# HUGIn: a handy online visualization tool for across-tissue chromatin spatial organization data

Tailored specifically for GWAS fine mapping:

- target gene(s) identification
- functional prioritization

### $\epsilon$

# Huginn and Muninn

From Wikipedia, the free encyclopedia

In Norse mythology, **Huginn** (from Old Norse "thought"<sup>[1]</sup>) and **Muninn** (Old Norse "memory"<sup>[2]</sup> or "mind"<sup>[3]</sup>) are a pair of ravens that fly all over the world, Midgard, and bring information to the god Odin. Huginn and Muninn are attested in the *Poetic Edda*, compiled in the 13th century from earlier traditional sources: the *Prose Edda* and *Heimskringla*, written in the 13th



Huginn and Muninn sit on Odin's shoulders in an illustration from an 18th-century Icelandic manuscript

century by Snorri Sturluson; in the *Third Grammatical Treatise*, compiled in the 13th century by Óláfr Þórðarson; and in the poetry of skalds. The names of the ravens are sometimes modernly anglicized as **Hugin** and **Munin**.

### **HUGIN AND MUNIN**

Hugin and Munin (pronounced "HOO-gin" and "MOO-nin"; Old Norse Huginn and Muninn, the meaning of which will be discussed below) are two ravens in Norse mythology who are helping spirits of the god Odin. According to the medieval Icelandic historian Snorri Sturluson,

Two ravens sit on his (Odin's) shoulders and whisper all the news which they see and hear into his ear; they are called Huginn and Muninn. He sends them out in the morning to fly around the whole world, and by breakfast they are back again. Thus, he finds out many new things and this is why he is called 'ravengod' (hrafnaguð).[1]



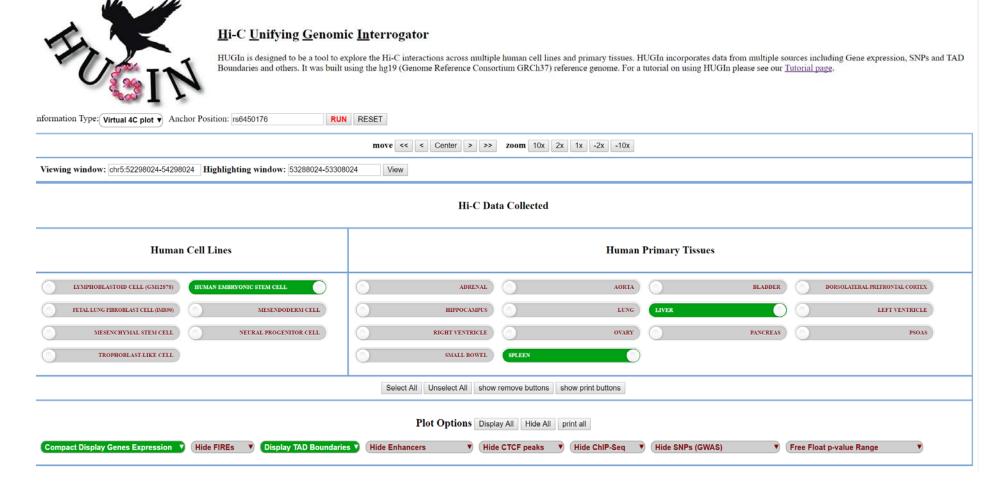
A warrior, likely Odin, flanked by two ravens on an Iron Age helmet from what is now Sweden

### **HUGIn**

Bioinformatics, 2017, 1-3

doi: 10.1093/bioinformatics/btx359

Advance Access Publication Date: 5 June 2017

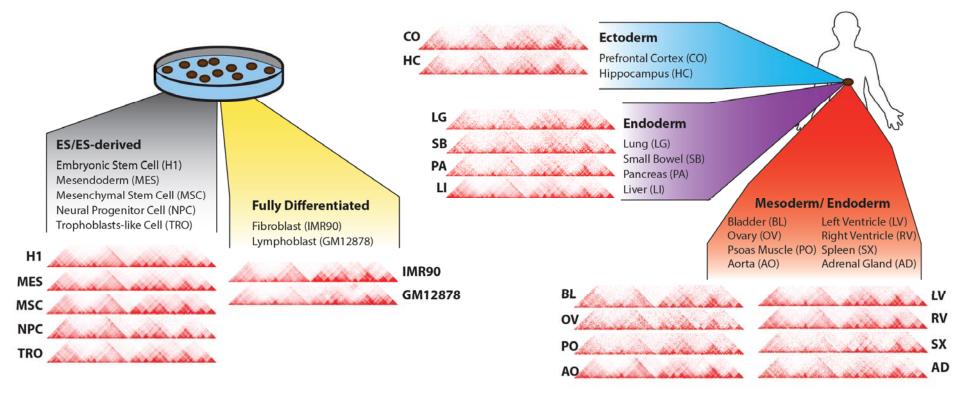

**Applications Note** 

Genome analysis

### **HUGIn: Hi-C Unifying Genomic Interrogator**

Joshua S. Martin<sup>1</sup>, Zheng Xu<sup>2,3</sup>, Alex P. Reiner<sup>4,5</sup>, Karen L. Mohlke<sup>1</sup>, Patrick Sullivan<sup>1,6</sup>, Bing Ren<sup>7</sup>, Ming Hu<sup>8,\*</sup> and Yun Li<sup>1,9,10,\*</sup>

# HUGIn: Hi-C Unifying Genomic Interrogator




# http://yunliweb.its.unc.edu/HUGIn/

# A Compendium of Hi-C Data

### A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome

Anthony D. Schmitt, 1,2,12,13 Ming Hu,3,12,14,\* Inkyung Jung,1,15 Zheng Xu,4,10,11 Yunjiang Qiu,1,5 Catherine L. Tan,1,13 Yun Li,4 Shin Lin,6 Yiing Lin,7 Cathy L. Barr,8 and Bing Ren,1,9,16,\*



7 human cell lines

14 human primary tissues

# Highlight by Nature Reviews Genetics

### RESEARCH HIGHLIGHTS

Nature Reviews Genetics | Published online 13 Dec 2016; doi:10.1038/nrg.2016.161

# Deciphering non-coding variation with epigenomics

The majority of disease-associated genetic variants identified by genome-wide asso-

In their study, Schmitt et al. carried out Hi-C across 21 diverse primary human tissues and cell types. Analysing an average of 214 million unique chromosome contacts per tissue type, they noticed that some regions displayed particularly high local contact frequencies, which they termed frequently interacting regions (FIREs). FIREs were distinct from previously defined types of chromosome domains such as A/B compartments, topologically associated domains (TADs) and loops, although in

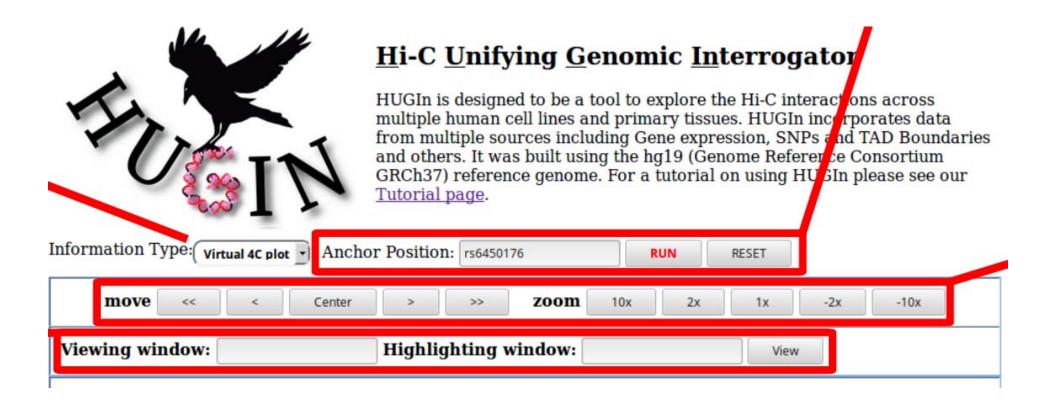
general they occurred towards the centre of

a new type of unexplored regulatory element that may need to be considered when genetic

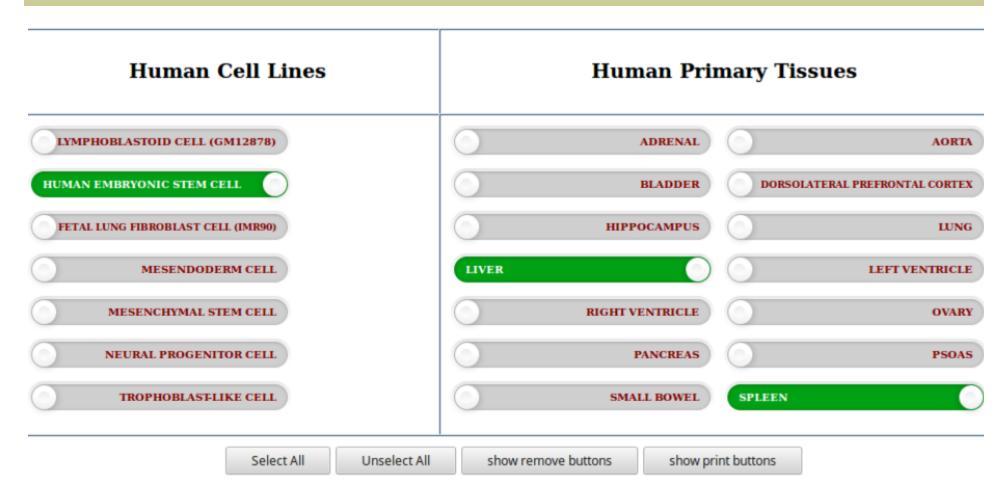
journals, and are available online.

TADs, partook in numerous intra-TAD interactions and were contained within broader regions of A-compartment active chromatin. Further analyses, including integration with profiles of histone modifications and transcription, revealed that FIREs are highly tissue-type-dependent, frequently occur near (and transcriptionally regulate) cell-identity genes and overlap substantially with chromatin features of active enhancers. Indeed, the tered

> t 100% en-


Darren J. Burgess

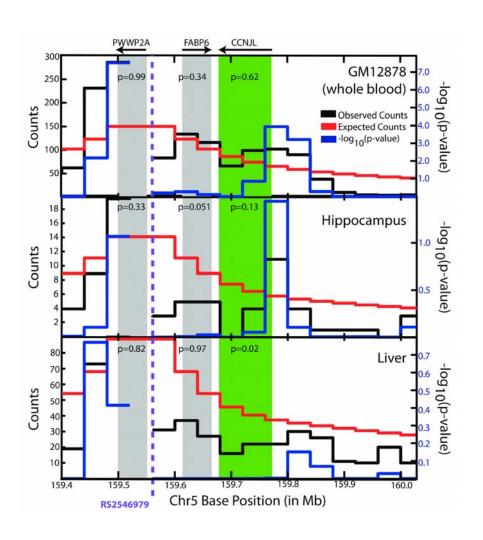
ORIGINAL ARTICLES Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369-1384 (2016) Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042-2059 (2016)


FURTHER READING Bonev. B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016) Stricker, S. H., Köferle, A. & Beck, S. From profiles to function in epigenomics Net Pev. Genet. http://dx.doi.org/10.1038/ nra.2016.138 (2



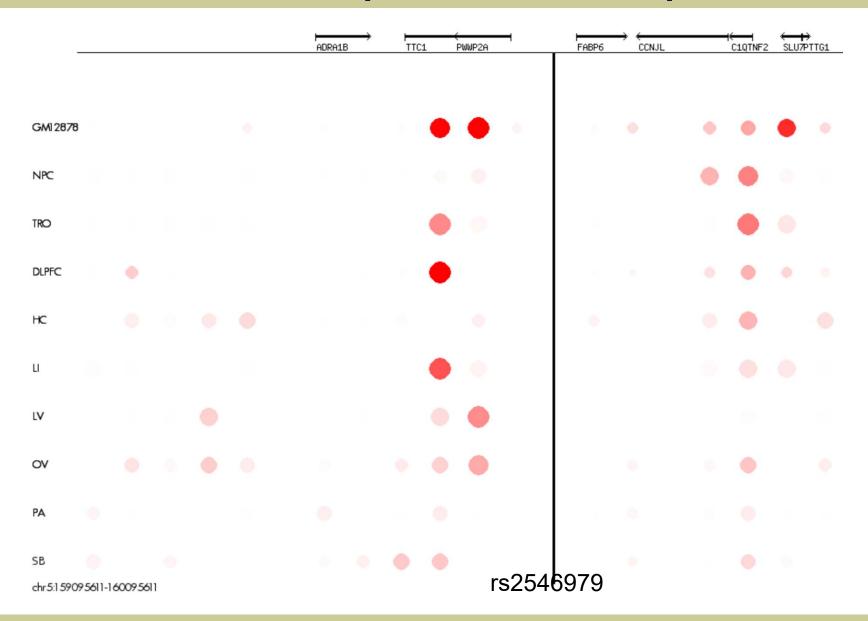
### **HUGIn Interface**

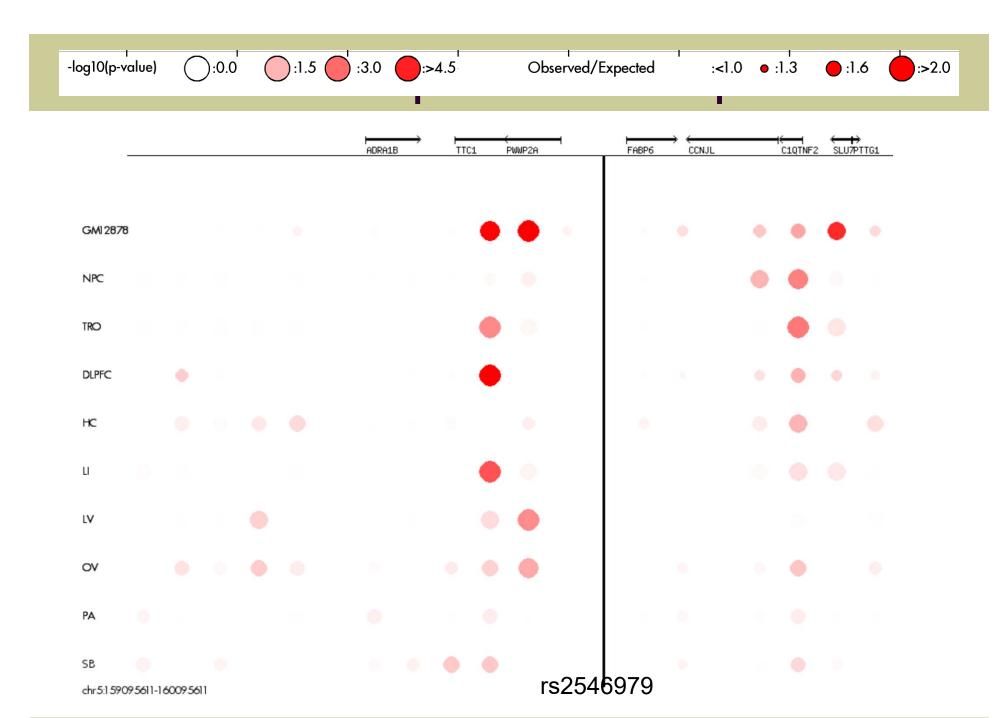



# Data Availability Snapshot



# Data Availability Snapshot


| Human Cell Lines                            | Human Primary Tissues       |                                |  |
|---------------------------------------------|-----------------------------|--------------------------------|--|
| LYMPHOBLASTOID CELL (GM12878)               | ADRENAL                     | AORTA                          |  |
| HUMAN EMBRYONIC STEM CELL                   | BLADDER                     | DORSOLATERAL PREFRONTAL CORTEX |  |
| FETAL LUNG FIBROBLAST CELL (IMR90)          | HIPPOCAMPUS                 | LUNG                           |  |
| MESENDODERM CELL                            | LIVER                       | LEFT VENTRICLE                 |  |
| MESENCHYMAL STEM CELL                       | RIGHT VENTRICLE             | OVARY                          |  |
| NEURAL PROGENITOR CELL                      | PANCREAS                    | PSOAS                          |  |
| TROPHOBLAST-LIKE CELL                       | SMALL BOWEL                 | SPLEEN                         |  |
| Select All Unselect All                     | show remove buttons show p  | rint buttons                   |  |
| Compact Display Genes Expression Hide FIREs | Hide TAD Boundaries THIDE E | nhancers Hide CTCF peaks       |  |
| Hide ChIP-Seq Hide SNPs (GWAS)              | Free Float p-value Range    |                                |  |

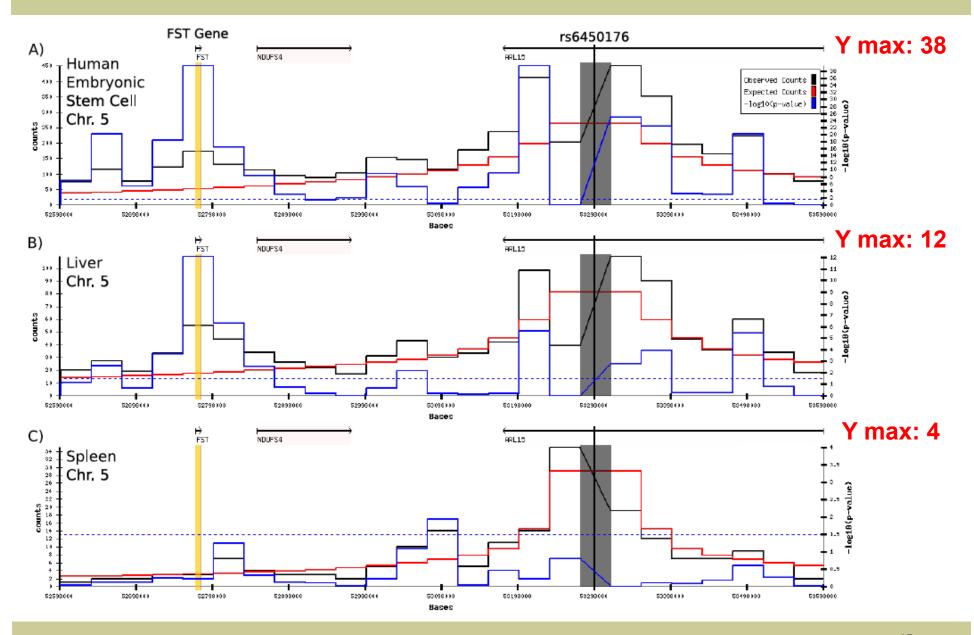

# One Example: Virtual 4C Plot



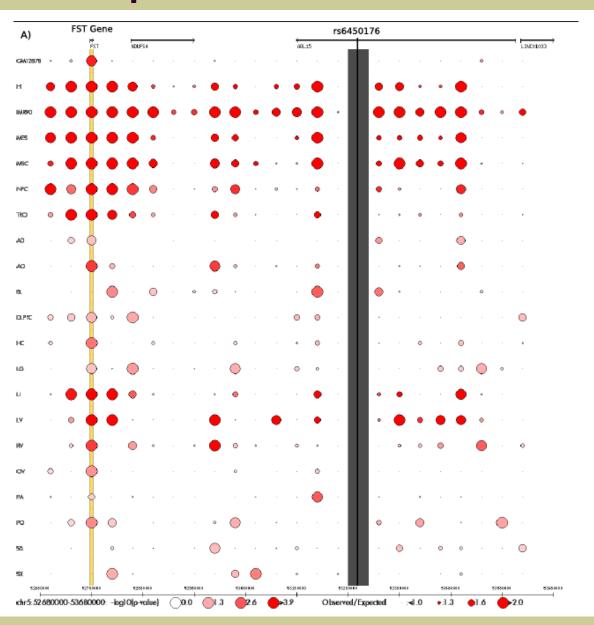
- □ lotchkova et al (*Nature Genetics* 2016) reported interaction between platelet count associated SNP rs2546979 and gene *CCNJL*.
- ☐ Evidence of physical interaction from BLUEPRINT Epigenomic project.
- **We found**: SNP rs2546979
  - □ shows long range interaction with gene *CCNJL* in GM12878 cell line and much weaker in hippocampus, but not in liver tissue.
  - ☐ near a GM12878 typical enhancer.
  - ☐ in a Hippocampus typical enhancer
- ☐ Using GTEx
  - ☐ In whole blood, rs2546979 is NOT eQTL of *CCNJL*, *FABP6* or *PWWP2A*.
  - □ only eQTL for *FABP6* in Skin-Sun Exposed (lower leg) (*P*=7.3e-7), arguably the wrong gene or wrong tissue, or both.

# Same Example: Heatmap View






# Another Example: rs6450176


- rs6450176
  - Associated with risk of T2D
  - Associated with adiponectin
  - Located within ARL15 gene

# **Potential Target Gene: ??**

# Rs6450176 Virtual 4C Plot

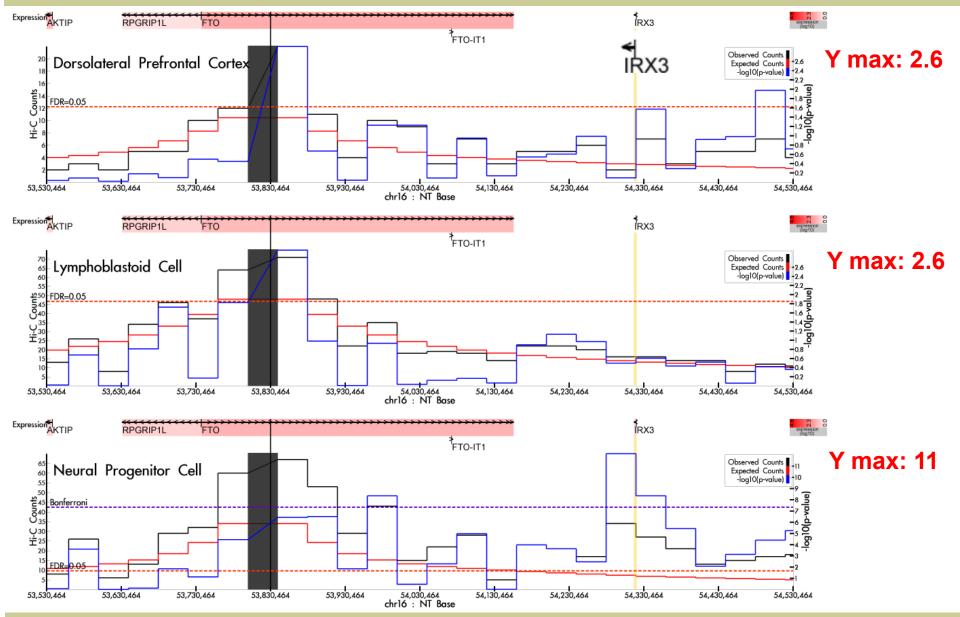


# Heatmap for rs6450176

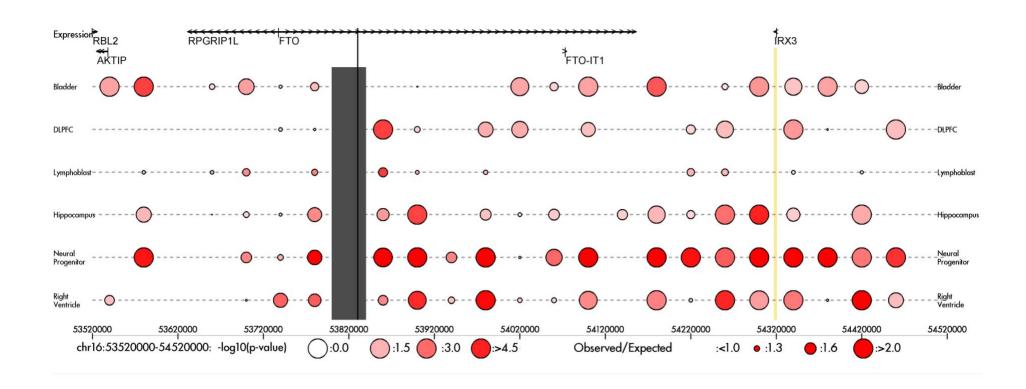


# Another Example: rs6450176

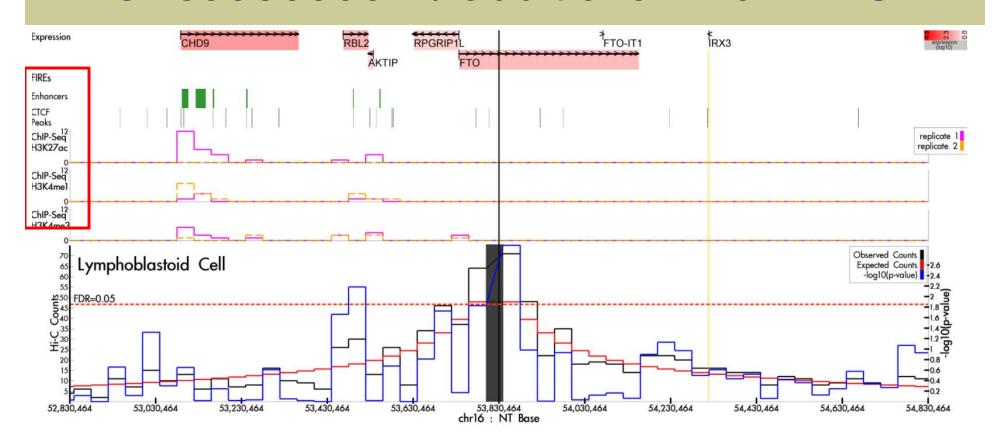
- rs6450176
  - Associated with risk of T2D
  - Associated with adiponectin
  - Located within ARL15 gene
  - Now with multi-tissue/cell-line Hi-C data:


# **Potential Target Gene: ??**

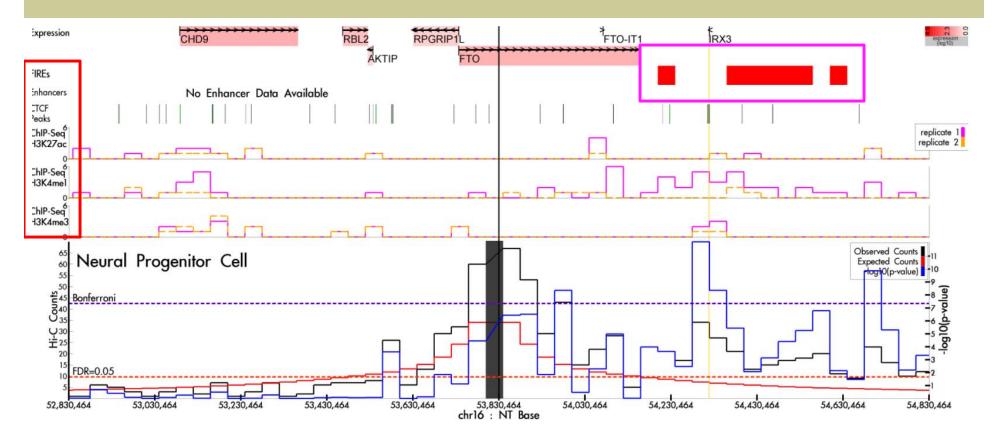
# Another Example: rs6450176


- rs6450176
  - Associated with risk of T2D
  - Associated with adiponectin
  - Located within ARL15 gene
  - Now with multi-tissue/cell-line Hi-C data
  - eQTL for FST but not ARL15 in subcutaneous adipose tissue

# Potential Target Gene: ??


# A 3<sup>rd</sup> example: FTO rs9930506




# FTO rs9930506 heatmap view



### FTO rs9930506 w/ additional info. in LCL



### FTO rs9930506 w/ additional info. in NPC



### Frequently Interacting Regions (FIREs) (Schmitt et al 2016 Cell Rep):

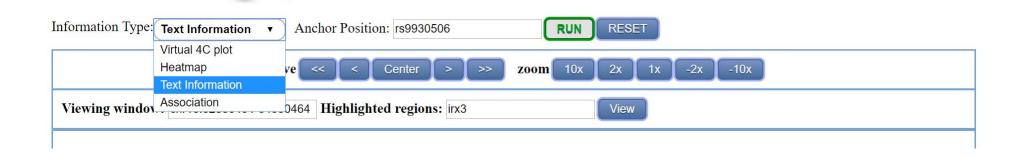
- are tissue/cell-type specific (in contrast to TADs);
- are enriched of tissue/cell-type specific enhancers;
- are enriched of tissue/cell-type specifically expressed genes;
- are conserved in human and mouse
- are enriched of GWAS SNPs for relevant traits

# Better Gene Set Enrichment

| Disease             | # of GWAS<br>SNPs | # of<br>HUGIn<br>genes | # (%) of HUGIn genes<br>being the closest to<br>GWAS SNPs | # of GWAS<br>catalog genes | # (%) of GWAS<br>catalog genes<br>being the closest<br>to GWAS SNPs | # (%) of HUGIn<br>genes overlapping<br>with GWAS catalog<br>genes |
|---------------------|-------------------|------------------------|-----------------------------------------------------------|----------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|
| Schizophrenia       | 407               | 471                    | 35 (7.4%)                                                 | 676                        | 120 (17.8%)                                                         | 69 (14.6%)                                                        |
| Leukemia            | 56                | 56                     | 2 (3.6%)                                                  | 82                         | 19 (23.2%)                                                          | 7 (12.5%)                                                         |
| Alzheimer's disease | 203               | 228                    | 14 (6.1%)                                                 | 343                        | 56 (16.3%)                                                          | 31 (13.6%)                                                        |
| Autism              | 37                | 36                     | 2 (5.6%)                                                  | 61                         | 6 (9.8%)                                                            | 4 (11.1%)                                                         |
| Depression          | 133               | 172                    | 7 (4.1%)                                                  | 226                        | 31 (13.7%)                                                          | 18 (10.5%)                                                        |
| Type 1 diabetes     | 38                | 57                     | 2 (3.5%)                                                  | 68                         | 19 (27.9%)                                                          | 6 (10.5%)                                                         |
| Type 2 diabetes     | 124               | 120                    | 12 (10.0%)                                                | 180                        | 46 (25.6%)                                                          | 17 (14.2%)                                                        |

# Better Gene Set Enrichment

| Disease             | # of GWAS<br>SNPs | # of<br>HUGIn<br>genes | # (%) of HUGIn genes<br>being the closest to<br>GWAS SNPs | # of GWAS<br>catalog genes | # (%) of GWAS<br>catalog genes<br>being the closest<br>to GWAS SNPs | # (%) of HUGIn<br>genes overlapping<br>with GWAS catalog<br>genes |
|---------------------|-------------------|------------------------|-----------------------------------------------------------|----------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|
| Schizophrenia       | 407               | 471                    | 35 (7.4%)                                                 | 676                        | 120 (17.8%)                                                         | 69 (14.6%)                                                        |
| Leukemia            | 56                | 56                     | 2 (3.6%)                                                  | 82                         | 19 (23.2%)                                                          | 7 (12.5%)                                                         |
| Alzheimer's disease | 203               | 228                    | 14 (6.1%)                                                 | 343                        | 56 (16.3%)                                                          | 31 (13.6%)                                                        |
| Autism              | 37                | 36                     | 2 (5.6%)                                                  | 61                         | 6 (9.8%)                                                            | 4 (11.1%)                                                         |
| Depression          | 133               | 172                    | 7 (4.1%)                                                  | 226                        | 31 (13.7%)                                                          | 18 (10.5%)                                                        |
| Type 1 diabetes     | 38                | 57                     | 2 (3.5%)                                                  | 68                         | 19 (27.9%)                                                          | 6 (10.5%)                                                         |
| Type 2 diabetes     | 124               | 120                    | 12 (10.0%)                                                | 180                        | 46 (25.6%)                                                          | 17 (14.2%)                                                        |
|                     |                   | _                      |                                                           |                            |                                                                     |                                                                   |


# Better Gene Set Enrichment

| Disease             | of GWAS<br>SNPs | # of<br>HUGIn<br>genes | # (%) of HUGIn genes<br>being the closest to<br>GWAS SNPs | # of GWAS<br>catalog genes | # (%) of GWAS<br>catalog genes<br>being the closest<br>to GWAS SNPs | # (%) of HUGIn<br>genes overlapping<br>with GWAS catalog<br>genes |
|---------------------|-----------------|------------------------|-----------------------------------------------------------|----------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|
| Schizophrenia       | 407             | 471                    | 35 (7.4%)                                                 | 676                        | 120 (17.8%)                                                         | 69 (14.6%)                                                        |
| Leukemia            | 56              | 56                     | 2 (3.6%)                                                  | 82                         | 19 (23.2%)                                                          | 7 (12.5%)                                                         |
| Alzheimer's disease | 203             | 228                    | 14 (6.1%)                                                 | 343                        | 56 (16.3%)                                                          | 31 (13.6%)                                                        |
| Autism              | 37              | 36                     | 2 (5.6%)                                                  | 61                         | 6 (9.8%)                                                            | 4 (11.1%)                                                         |
| Depression          | 133             | 172                    | 7 (4.1%)                                                  | 226                        | 31 (13.7%)                                                          | 18 (10.5%)                                                        |
| Type 1 diabetes     | 38              | 57                     | 2 (3.5%)                                                  | 68                         | 19 (27.9%)                                                          | 6 (10.5%)                                                         |
| Type 2 diabetes     | 124             | 120                    | 12 (10.0%)                                                | 180                        | 46 (25.6%)                                                          | 17 (14.2%)                                                        |

# HUGIn output/information types

- 1. Virtual 4C plot
- 2. Heatmap
- 3. Text information
- 4. Association

# **Text information**



# **Excerpt of Text Information**

| Fragment<br>Start | Lymphoblastoid<br>Cell Observed<br>Count | Lymphoblastoid<br>Cell Expected<br>Count | Lymphoblastoid<br>Cell -<br>log10(pValue) | Neural Progenitor<br>Cell Observed Count | Neural Progenitor<br>Cell Expected Count | Neural Progenitor<br>Cell -log10(pValue) |
|-------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| 52840000          | 6                                        | 7.59521                                  | 0.11418                                   | 1                                        | 3.85092                                  | 0.00933                                  |
| 52880000          | 2                                        | 7.95852                                  | 0.00136                                   | 6                                        | 4.00916                                  | 0.66494                                  |
| 52920000          | 11                                       | 8.34400                                  | 0.65825                                   | 5                                        | 4.17524                                  | 0.39216                                  |
| 52960000          | 7                                        | 8.75363                                  | 0.11360                                   | 3                                        | 4.35348                                  | 0.09191                                  |
| 53000000          | 15                                       | 9.18937                                  | 1.31943                                   | 1                                        | 4.54898                                  | 0.00462                                  |
| 52040000          | 10                                       | 0.65210                                  | 0.20277                                   | າ                                        | 176607                                   | U UK03U                                  |

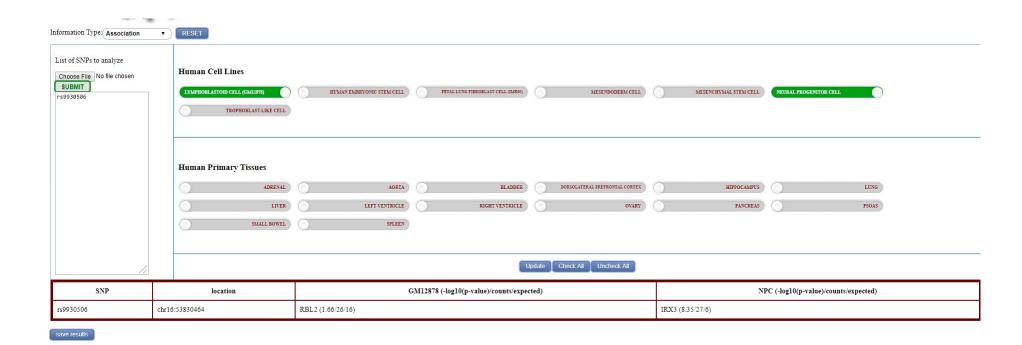
| 54680000 | 9  | 8.34400 | 0.34165 | 23 | 4.17524 | 9.86795 |
|----------|----|---------|---------|----|---------|---------|
| 54720000 | 8  | 7.95852 | 0.26661 | 16 | 4.00916 | 5.29830 |
| 54760000 | 12 | 7.59521 | 1.07091 | 10 | 3.85092 | 2.19817 |
| 54800000 | 11 | 7.25233 | 0.93035 | 12 | 3.69954 | 3.32820 |

Save to File


# **Excerpt of Text Information**

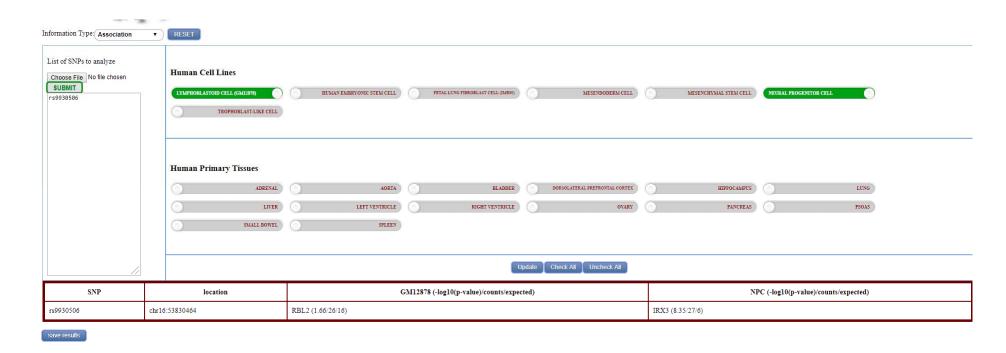
| Fragment<br>Start | Lymphoblastoid<br>Cell Observed<br>Count | Lymphoblastoid<br>Cell Expected<br>Count | Lymphoblastoid<br>Cell -<br>log10(pValue) | Neural Progenitor<br>Cell Observed Count | Neural Progenitor<br>Cell Expected Count | Neural Progenitor<br>Cell -log10(pValue) |
|-------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| 52840000          | 6                                        | 7.59521                                  | 0.11418                                   | 1                                        | 3.85092                                  | 0.00933                                  |
| 52880000          | 2                                        | 7.95852                                  | 0.00136                                   | 6                                        | 4.00916                                  | 0.66494                                  |
| 52920000          | 11                                       | 8.34400                                  | 0.65825                                   | 5                                        | 4.17524                                  | 0.39216                                  |
| 52960000          | 7                                        | 8.75363                                  | 0.11360                                   | 3                                        | 4.35348                                  | 0.09191                                  |
| 53000000          | 15                                       | 9.18937                                  | 1.31943                                   | 1                                        | 4.54898                                  | 0.00462                                  |
| 52040000          | 10                                       | 0.65210                                  | 0.20277                                   | າ                                        | 176607                                   | N N602N                                  |

|   | 54680000 | 9  | 8.34400 | 0.34165 | 23 | 4.17524 | 9.86795 |
|---|----------|----|---------|---------|----|---------|---------|
|   | 54720000 | 8  | 7.95852 | 0.26661 | 16 | 4.00916 | 5.29830 |
|   | 54760000 | 12 | 7.59521 | 1.07091 | 10 | 3.85092 | 2.19817 |
| 4 | 54800000 | 11 | 7.25233 | 0.93035 | 12 | 3.69954 | 3.32820 |


Save to File

# Association: rs9930506 example




30

# Association: rs9930506 example



| SNP       | location       | GM12878 (-log10(p-value)/counts/expected) |
|-----------|----------------|-------------------------------------------|
| rs9930506 | chr16:53830464 | RBL2 (1.66/26/16)                         |

# Association: rs9930506 example



| SNP       | location       | GM12878 (-log10(p-value)/counts/expected) | NPC (-log10(p-value)/counts/expected) |
|-----------|----------------|-------------------------------------------|---------------------------------------|
| rs9930506 | chr16:53830464 | RBL2 (1.66/26/16)                         | IRX3 (8.35/27/6)                      |

# Updates planned:

# Hi-C Data currently being analyzed

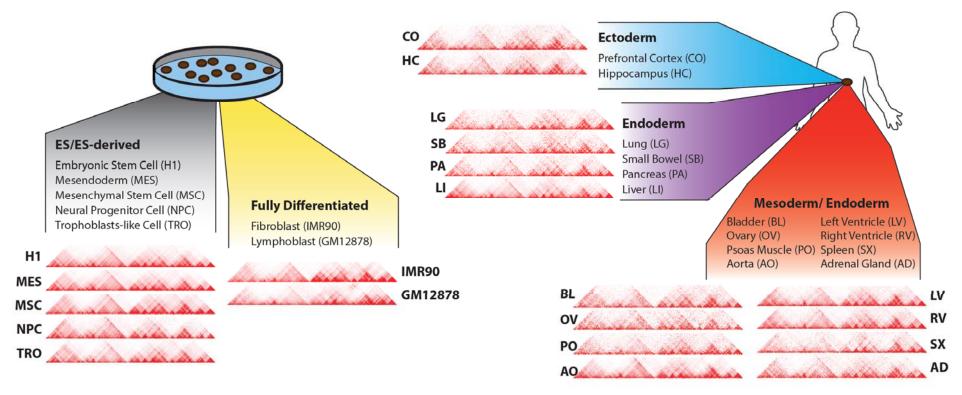
| Tissue or Cell Line                                       | SeqDepth (in millions of reads per sample) | Source                |
|-----------------------------------------------------------|--------------------------------------------|-----------------------|
| 3 adult & 3 fetal human brain tissues                     | 338-1,016                                  | Sullivan lab#         |
| GM12878, IMR90, h1 ES and 4 h1-derived CLs                | 600-1,079                                  | Ren lab <sup>22</sup> |
| 7 human CLs and<br>14 human primary tissues               | 56-541                                     | Ren lab <sup>22</sup> |
| 20 human LCLs                                             | 454-1,068                                  | Ren lab#              |
| Modified mES CL with 16p11.2 deletion (a human ASD locus) | ~500                                       | Pombo lab#            |

# Updates planned:

# H/P Data currently being analyzed

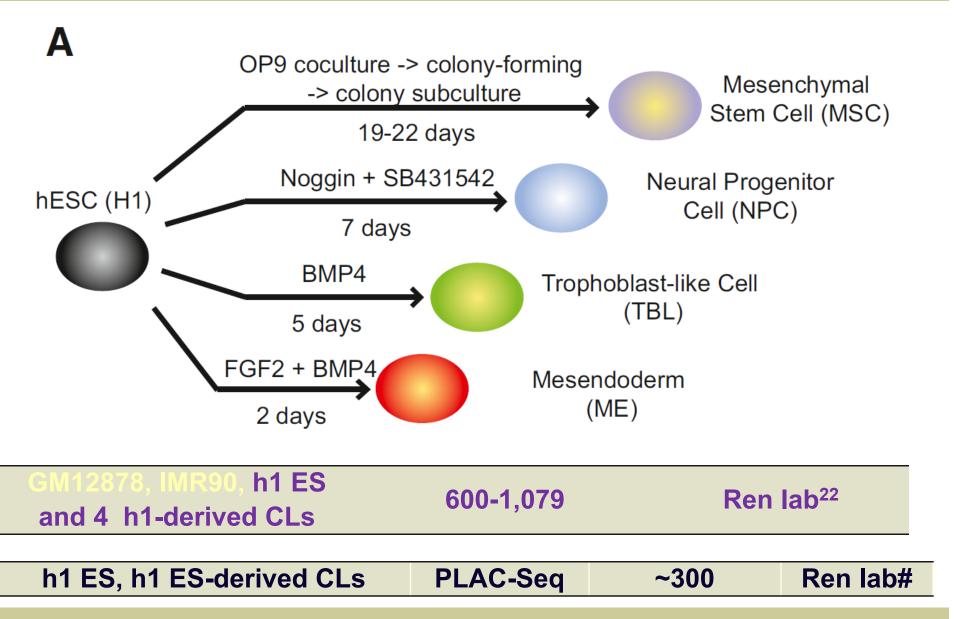
| Tissue or Cell Line <sup>a</sup>                  | <b>Data Type</b> | SeqDepth | Source                    |
|---------------------------------------------------|------------------|----------|---------------------------|
| Mouse ES CL (FangData)                            | PLAC-Seq         | ~300     | Ren lab <sup>3</sup>      |
| Mouse brain tissue from 8 developmental stages    | PLAC-Seq         | ~300     | Ren lab#                  |
| 8 mouse tissues at the same developmental stage   | PLAC-Seq         | ~300     | Ren lab#                  |
| h1 ES, h1 ES-derived CLs                          | PLAC-Seq         | ~300     | Ren lab#                  |
| brain tissue from 20 mouse RIX <sup>c</sup> lines | PLAC-Seq         | ~300     | Shen lab <sup>f</sup> #   |
| Human NPC <sup>d</sup> and 4 differentiated CLs   | PLAC-Seq         | ~300     | Shen lab#                 |
| GM12878 Smc1, mES Oct4, mES cohesin               | HiChIP           | ~300     | Chang<br>lab <sup>8</sup> |

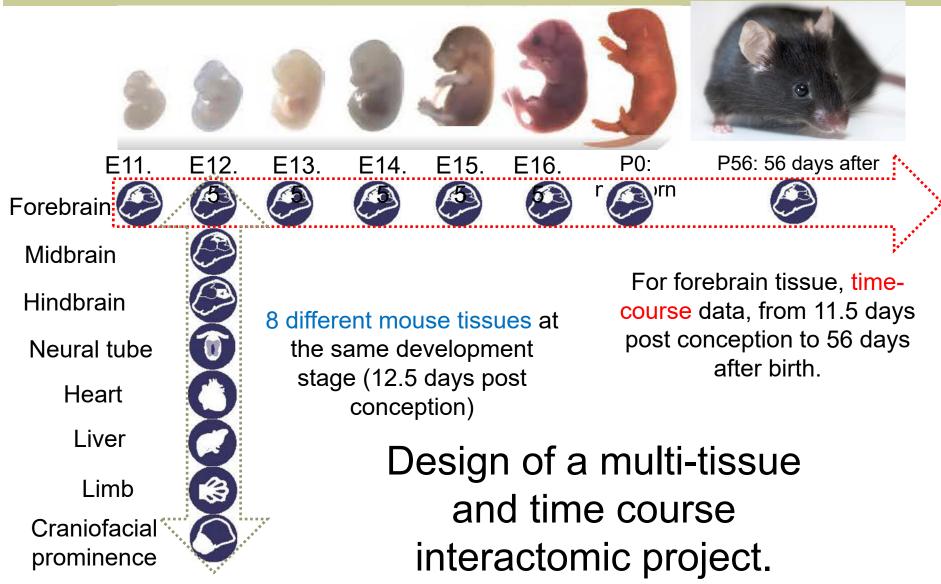
## H/P Data: ~Hi-C + IP (Immuno-Precipitation)

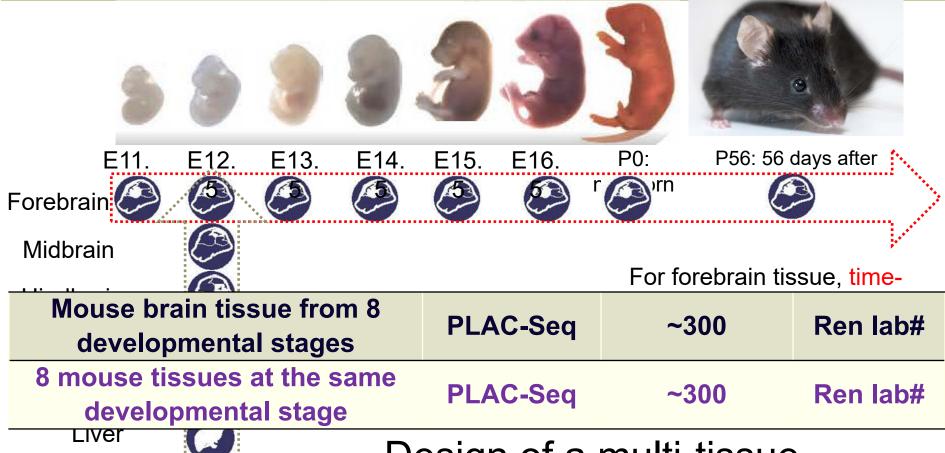



Hi-ChIP

Fang et al 2016 Cell res. 26: 1345-8.


### A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome


Anthony D. Schmitt, 1,2,12,13 Ming Hu,3,12,14,\* Inkyung Jung,1,15 Zheng Xu,4,10,11 Yunjiang Qiu,1,5 Catherine L. Tan,1,13 Yun Li,4 Shin Lin,6 Yiing Lin,7 Cathy L. Barr,8 and Bing Ren,1,9,16,\*




7 human cell lines

14 human primary tissues







Limb
Craniofacial prominence

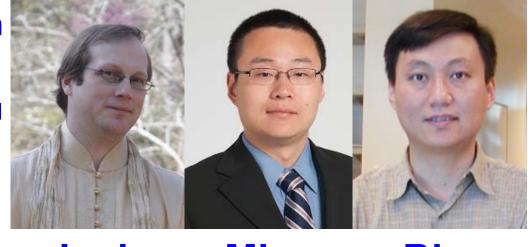
Design of a multi-tissue and time course interactomic project.

# **Brief Summary**

- HUGIn: a handy online visualization tool
- Primary goal: help identify potential target gene(s) of regulatory SNPs in a tissue/cell-type specific manner
- 4 different output formats
- Rich data behind: 7 human cell lines and 14 human primary tissues. Will add more (analyzing!)
- Rigorous statistics w/ FDR & Bonferroni correction
- Caveats:
  - Different sequencing depths across tissues/cell-lines
  - Mostly 40Kb resolution. We are getting at 4-10Kb.

# Acknowledgements

University of North Carolina at Chapel Hill:


Josh Martin, Zheng Xu, Karen L. Mohlke, Patrick F. Sullivan

Ludwig Institute for Cancer Research, UCSD:

Anthony Schmitt, Bing Ren

Cleveland Clinic: Ming Hu

■ FHCRC: Alex P. Reiner



**Josh** 

Ming

**Bing** 

**URL**:

http://yunliweb.its.unc.edu/hugin/

Please use it!!
We update & maintain!!

# THANK YOU!!