. We found that the normalization of sequencing depth resulted in cleaner clusters in t-SNE plot (Figure S1E). We

only used the down-sampled data matrices when different donors need to be compared.

Cell type identification using unsupervised clustering
We designed a pipeline to determine the cell types of most STAMPs with high confidence using unsupervised clustering methods

(Figure S1A). First, we performed initial clustering analysis with the 11,920 top STAMPs with at least 1,000 transcripts after down

sampling. It has been previously estimated that in human islets, < 0.1% endocrine cells are positive with more than one marker hor-

mones (INS, GCG, PPY, SST, and GHRL). We therefore first filtered out 890 STAMPs (out of 12,810, or 6.9%) expressing two hor-

mones (Figure S1G) before clustering analysis. In this step, one STAMP is considered as doublets if it has two hormone genes

with 15 transcripts. As mentioned above, the percentage of doublets is significantly greater than estimated from species mix exper-

iment because single cells from tissues are more inclined to adhere with each other than cultured cells.

For clustering, we first ranked top 10,000 genes based on average expression level among all cells; then grouped them into 10 bins

with 1,000 genes each. Coefficient of variation (CV) was calculated for every gene within each bin. From every bin, we pick top 50

genes with highest CV as informative genes. All together, we picked 500 informative genes for clustering analysis. We used Seurat

package for clustering analysis with default parameters. In Seurat, PCA was performed with the 500 informative genes. Using PC1 to

PC10, cells were embedded in a K-nearest neighbor (KNN graph). Smart local moving algorithm (SLM) was applied to group cells into

communities. PC1 to PC10 were used as input to visualize cell clusters in two-dimensional t-SNE space. In order to define cell type,

we used Seurat FindMarker function to find marker genes of each cell cluster, and defined cell types based on our knowledge and

literatures. We performed the first-round clustering to classify non-endocrine cells (ductal cells, active PSCs and quiescent PSCs,

Figure 1B) and the second round to distinguish the endocrine cell types (a, b, d, PP cells, Figure 1E). Acinar and ε cells are not distin-

guishable in t-SNE plot due to scarcity, but can be clearly recognized from PCA plots (Figures 2A–2D). We also noticed a very small

number of STAMPs (223, or 1.8%) expressing hormone genes inconsistent with their cell type classification (> 15 transcripts) (Fig-

ure S1H), whichwere also filtered as possible doublets after clustering analysis (Figure S1A). Finally, we successfully assigned unique

cell types to 11,697 STAMPs with high confidence (Data S1). We used the same method for other clustering analyses in this work.

Cell type identification of low-depth STAMPs
Finally, we classified the low-transcript STAMPs using the knowledge obtained from clustering the top STAMPs as training dataset

(Figure S1A). As mentioned above, we performed PCA clustering of the training dataset using 500 informative genes. From the PCA

results, we took 32 significant principle components (PCs) as ‘‘knowledge’’ learned from training set. The 32 PCs are linear combi-

nations of the 500 informative genes, and compose a virtual 32-dimensional space. Each cell type should form a cluster in the space.

We next calculated the arithmetic centers of 8 cell types from training dataset (ductal, acinar, PSC, a, b, d, ε, PP cells), and built

spheres for all cell types centered at their arithmetic mean in the 32-dimentional space. We also computed the Euclidian distance

between every cell to the center of its cell type, and empirically defined the radius of each ‘‘cell type sphere’’ as 80 percentile of

all the distances in this cell type. For any low depth STAMP, we also took the same 500 informative genes, computed its projection

onto the 32 PCs from training data, and the distances between the STAMP and the centers of all cell type spheres. If one STAMP is

located exclusively in one cell type’s ‘‘sphere,’’ wewill annotate the STAMP to that cell type.We also performed several filtering steps
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similar to training set, and successfully classified 16,329 additional STAMPs (Figure S1A). Lastly, we used 2-dimensional PCA plots

and visually confirmed the correctness of cell type assignment (Figures 2A–2D).

Differential expression analysis
Negative binomial (NB) distribution was often used in differentially expression (DE) analysis, for counts data with over-dispersion.

Here, we assume that for any gene in a given cell, the transcripts number, UMI, can be modeled using NB distribution.

log dUMI = b0 + bCC+ bDD+ logðsfÞ
dUMI is the expected value of UMI;

b0 is the intercept, and bC and bD is the slope for C and D;

C stands for cell type, which is a categorical variable;

D stands for donor, which is a categorical variable. This variable was used to regress out the donor specific effect;

sf stands for size factor, which is use to normalized the single cell transcriptome. It mainly corrects the sequencing depth of each

cell (total transcript counts of a cell). However, the size factor can be biased due to the dropout zeros, therefore needs further correc-

tion. In this study, we calculated sf using the computeSumFactor function in a Bioconductor package scran (Lun et al., 2016).

We performed pairwise comparison between any two cell types based on the negative binomial model described above. For every

gene, we perform the regression analysis using the generalized linear model function glm.nb in the R packageMASS. The p value of

pairwise cell type specificity of any gene is provided by the function as the significance of bC. The p values of all genes were further

adjusted with Bioconductor package qvalue for to obtain q-values. We also computed two fold changes between the average tran-

script counts. Differentially expressed genes are defined when q-value < 0.05, and ranked by fold changes.

Public databases
GWAS data were downloaded fromGWAS catalog (MacArthur et al., 2017). We hand-picked 80 diabetes related traits and classified

them into 5 categories: body measurements, glucose metabolism, lipid metabolism, Type I diabetes, and Type II diabetes. In total,

1,050 genes were retrieved. The list of transcription factors (TFs) is obtained from transcriptional factor prediction database (DBD)

(Wilson et al., 2008). The list of cell surface protein was downloaded from a previous study (da Cunha et al., 2009). All these gene

lists used in this study are included in Data S3.

RePACT
We developed RePACT (Regressing Principle components for the Assembly of Continuous Trajectory) as a general method to sensi-

tively identify disease relevant gene signatures using single cell data. The key step is to find the best trajectory to rank single cells

(e.g., b cells) reflecting the change of disease status. In this study, we used RePACT to study obesity (denoted by a continuous

BMI variable) and T2D (denoted by a dichotomous variable T2D).

The first step of RePACT is dimension reduction. For example, we took b cells from all donors and perform PCA analysis. A number

of principle components (PCs) will be identified and ranked by the percentage of variance they can explain. Each PC is a linear com-

bination of genes. This allows us to convert every cell’s transcriptome from a high-dimensional vector (e.g., a vector of 10,000 genes)

into a low-dimensional vector (e.g., a vector of top 10 PCs). In this study, we empirically picked top 10 PCs, while RePACT can be

conveniently run with more or fewer PCs.

We next performed linear regression for the continuous variable BMI:

dBMI = b0 +
X10
i = 1

bi � PCi

dBMI is the expected BMI value;

b0 is the intercept, and bi is the slope of each PCs;

PCi is the i th principle component of a cell.

With the regressed b values, we computed the BMI-index for every cell, which is the predicted BMI value from themodel. The BMI-

index was used to rank the cells, and its value indicates how far a cell is transformed toward obesity status.

For dichotomous variable (True / False) indicating whether a cell is from T2D donor, we used a logistic regression model.

logitðbpT2DÞ= b0 +
X10
i = 1

bi � PCi

bpT2D is a number between 0 and 1 indicating the risk of a cell been from T2D donor;

b0 is the intercept, and bi is the slope of each PCs;

PCi is the i th principle component of a cell.

With the regressed b values, we computed the T2D-index for every cell, which is the predicted logitðbpT2DÞ value from the model.

The T2D-index was used to rank the cells, and its value indicates how far a cell is transformed toward T2D status.
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In order to identify genes associated with obesity or T2D trajectory. We grouped all cells into 20 bins with equal BMI- or T2D-index

intervals; every bin contains hundreds of single cells. For every gene, we then calculated the average transcript counts from cells in

each bin and obtained a vector of 20 values. A simple linear regression was performed between the average transcript counts and the

index values of the bins with p value. The p values of all genes were adjusted with Bioconductor package qvalue to obtain q-values.

Genes with q-value less than 0.05 were called significant trajectory genes.

Raw CRISPR screen sequencing data analysis
Raw FASTQ files were analyzed with FASTX-Toolkit (Hannon’s Lab). sgRNA sequences were aligned to GeCKO library sequences

with Bowtie2.

Guide-RNA level CRISPR screen data analysis
We performed two independent screens to evaluate the reproducibility of every sgRNA. Partly because late-passaging MIN6 cells

grows slow and may also start to lose their insulin secretion ability, we performed two independent viral-transduction to reduce

the time needed for cell expansion. It should be noted that this ‘‘viral-transduction replication’’ strategy is in contrast to ‘‘split-plate

replication,’’ in which the viral infected cells are split into multiple cultures after expansion for replicate experiments (Figure S5A).

Most CRISPR screen papers we examined, e.g., (Hart et al., 2015; Kanarek et al., 2018; Shalem et al., 2014; Zhou et al., 2014),

used the ‘‘split-plate’’ strategy; ‘‘viral-transduction replication’’ strategy was also used in several (but fewer) papers (Koike-Yusa

et al., 2014; Korkmaz et al., 2016; Shifrut et al., 2018).

Statistically, the two replication strategies have drastically different error-structures. For our ‘‘viral-transduction replication’’ strat-

egy, we have to consider the viral infection variability between the two experiments. For example, assuming the sequencing depth in

all libraries are the same, a significant sgRNA may show 2-fold change in one replicate experiment between InsLo and InsHi popu-

lation at 200 versus 100 readswith p < 0.001; in another replicate the same sgRNAmaymerely show 20 versus 10 readswithmarginal

p value due to viral infection variability. The proper way to handle this type of variation is to do pairwise comparison for every sgRNA in

each experiment separately; then examine if the enriched/depleted sgRNA is reproducible between two experiments. We performed

the following steps for sgRNA level analysis:

Step 1

For every sgRNA in each of the replicates, we used binomial tests to calculate the p values for the difference of abundance between

InsHi and InsLo cell populations (with MAGeCK package inR). The p values of all sgRNAs in the two replicates are listed in Data S5.

We setup three significance levels for p values (< 0.05, < 0.01, or < 0.001); in step 2 we will keep a sgRNA only if it is significantly

enriched or depleted in both replicates.

Step 2

To determine how reproducible a sgRNA is, we further classified all sgRNAs into 5 groups based on their p values in two replicates.

Tier 1 sgRNA have both p values < 0.001; Tier 2 sgRNA have one p value < 0.001 and the other p value between 0.01 and 0.001; Tier 3

sgRNAs have both p values between 0.01 and 0.001; Tier 4 sgRNAs have one p value between 0.01 and 0.001 and the other p value

between 0.05 and 0.01; Finally, Tier 5 sgRNAs have both p values between 0.05 and 0.01. The reproducibility of Tier 1 sgRNAs by

p value and fold change are shown in Figures S5B and S5C. It is clear that tier 1 sgRNA are separated from most spots, and impor-

tantly distant from non-target sgRNA controls in the sgRNA library.

Step 3

To further assess the FDR of the sgRNAs, we randomly shuffled the data from all sgRNA in each replicated screen for 100 times, and

compute the FDR of tier 1 through tier 5 sgRNAs with different criteria (Table S1). According to this analysis, our tier 1 sgRNAs

achieved FDR of 0.1; sgRNAs in other tiers can be also valuable although to a lesser extent.

Gene-level CRISPR screen data analysis
Since an off-target sgRNA can be also reproducible between replicate screens, it is important to perform gene level analysis examine

the effect of different sgRNAs targeting the same gene. The GeCKO library has 6 sgRNAs for each gene, which provide redundancy

for reproducibility test at gene level. However, many guides may not achieve statistical significance due to variation in library con-

struction, viral transduction, cell sorting procedure, sequencing depth, etc. Additionally, some guide may not be potent enough or

abundant enough in the library to cause detectable effects, especially when the number of sorted cells is relatively small. In this study,

as mentioned before, we have to harvest cells as early as possible after virus transduction because late-passaging MIN6 cells grows

slower and may also start to lose their insulin secretion ability, limiting the number of cells we can analyze. Therefore, our philosophy

for gene level analysis is: (i) we certainly prefer genes with multiple supporting sgRNA; (ii) we can also accept hit genes with neutral

guide RNAs; (iii) we prohibit a hit gene to have contradictory sgRNAs.

The following rules were applied for gene-level analysis:

d Tier 1-5 sgRNAs from Table S1 were all considered ‘‘supporting’’ sgRNA.

d Tier 1 hit gene must have at least one Tier 1 sgRNA; Tier 2 hit gene must have at least one Tier 2 sgRNA. We did not report tier

3-5 genes since their best sgRNAs are weak; in fact, we only used Tier 1 hit genes for follow-up analysis in this paper.
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d A hit gene cannot have contradictory sgRNAs. i.e., a hit gene cannot be classified as ‘‘enrichment’’ and ‘‘depletion’’ by two

guides at the same time.

d After filtering, the rest Tier 1 and 2 hit genes were further classified into sub-tiers based on the number of supporting sgRNAs

(Table S2).

d On randomly shuffled data (the p values of sgRNAs are shuffled in each experiment), we simulate all the aforementioned gene-

level rules to estimate the FDR for hit genes (Table S2). As expected, the FDR of genes supported by 2 or more sgRNAs is

extremely low.

We summarized the results of all tier 1 and tier 2 genes in the ‘‘collapse_to_gene’’ sheet of Data S5. As expected, genes supported

by tier 1 sgRNAs are also more likely to be supported bymultiple sgRNAs (Figure S5D). The strong FDRs of Tier 1A,1B, and 2A genes

clearly indicate that genes with multiple supporting sgRNAs are high-confidence hits. We chose to report Tier 1C genes in this paper

because for these genes, we are fairly certain about their guide RNA (tier 1, p < 0.001 in both replicates). However, the off-target risk of

these genes must be acknowledged.

STRING network analysis
Gene interactions were analyzed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) (https://string-db.org/

cgi/input.pl). Network cosmetics were reconstructed using Cytoscape 3.4.0. Only interactions with scores greater than 0.85 were

revealed.

DATA AND SOFTWARE AVAILABILITY

Raw data files of Drop-seq and Chip-seq are accessible at GEO: GSE101207; RePACT package is available at https://github.com/

chenweng1991/RePACT.
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