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Abstract

Prior GWAS have identified loci associated with red blood cell (RBC) traits in populations of

European, African, and Asian ancestry. These studies have not included individuals with an

Amerindian ancestral background, such as Hispanics/Latinos, nor evaluated the full spec-

trum of genomic variation beyond single nucleotide variants. Using a custom genotyping

array enriched for Amerindian ancestral content and 1000 Genomes imputation, we per-

formed GWAS in 12,502 participants of Hispanic Community Health Study and Study of

Latinos (HCHS/SOL) for hematocrit, hemoglobin, RBC count, RBC distribution width

(RDW), and RBC indices. Approximately 60% of previously reported RBC trait loci
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generalized to HCHS/SOL Hispanics/Latinos, including African ancestral alpha- and beta-

globin gene variants. In addition to the known 3.8kb alpha-globin copy number variant, we

identified an Amerindian ancestral association in an alpha-globin regulatory region on chro-

mosome 16p13.3 for mean corpuscular volume and mean corpuscular hemoglobin. We

also discovered and replicated three genome-wide significant variants in previously unre-

ported loci for RDW (SLC12A2 rs17764730, PSMB5 rs941718), and hematocrit (PROX1

rs3754140). Among the proxy variants at the SLC12A2 locus we identified rs3812049,

located in a bi-directional promoter between SLC12A2 (which encodes a red cell membrane

ion-transport protein) and an upstream anti-sense long-noncoding RNA, LINC01184, as the

likely causal variant. We further demonstrate that disruption of the regulatory element har-

boring rs3812049 affects transcription of SLC12A2 and LINC01184 in human erythroid pro-

genitor cells. Together, these results reinforce the importance of genetic study of diverse

ancestral populations, in particular Hispanics/Latinos.

Author summary

Red blood cells (RBC) are important for transport of oxygen to tissues throughout the

body. Distribution of RBC traits differs by ethnicity and gender, and both genetic and

acquired factors likely contribute to these differences. Prior genetic studies have identified

physical regions of the genome associated with RBC traits in populations with European,

African, and Asian ancestry. These studies have not included individuals with ancestry

from the American continents (Amerindian ancestry), such as Hispanics/Latinos. In an

analysis of RBC traits in up to 19,608 Hispanics/Latinos, we identified an Amerindian-

ancestry genetic association in a known alpha-globin regulatory region. We also identified

three new RBC trait associations, including a regulatory variant of SLC12A2 that encodes

a RBC membrane ion-transport protein. Experimental disruption of this regulatory ele-

ment led to reduced expression of both SLC12A2 and an adjacent long non-coding RNA

in human erythroid progenitor cells. These results contribute to understanding the physi-

ology of red blood cells and reinforce the importance of genetic study of diverse ancestry

populations, in particular Hispanics/Latinos.

Introduction

Red blood cell (RBC) development and maintenance are critical for transport of oxygen to

tissues throughout the body. Several parameters commonly measured in clinical blood

count evaluations are used to characterize RBC: hematocrit (HCT), hemoglobin (HGB), RBC

count, mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration

(MCHC), mean corpuscular volume (MCV), and red cell distribution width (RDW) (detailed

trait description provided in S1 Table). RBC traits differ by self-reported ancestry, and both

genetic (e.g., inherited hemoglobin variants) and acquired (e.g., iron deficiency, kidney dis-

ease) factors contribute to these ethnic differences[1, 2]. Quantitative RBC parameters are

also polygenic traits that exhibit moderate to high heritability (trait-specific h2 between 40%

and 90%)[3–5]. Over 80 genomic regions have been associated with one or more RBC traits

through genome-wide association studies (GWAS), performed primarily in European- and, to

a lesser extent, Asian- and African-descent populations[6–14].

GWAS of red blood cell traits in HCHS/SOL Hispanics/Latinos
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Hispanics/Latinos are ethnically heterogeneous, with admixture of European, West African,

and Amerindian ancestral populations. In general, RBC trait values among Hispanics/Latinos

have been reported to be similar to those among non-Hispanic whites, though certain types of

congenital and acquired anemias are more common among Hispanics/Latinos[15–19]. As

with most complex traits, GWAS for discovery or generalization of RBC trait loci has yet to be

performed in Hispanics/Latinos or other populations with Amerindian ancestry. In the cur-

rent study, we performed genome-wide association analysis of seven quantitative RBC traits in

12,502 participants ascertained by the Hispanic Community Health Study/Study of Latinos

(HCHS/SOL) and replicated any new association findings discovered in HCHS/SOL in three

independent samples of Hispanic/Latino Americans.

Results

The demographic characteristics and RBC trait distributions of the 12,502 Hispanic/Latino

HCHS/SOL participants are summarized in S2 Table. Genomic inflation factors for the seven

RBC traits ranged from 1.015 (MCHC) to 1.054 (RDW), indicating adequate control of popu-

lation stratification (S1 Table). Overall, 24 loci were significantly associated with one or more

RBC traits in HCHS/SOL (Table 1 and S1 and S2 Figs). The number of distinct genomic

regions associated with each trait were 4 loci for HCT, 4 for HGB, 6 for RBC count, 8 for

RDW, 9 for MCH, 5 for MCHC, and 9 for MCV. Association results and allele frequencies of

lead SNPs for each genome-wide-significant trait-locus association are presented for six

genetic subgroups comprising the HCHS/SOL study population in S3 Table.

Genomic loci previously known to be associated with RBC traits and

generalization to Hispanics/Latinos

Of the 24 genomic regions harboring variants that reach genome-wide significance for associa-

tion with RBC traits in HCHS/SOL, 17 have been previously found to associate with RBC traits

either through GWAS and/or Mendelian RBC disorders. Genomic regions and variants previ-

ously implicated in Mendelian RBC disorders include the African ancestral alleles for sickle

cell trait/anemia or hemoglobin S (HBB rs334); hemoglobin C (HBB rs33930165); the common

African form of G6PD A- deficiency (rs1050828); the 3.8kb alpha-globin gene deletion respon-

sible for alpha-thalassemia trait (esv2676630); and a proxy SNP (rs2032451) for the European

hereditary hemochromatosis (HFE) p.H63D allele.

At 13 of the 17 previously reported RBC loci, the lead variant for the trait detected in

HCHS/SOL Hispanics was the same as the previously reported index SNP in European-, Afri-

can-, or Asian-descent individuals or a strong linkage disequilibrium (LD) proxy (r2 >0.8) for

the variant, where LD was measured in the relevant ancestral population in 1000 Genomes.

There were four cases in which the lead variant in HCHS/SOL was not an LD equivalent to

the reported index SNP. The first, rs607203 (MAF = 0.07), is a lead SNP for MCH and MCV

association loci located within a DNaseI hypersensitive region on chromosome 6q24 approxi-

mately 146kb upstream of CITED2. Rs607203 is not in strong LD (HCHS/SOL r2 between

0.06 and 0.11) with any of the previously reported CITED2 European or Japanese index SNPs

(rs590856, rs643381, rs628751, rs668459, rs632057), and therefore appears to represent an

independent signal in the CITED2 locus. Among 1000 Genomes super-populations, the fre-

quency of rs607203 is highest in African (AFR) (MAF = 0.14) populations; uncommon in

European (EUR), American admixed (AMR), and South Asian (SAS) (MAF<0.05) popula-

tions; and monomorphic in East Asian (EAS) populations. A second exception is rs4714548,

an intronic SNP of CCND3 associated with MCV. This HCHS/SOL lead SNP exhibits weak or

no LD (HCHS/SOL r2<0.1) with any of the CCND3 index SNPs previously reported in

GWAS of red blood cell traits in HCHS/SOL Hispanics/Latinos
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Table 1. Genetic variants significantly associated with red blood cell traits in HCHS/SOL Hispanics/Latinos.

Trait Status Annotated Gene(s)

(annotation)

rsID/CNV chr: position CA oevar CAF Beta (SE) p-value 1000 Genomes Allele

Frequencies

AFR AMR EAS SAS EUR

HCT Novel PROX1 (intronic) rs3754140 chr1:

214003037

T 1.03 0.61 -0.24 (0.05) 5.7x10-8 0.71 0.55 0.69 0.83 0.73

Known PRKCE (intronic) rs17034641 chr2: 46372644 G 1.00 0.86 0.36 (0.06) 2.6x10-9 0.79 0.87 0.94 0.79 0.85

Known HBB (missense) rs334 chr11: 5248232 T 0.86 0.99 1.32 (0.20) 1.3x10-10 0.90 >0.99 1.00 1.00 1.00

Known TMPRSS6 (missense) rs855791 chr22:

37462936

A 1.03 0.44 -0.38 (0.04) 1.1x10-10 0.10 0.51 0.57 0.54 0.39

HGB Known PRKCE (intronic) rs17034641 chr2: 46372644 G 1.00 0.86 0.12 (0.02) 3.2x10-8 0.79 0.87 0.94 0.79 0.85

Known HFE (intronic) rs2032451 chr6: 26092170 G 1.01 0.88 -0.12 (0.02) 3.1x10-8 0.99 0.88 0.97 0.93 0.83

Known HBA1 / HBA2 (intergenic) 3.8kb del d chr16: 223447 3.8kb

del

NA 0.04 -0.46 (0.04) 1x10-32 0.16 0.02 0.02 0.02 0.004

Known TMPRSS6 (missense) rs855791 chr22:

37462936

A 1.03 0.44 -0.15 (0.02) 6.0 x10-23 0.10 0.51 0.57 0.54 0.39

RBC

Count

Known KIT (intergenic) rs218265 chr4: 55408999 T 1.07 0.67 0.033

(0.01)

3.6x10-10 0.75 0.66 0.65 0.73 0.85

Known HBS1L/MYB (intergenic) rs34164109 chr6:

135100038

C 1.00 0.84 0.054

(0.01)

3.6x10-17 0.86 0.84 0.76 0.89 0.74

Known TFR2 (intronic) rs2075672 chr7:

100642673

A 1.03 0.30 0.028

(0.01)

1.4x10-8 0.34 0.29 0.23 0.33 0.38

Known HBA1 / HBA2 (intergenic) 3.8kb del d chr16: 223447 3.8kb

del

NA 0.04 0.29 (0.01) 4.4x10-136 0.16 0.02 0.02 0.02 0.004

Novel RBFOX3 (intronic) rs76539504 chr17:

79139365

T 1.02 0.96 0.066

(0.01)

1.4x10-8 0.81 0.96 1.00 0.99 0.97

Knowne G6PD (missense) rs1050828 chrX:

153764217

C 1.04 0.98 0.13 (0.01) 1.80x10-18 0.87 0.99 1.00 1.00 1.00

RDW Novel N/A (intergenic) rs6685034 chr1:

193954300

C 1.02 0.03 -0.02

(0.003)

4.8x10-8 0.15 0.01 0.00 0.00 0.00

Knowna SLC12A7 (intronic) rs4565255 chr5: 1109568 T 0.98 0.60 0.007

(0.001)

3.1x10-10 0.71 0.63 0.69 0.57 0.42

Novel SLC12A2 (promoter) rs17764730 chr5:

127357526

T 1.02 0.16 -0.011

(0.001)

8.8x10-13 0.02 0.16 0.35 0.37 0.21

Novel PSMB5 (intronic) rs7147308 chr14:

23497629

C 1.10 0.70 -0.007

(0.001)

5.8x10-9 0.13 0.79 0.94 0.60 0.70

Novel MCTP2 (intergenic) rs111473449 chr15:

95330055

G 0.99 0.97 -0.018

(0.003)

3.2x10-8 0.84 0.97 1.00 1.00 >0.99

Known HBA1 / HBA2 (intergenic) 3.8kb del d chr16: 223447 3.8kb

del

NA 0.04 0.05 (0.00) 2.4x10-70 0.16 0.02 0.02 0.02 0.004

Knowna TMPRSS6 (missense) rs855791 chr22:

37462936

A 1.03 0.44 0.007

(0.001)

2.7x10-11 0.10 0.51 0.57 0.54 0.39

Knowne G6PD (missense) rs1050828 chrX:

153764217

C 1.04 0.98 0.04

(0.003)

1.50x10-29 0.87 0.99 1.00 1.00 1.00

MCH Known TFRC (intergenic) rs12634180c chr3:

195825756

G 0.81 0.82 -0.22 (0.04) 2.0x10-8 0.91 0.79 NA NA 0.81

Known KIT (intergenic) rs218265 chr4: 55408999 T 1.07 0.67 -0.21 (0.03) 3.3x10-12 0.75 0.66 0.65 0.73 0.85

Known HFE (intronic) rs2032451 chr6: 26092170 G 1.01 0.88 -0.29 (0.04) 3.5x10-12 0.99 0.88 0.97 0.93 0.83

Known CCND3 (intronic) rs9367125 chr6:41987544 G 0.99 0.92 0.29 (0.05) 1.3x10−8 0.96 0.94 0.74 0.86 0.88

Known HBS1L / MYB (intergenic) rs9389268 chr6:

135419631

A 1.00 0.83 -0.22 (0.04) 7.9x10-10 0.78 0.84 0.76 0.89 0.74

Known CITED2 (intergenic) rs607203 chr6:

139841653

T 1.02 0.07 0.33 (0.06) 1.7x10-9 0.24 0.05 0.00 0.02 0.04

Known HBA1 / HBA2 (intergenic) 3.8kb del d chr16: 223447 3.8kb

del

NA 0.04 -2.60 (0.06) <2.5x10-

231

0.16 0.02 0.02 0.02 0.004

Known TMPRSS6 (missense) rs855791 chr22:

37462936

A 1.03 0.44 -0.34 (0.03) 1.0x10-34 0.10 0.51 0.57 0.54 0.39

Knowne CTAG2 / GAB3 (intergenic) rs146474788 chrX:

153893403

G 1.04 0.98 -0.56 (0.08) 1.50x10-29 0.85 0.99 >0.99 1.00 1.00

(Continued)
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Europeans (rs9349204, rs9349205) or Japanese (rs3218097) populations. Additionally,

we report novel associations for two of the variants significantly associated with RDW in

HCHS/SOL: SLC12A7 rs4565255 and TMPRSS6 rs855791. SLC12A7 rs4565255 is a proxy

for rs4580814, which was previously associated with MCHC in Japanese populations[9].

TMPRSS6 rs855791 has been previously associated with multiple red cell and iron-related phe-

notypes, but not with RDW[6, 8, 9].

To formally assess whether variants previously associated with RBC traits in populations of

European, Asian, and African ancestry generalized to HCHS/SOL Hispanics/Latinos, we used

a directional FDR approach. Of 251 unique published SNP associations with any of the seven

RBC traits, 146 (58%) generalized to HCHS/SOL (S4 Table). The proportion of loci general-

ized varied by RBC trait: 5 of 13 HCT variants generalized (38% of SNPs, 42% of loci); 17 of 42

HGB variants generalized (40% of SNPs, 37% of loci); 24 of 33 RBC variants generalized (73%

of SNPs, 61% of loci); 38 of 61 MCH variants generalized (62% of SNPs, 61% of loci); 12 of 25

Table 1. (Continued)

Trait Status Annotated Gene(s)

(annotation)

rsID/CNV chr: position CA oevar CAF Beta (SE) p-value 1000 Genomes Allele

Frequencies

AFR AMR EAS SAS EUR

MCHC Known SMIM19 (intergenic) rs1349471 chr8: 42598868 C 1.05 0.44 -0.11 (0.02) 3.0x10-11 0.17 0.48 0.43 0.35 0.41

Known HBB (missense) rs334 chr11: 5248232 T 0.86 0.99 0.67 (0.08) 3.6x10-16 0.90 >0.99 1.00 1.00 1.00

Knownb HBB (missense) rs33930165 b chr11: 5248233 C 0.85 0.997 -1.86 (0.18) 6.8 x10-24 0.99 1.00 1.00 1.00 1.00

Known HBA1 / HBA2 (intergenic) 3.8kb del d chr16: 223447 3.8kb

del

NA 0.04 -0.82 (0.04) 6.7x10-81 0.16 0.02 0.02 0.02 0.004

Known PIEZO1 (enhancer) rs551118 chr16:

88789676

C 0.96 0.48 0.14 (0.02) 3.9x10-14 0.26 0.50 0.38 0.40 0.41

Known KCTD17 (enhancer) rs9610638 chr22:

37049628

T 1.00 0.43 -0.14 (0.02) 7.0x10-17 0.06 0.49 0.58 0.56 0.39

MCV Known KIT (intergenic) rs218265 chr4: 55408999 T 1.07 0.67 -0.58 (0.08) 8.9x10-13 0.75 0.66 0.65 0.73 0.85

Known CCND3 (intronic) rs4714548 chr6: 41983431 A 1.02 0.18 -0.58 (0.10) 1.4x10-9 0.36 0.16 0.35 0.24 0.13

Known HBS1L / MYB (intergenic) rs9389268 chr6:

135419631

A 1.00 0.83 -0.58 (0.10) 3.0x10-9 0.78 0.84 0.76 0.89 0.74

Known CITED2 (intergenic) rs607203 chr6:

139841653

T 1.02 0.07 0.94 (0.15) 1.9x10-10 0.24 0.05 0.00 0.02 0.04

Novel IDO2 (intergenic) rs141848064 chr8: 39876650 G 1.03 0.98 -1.41 (0.25) 1.1x10-8 0.84 0.98 1.00 1.00 1.00

Known HBB (missense) rs334 chr11: 5248232 T 0.86 0.99 3.46 (0.36) 1.1x10-22 0.90 >0.99 1.00 1.00 1.00

Known HBA1 / HBA2 (intergenic) 3.8kb del d chr16: 223447 3.8kb

del

NA 0.04 -5.81 (0.18) 2.5x10-231 0.16 0.02 0.02 0.02 0.004

Known HBA1 / HBA2 (intergenic) 3.8kb dup d chr16: 223447 3.8kb

dup

NA 0.02 -1.42 (0.25) 1.4x10-08 NA NA NA NA NA

Known TMPRSS6 (missense) rs855791 chr22:

37462936

A 1.03 0.44 -0.64 (0.07) 1.6x10-17 0.10 0.51 0.57 0.54 0.39

Knowne G6PD (missense) rs1050828 chrX:

153764217

C 1.04 0.98 -1.92 (0.22) 1.30x10-17 0.87 0.99 1.00 1.00 1.00

Bolding denotes novel associations.
a indicates previous association with other RBC traits, but not with RDW.
b previously reported low-frequency allele (MAF<0.01) observed as significant in this study.
c Allele frequencies provided from HaploReg v4.1 as frequencies not reported in 1000 Genomes.
d The re-typed structural variant calls determined using Genvisis software.
e Analysis on the X chromosome included X chromosome-based eigenvectors and relatedness matrix (sex-stratified results presented in S10 Table).

1000 Genomes superpopulations: AFR = African, AMR = American continents, EUR = European, EAS = East Asian, and SAS = South Asian. CA, coded

allele; CAF, coded allele frequency; CNV, copy number variant; SE, standard error; HCT, hematocrit; HGB, hemoglobin; MCH, mean corpuscular

hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; RBC, red blood cell count; RDW, red cell distribution

width."oevar" is the imputation quality defined as the ratio of the observed variance of imputed dosage to the expected binomial variance.

https://doi.org/10.1371/journal.pgen.1006760.t001
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MCHC variants generalized (48% of SNPs, 33% of loci); 49 of 76 MCV variants generalized

(64% of SNPs, 58% of loci); and the only variant previously associated with RDW generalized.

Discovery and replication of new loci associated with RBC traits

The seven remaining genome-wide significant variants in the HCHS/SOL discovery sample

were at previously undetected loci (Table 1), and three of these variants replicated in a meta-

analysis of three independent Hispanic/Latino samples (Table 2, S2 Table). The replicated loci

are (1) chromosome 1q32.3 PROX1 rs3754140 (MAF = 0.39, replication p = 5.2x10-3) associated

with HCT; (2) chromosome 5q23.3 SLC12A2 rs17764730 (MAF = 0.18, replication p = 1.6x10-3)

associated with RDW; and (3) chromosome 14q11.2 PSMB5 rs7147308 (MAF = 0.30, replica-

tion p = 1.4x10-5) associated with RDW. The four loci that did not meet the Bonferroni-cor-

rected replication threshold (P< 0.0071) are (1) RBFOX3 rs76539504 associated with RBC

count (MAF = 0.04, replication p = 0.31); (2) MCTP2 rs111473449 (MAF = 0.03, replication

p = 0.037); (3) an intergenic variant on chromosome 1q31 (rs6685034, MAF = 0.41, replication

p = 0.26) associated with RDW; and (4) IDO2 rs141848064 (MAF = 0.02, replication p = 0.72)

associated with MCV.

Functional analysis of new loci associated with RBC traits

At each of the three replicated discovery RBC-associated loci, we evaluated the functional geno-

mic annotation and regulatory potential of the lead variant and any proxy variants (r2�0.8 in

HCHS/SOL) in erythroid cells to determine the most likely causal variant(s). We identified the

following variants as the most likely functional candidates: three intronic SNPs of PROX1
(rs7541039, rs7517701, and rs4282786) located within the same erythroid enhancer; one SNP 3’

of PSMB5 (rs11846575); and rs3812049, which is located in a bi-directional promoter between

SLC12A2 and an anti-sense long noncoding RNA, LINC01184 (S5 and S6 Tables).

We next performed mutagenesis analysis of the regions containing the PROX1, PSMB5,

and SLC12A2 candidate causal variants using CRISPR-Cas9 genome editing to disrupt the

Table 2. Replication of HCHS/SOL GWAS discovery loci in Hispanic/Latino populations.

Trait Locus rsID Discovery MESA Results MSSM Results WHI Results Replication Meta-

analysis

Coded

Allele

Beta (SE) p-value Beta (SE) p-

value

Beta (SE) p-

value

Beta (SE) p-

value

Beta (SE) p-value

HCT PROX1 rs3754140 T -0.24

(0.05)

5.7x10-8 -0.27

(0.18)

0.14 -0.49

(0.28)

0.08 -0.148

(0.072)

0.048 -0.18

(0.07)

5.2x10-3

RBC RBFOX3 rs76539504 T 0.07

(0.01)

1.4x10-8 -0.163

(0.066)

0.16 0.062

(0.051)

0.23 -0.044

(0.048)

0.36 -0.03

(0.03)

0.31

RDW Chr 1q31 rs6685034 A -0.02

(0.003)

4.8x10-8 0.019

(0.012)

0.14 0.004

(0.067)

0.96 -0.006

(0.018)

0.73 0.011

(0.010)

0.26

RDW SLC12A2 rs17764730 T -0.01

(0.001)

8.8x10-13 -0.007

(0.005)

0.18 -0.049

(0.036)

0.17 -0.012

(0.004)

0.005 -0.011

(0.003)

1.6x10-3

RDW PSMB5 rs7147308 C -0.007

(0.001)

5.8x10-9 -0.010

(0.005)

0.04 -0.031

(0.027)

0.25 -0.014

(0.004)

2x10-4 -0.013

(0.003)

1.4x10-5

RDW MCTP2 rs111473449 G -0.02

(0.003)

3.2x10-8 -0.033

(0.011)

0.004 0.102

(0.056)

0.07 -0.004

(0.012)

0.76 -0.017

(0.008)

0.037

MCV IDO2 rs141848064 T 1.41

(0.25)

1.1x10-8 0.336

(1.02)

0.74 N/A N/A -0.742

(0.935)

0.43 -0.248

(0.688)

0.72

MESA: Multiethnic Study of Atherosclerosis, n = 781 to 784; MSSM: Icahn Mt. Sinai School of Medicine, n = 2,621 to 2,785; WHI: Women’s Health Initiative,

n = 1,205 or 3,537 (rs3754140 only). N/A: not applicable.

https://doi.org/10.1371/journal.pgen.1006760.t002
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respective putative regulatory elements in human umbilical cord-derived erythroid progenitor

(HUDEP-2) cells (oligonucleotide sequences described in S7 Table). At the SLC12A2 locus, a

single guide RNA was expressed along with Cas9 to produce indels surrounding the predicted

functional SNP rs3812049. These edits resulted in a substantial decrease in expression of both

SLC12A2 and LINC01184 (Fig 1). Differentiation of erythroid cells was not obviously affected

by disruption of the bi-directional promoter site. In a separate mutagenesis experiment, dele-

tion of the third exon of LINC01184 resulted in a 3-fold reduction in LINC01184 expression,

but did not appear to exhibit substantial cis effects on SLC12A2 expression (S3 Fig). While the

candidate regulatory region of PROX1 is located within an erythroid enhancer, PROX1 itself is

not expressed in human erythroid cells including HUDEP-2, suggesting that the enhancer ele-

ment might regulate a distal target. However, a 700 base-pair biallelic deletion of the PROX1
intronic region containing rs7541039, rs7517701, and rs4282786 did not show any effect on

HUDEP-2 cell maturation or on expression of neighboring genes SMYD2 and CENPF, both

located within 300 kb of the putative enhancer element (S4 Fig). Similarly, deletion of the

putative enhancer downstream of PSMB5 did not significantly alter expression of PSMB5 or

neighboring genes (PRMT5, HAUS4, C14ORF93, and ACIN1) that are both expressed in ery-

throid precursors and located within the same topologically associated domain of K562 cells

(S4 Fig).

Additional analysis of the alpha-globin copy number variant

Since the quality of structural variants imputed from 1000 Genomes may be lower than single

nucleotide variants, we applied a specialized copy number variant (CNV) calling algorithm to

re-type the key 3.8kb alpha-globin structural variant using raw probe intensity data from the

Fig 1. Small indels around rs3812049 reduce expression of both SLC12A2 and LINC01184 in HUDEP-2

cells. HUDEP-2 human erythroid precursor cells were transduced with lentivirus expressing Cas9 and a

guide RNA, either nontargeting (NT) or targeting cleavage at rs3812049, and selected with antibiotics. Seven

days after transduction, expression of SLC12A2 and LINC01184 in the population of edited cells was

measured by quantitative reverse transcription PCR. Experiment was performed in biologic triplicate. Bars

indicate means and error bars indicate standard deviation. T-tests showed significant differences in

expression of both SLC12A and LINC01184 upon introduction of indels around rs3812049 (p < 0.01 for each

comparison to unedited controls).

https://doi.org/10.1371/journal.pgen.1006760.g001
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custom 2.5M Illumina genotyping array used in HCHS/SOL, as described under Methods.

Comparison of the CNV genotype calls to those for esv2676630 imputed from 1000 Genomes

revealed that genotype calling using imputation appears to result in “under-calling” of the

3.8kb deletion, especially homozygous deletions (S8 Table). In addition, there are a number of

individuals in HCHS/SOL who carry a 3.8kb duplication (3 or 4 copies of the structural vari-

ant), which are mis-called by 1000 Genomes imputation as wild-type. Notably, the improve-

ment in genotype accuracy with the CNV calling algorithm resulted in a nearly two-fold

increase in effect size for MCH and MCV (Table 3) compared to 1000 Genomes imputation

(S9 Table). Therefore conditional association analyses were performed using alpha-globin

deletion/duplication genotypes derived from the CNV calling algorithm.

Conditional analysis and identification of secondary, independent

association signals

To identify additional independent association signals at known or novel RBC-associated loci,

we performed step-wise conditional regression analyses in which we adjusted for the index vari-

ant at each genome-wide significant locus. The analysis was repeated with adjustment for each

independently associated single variant or structural variant until no further independent sig-

nals were identified within that genomic region. Using a significance threshold of α = 5x10-8,

we identified additional independent variants associated with one or more RBC traits (Table 3)

in two genomic regions. At the beta-globin locus on chromosome 11p15 containing the index

SNP rs334 (sickle cell variant), there was an additional intergenic variant (rs113342804) inde-

pendently associated with MCV. At the terminal region of chromosome 16p13 containing the

alpha-globin locus, we identified two additional low-frequency variants—HBM-HBA2
rs145546625 (or its proxy HBM rs148323035 for MCH and MCV) and the 3.8kb alpha-globin

duplication (for MCV)—independently of the 3.8kb alpha-globin deletion.

Table 3. Independent signals at GWAS loci identified by conditional analysis of HCHS/SOL participants.

Trait Locus Location rsID chr: position Coded/Alt

Allele

CAF oevar CRb beta

(SE)

p-value 1000 Genomes Allele

Frequencies

EUR AFR AMR SAS EAS

MCH 16p13.3 3.8kb deletiona esv2676630 chr16:223447 Deletion/

Reference

0.04 NA 1 -2.60

(0.06)

<2.5x10-231 0.004 0.16 0.02 0.02 0.02

2.3kb 5’ of

HBA2

rs145546625 chr16:220583 C/T 0.93 0.99 3 0.39

(0.06)

2.70x10-12 1.00 1.00 0.92 1.00 1.00

MCV 11p15.4 HBB

(missense)

rs334 chr11:5248232 T/A 0.99 0.86 1 2.42

(0.37)

3.7x10-11 1.00 0.90 0.99 1.00 1.00

MMP26-OR51

genes

(intergenic)

rs113342804 chr11:4953240 A/G 0.99 1.01 2 2.28

(0.35)

9.4x10-11 1.00 0.96 1.00 1.00 1.00

16p13.3 3.8kb deletiona esv2676630 chr16:223447 Deletion/

Reference

0.04 NA 1 -5.81

(0.18)

2.5x10-231 0.004 0.16 0.02 0.02 0.02

3.8kb

duplicationa
NA chr16:223447 Duplication/

Reference

0.02 NA 1 -1.42

(0.25)

1.4x10-08 NA NA NA NA NA

HBM (splice

donor)

rs148323035 chr16:216090 T/C 0.93 0.99 3 1.07

(0.16)

5.60x10-12 1.00 1.00 0.92 1.00 1.00

Rows in bold indicate variants that are Amerindian specific. 1000 Genomes super-populations European (EUR), African (AFR), American (AMR), South

Asian (SAS) and East Asian (EAS), were examined to determine global allele frequencies. "oevar" is the imputation quality defined as the ratio of the

observed variance of imputed dosage to the expected binomial variance.
a The re-typed structural variant calls determined using Genvisis software.
b CR: during sequential conditional analysis, the round number in which the variant was conditioned for.

https://doi.org/10.1371/journal.pgen.1006760.t003
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Admixture mapping analysis

Several variants associated with RBC traits in the HCHS/SOL population are highly differenti-

ated across ancestral populations. The HBB rs334, HBB rs33930165, esv2676630 alpha-globin

3.8kb gene deletion, and G6PD rs1050828 lead variants are derived from an African ancestral

background, while the HFE hemochromatosis variant rs2032451 (proxy of rs1799945 p.H63D)

is common among Europeans and Amerindian populations and much less common among

Asians and West Africans. In addition, we note that the two newly reported independent asso-

ciation signals at the chromosome 16 alpha-globin locus—rs148323035/rs145546625 (Table 3)

and the 3.8kb duplication—appear to be more common among populations of Amerindian

ancestry[20, 21]. To assess whether any additional genomic regions might contain ancestrally

differentiated SNPs associated with RBC traits, we performed a genome-wide admixture-map-

ping scan in HCHS/SOL for discovery analysis in each RBC trait. Admixture mapping in

HCHS/SOL only detected associations already reported in the initial association testing: the

chromosome 11p15 beta-globin region (for MCV); the chromosome 16p13 alpha-globin

region (for RBC, HGB, MCV, MCH, MCHC, and RDW); and the RDW association on chro-

mosome 14q11, which corresponds to the PSMB5 association signal discovered in the HCHS/

SOL GWAS (S5 Fig). The PSMB5 index SNP shows large inter-continental allele frequency

differences (rs7147308 T allele frequency is 0.87 in AFR, 0.40 in SAS, 0.30 in EUR, 0.21 in

AMR, and 0.06 in EAS 1000 Genomes populations).

Discussion

We performed a GWAS of seven red blood cell traits in a diverse subsample of approximately

12,500 Hispanic/Latino participants of HCHS/SOL from across the continental U.S. We dis-

covered and replicated three genome-wide significant variants (SLC12A2 rs17764730 and

PSMB5 rs941718 for RDW, and PROX1 rs3754140 for HCT). We also showed that common

African ancestral hemoglobin variants (beta-globin Hb S and Hb C missense variants rs334

and rs33930165, and alpha-globin 3.8kb thalassemia structural variant) and the African G6PD

A- variant are associated with variation in RBC traits among the U.S. Hispanic/Latino popula-

tion. Overall, 58% of previously identified GWAS loci for RBC traits generalized to HCHS/

SOL. We additionally provide a more detailed characterization of allelic heterogeneity at the

alpha- and beta-globin loci, including a newly identified Amerindian ancestral variant that

overlaps a known regulatory region of the alpha-globin gene cluster.

The HCT index SNP rs3754140 is located within a putative enhancer region positioned in

the second intron of PROX1 and is in high LD (r2 >0.8) with approximately 30 other intronic

PROX1 variants (S5 and S6 Tables). Some of these intronic proxy SNPs (rs7541039, rs7517701,

and rs4282786) occur within putative regulatory regions in erythroleukemia or proerythroblast

cells, have CADD phred score>10, and therefore represent likely functional candidates. All

three of these proxy SNPs are located in a putative enhancer element that exhibits DNaseI

hypersensitivity in fetal proerythroblasts and K562 cells. Although enhancers can have distal tar-

get genes, a potential target is the enhancer-harboring gene PROX1, which has been reported as

a negative regulator of hematopoietic stem cell renewal and for which mutations have been

found in hematopoietic cell lines and primary blood malignancies[22, 23]. PROX1 encodes

Prospero Homeobox 1, a widely expressed transcription factor involved in the development

and differentiation of tissues such as endothelial lymphatic vessels, liver, retina, and pancreas

[24]. Several PROX1 variants (e.g., rs340874, rs340839) located in the 5’ UTR of PROX1 or adja-

cent antisense noncoding RNA have been associated with metabolic traits such as fasting glu-

cose, insulin resistance, diabetes, and triglyceride levels[25–27]. The HCT-associated signal we

detected in Hispanics/Latino is independent of the previously reported PROX1 metabolic trait
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association signal. Molecular analysis, including biallelic deletion of a 700bp region surrounding

rs7541039 in the second intron of PROX1, showed no effect on transcription of PROX1—which

does not appear to be expressed in human erythroid precursors—or neighboring genes SMYD2
and CENPF[28]. In light of this information, further investigation of the role of the putative

PROX1 intronic regulatory region and associated genetic variants in hematopoiesis—specifically

RBC production—is warranted.

The RDW-associated locus on chromosome 14q11 is located in a gene-rich region. The

lead SNP rs941718 and several LD proxies are non-coding variants within or near PSMB5,

which encodes a 20S core proteasome subunit. From the standpoint of RBC biology, the ubi-

quitin proteasomal system may be particularly important during erythroid maturation and

hemoglobin synthesis to control globin-chain balance and limit potential toxicities of unstable

free globin chains[29]. The lead SNP rs941718 is also a blood cis-eQTL for nearby genes

HAUS4, MRPL52, PRMT5-AS1, and PRMT5 [30, 31] and has a CADD phred score of 15.8

(S5 and S6 Tables). PRMT5 encodes an arginine methyltransferase involved in binding to

the γ-globin promoter and silencing fetal hemoglobin expression, and therefore represents

an additional potential mechanism for influencing RBC phenotype[32, 33]. The LD proxy

rs11846575, located just 3’ of PSMB5, is proximal to a highly tissue-specific erythroid enhancer

[34–36] and therefore merits further functional experimentation in the context of erythroid

development and hemoglobin synthesis.

The other newly reported RDW-association signal is located on chromosome 5q23 and

spans ~100kb including SLC12A2 and an upstream long non-coding RNA (LINC01184) on the

antisense strand. SLC12A2 (which codes for the protein NKCC1) is a sodium-, potassium-,

and chloride-ion transporter membrane protein involved in cell-volume regulation and main-

tenance in kidney, RBC, and other cell types[37]. Genetic variation in other RBC membrane

ion-transport proteins (e.g., PIEZO1, SLC4A1) has been associated with inter-individual vari-

ability in RBC traits[13]. The lead SNP at the SLC12A2 locus (rs17764730) lies within an exon

of LINC01184. RNA-Seq data indicates that both SLC12A2 and LINC01184 are expressed in

erythroblasts[35]. The lead SNP is in high LD (r2 >0.8) with 23 other variants spanning

SLC12A2 and LINC01184 (S5 and S6 Tables). The strongest functional candidate SNP

(rs3812049, imputation quality score 1.006, r2 to lead SNP = 0.89) is located within a bi-direc-

tional promoter region between the 5’ ends of SLC12A2 and LINC01184. Rs3812049 is also

positioned within an erythroid DNaseI hypersensitive region and is occupied by multiple tran-

scription factors, including the erythropoietic transcription factors GATA1 and TAL1 in

erythroblasts and EGR1 in K562 cells. These observations suggest the possibility that the anti-

sense transcript may be involved in erythrocyte maturation or maintenance by regulating

SLC12A2 in erythrocytes. While this paper was under review, additional variants in the region

of SLC12A2 and LINC01184 were reported to be associated with RDW in a predominantly

European samples[38, 39].

In human erythroid progenitor cells, we showed that small deletions in the bi-directional

promoter region, including directly overlapping the position of rs3812049, lead to reduced

expression of both SLC12A2 and LINC01184. Although formally demonstrating the function

of the underlying element, these results could be consistent with a model in which rs3812049

alleles differentially modulate promoter activity. While disruption of the bi-directional pro-

moter element did not reveal any differences in erythroid development, in vitro conditions

may incompletely model a complex trait like RDW that appears highly dependent on appro-

priate RBC maturation and clearance in vivo. Finally, it is interesting to note both the large

allele-frequency differences of the SLC12A2 index variant between African and non-African

populations (Table 1) and a report of lower erythrocyte NKCC1 protein activity in African

Americans compared to whites[40]. This is particularly noteworthy given the established role
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of NKCC1 in blood pressure regulation, kidney function, and RBC-volume maintenance, and

ethnic differences among these traits[37]. Based on our preliminary molecular results, both

SLC12A2 and LINC01184 should be examined further for their potential roles in erythrocyte

and non-erythroid traits.

The HCHS/SOL cohort represents a diverse subsample of Hispanics/Latinos across the U.S.,

with varying admixture proportions of three continental ancestry groups: Amerindians, Afri-

cans, and Europeans. The beta-globin hemoglobin S and hemoglobin C variants, alpha-globin

3.8kb deletion, and G6PD A- variant have previously been shown to contribute to RBC pheno-

typic variance among U.S. African Americans[41, 42]. Here, we establish that these same com-

mon African ancestral hemoglobin and G6PD gene variants are associated with quantitative

RBC phenotypes among U.S. Hispanics/Latinos. The heterozygous states of each of these inher-

ited RBC conditions are prevalent in populations in Africa, Asia, southern Europe, and South

and Central America, and confer a survival advantage against malaria[43]. Even though carriers

are generally without clinical sequelae, the heterozygous state of Hb C can induce RBC dehydra-

tion, resulting in a higher MCHC[44]. Alpha-globin deletion carriers[1] and sickle cell trait

carriers[45] may have lower levels of HCT, MCV, and MCH, and higher RBC counts, due to

ineffective erythropoiesis. We also show that the HFE p.H63D variant (rs1799945) is associated

with RBC phenotypes in Hispanics. Both C282Y and H63D hemochromatosis mutations are

prevalent in Northern Europeans, while H63D appears more broadly in North Africa, the Mid-

dle East, and less commonly in Asia. Emigration from Europe over the past 500 years likely

introduced C282Y and H63D to Americas and Oceania, leading to a frequency of H63D in

Amerindians and Hispanics/Latinos exceeds that of East and South Asians[46, 47].

At the alpha-globin locus, the 3.8kb deletion and duplication generally arise as a result of

misalignment of homologous sequences within HBA1 and HBA2 and unequal crossing over

during recombination. In U.S. Hispanics/Latinos, we observed that the 3.8kb alpha-globin

duplication was significantly associated with lower MCV independently of the 3.8kb deletion.

This may be due to imbalanced alpha/beta globin-chain synthesis, which may be exacerbated

by co-inheritance of other globin gene mutations[48]. Nonetheless, given the caveats of struc-

tural variant calling from genotype data, this finding requires additional validation using other

molecular techniques. We observed additional allelic heterogeneity at the alpha-globin locus, a

novel association signal for MCV and MCH with two Amerindian ancestral variants in high

LD (r2>0.99): the HBM splice-site variant rs148323035, and rs145546625, located ~2 kb

upstream of HBA2. HBM encodes hemoglobin mu, a globin chain similar to the oxygen high-

affinity delta-globin found in reptiles and birds that is transcribed in a tightly regulated fashion

in erythroid cells, particularly during the terminal differentiation stage[49]. The HBM splice

donor variant rs148323035 overlaps with a putative regulatory region that spans the transcrip-

tion start site and first intron of HBM and is DNase hypersensitive, occupied by GATA1 and

TAL1 in pro-erythroblasts[49].

Overall, generalization analysis revealed that 58% of RBC trait associations identified in

GWAS of European-, Asian-, or African-descent populations generalized to HCHS/SOL His-

panics/Latinos. Nearly half of the previously reported genomic regions associated with RBC

traits also had at least one variant associated one or more RBC traits in the HCHS/SOL, and

79% of individual SNPs previously reported as significant for more than one RBC trait general-

ized to HCHS/SOL for at least one of the previously reported traits. These results demonstrate

that the same loci are likely involved in RBC trait biology across global populations, whether

the functional variants are shared with or differ between ancestral groups. Failure to generalize

can occur for one of several reasons, including but not limited to: (1) coverage of the relevant

locus on the genotyping array is insufficient for the study population; (2) the originally pub-

lished variant was a false positive and that locus is not associated with the relevant trait; (3) the
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power for generalization in HCHS/SOL is low due to the HCHS/SOL study population size; or

(4) the power for generalization in HCHS/SOL may be low due to allelic frequency differences

between populations.

In summary, we report three novel loci associated with RBC traits in Hispanics/Latinos as

well as independent signals within two RBC trait-associated regions previously identified in

African descent populations. This includes an Amerindian ancestral variant at the alpha-glo-

bin gene cluster that overlaps a known alpha-globin regulatory region. This particular variant

is monomorphic among European, Asian, and African ancestral populations. Other Amerin-

dian-specific loci for platelet count or diabetes have been identified among Hispanics/Latinos

[50, 51]. These findings emphasize the importance of performing genetic studies in Hispanic/

Latino populations.

Methods

Study population

The HCHS/SOL is a cohort of 16,415 self-identified Hispanic/Latino persons aged 18–74 years

who were selected from households and census block groups in Chicago, IL, Miami, FL,

Bronx, NY, and San Diego, CA, as previously described[52]. Study participants self-identified

as having Hispanic/Latino background in one of six sub-groups, with the total study popula-

tion including 6,471 participants identifying as having a Mexican background, 2,728 as Puerto

Rican, 2,348 as Cuban, 1,730 as Central American, 1,460 as Dominican, and 1,068 as South

American. Individuals were recruited to HCHS/SOL between 2008 and 2011, and underwent a

baseline clinical exam that included clinical, lifestyle, and sociodemographic assessment[53].

Based on kinship coefficient among the genotyped individuals, the HCHS/SOL sample

includes 204 parent-offspring trios, 1,042 parent-offspring duos, 699 full-sibling pairs, and

numerous second- and third-degree relatives. The IRB committees for the HCHS Coordinat-

ing Center at UNC Chapel Hill, San Diego State University, University of Illinois at Chicago,

University of Miami, and Yeshiva University-Albert Einstein College of Medicine have all

reviewed and approved the informed consent documents and study protocol. Written and

signed informed consents in the language preferred by the participants are administered and

archived at each of the participating field centers. All participants in this publication from

HCHS/SOL have consented to use of their genetic and non-genetic data. Anyone not provid-

ing consent has been excluded from this analysis. Demographic characteristics and RBC trait

descriptive statistics for included study populations are presented in S2 Table.

Red blood cell trait measurement

Whole blood (approximately 58 to 76ml) was collected at Visit 1 for all consenting HCHS/

SOL participants by certified technicians trained at their respective field-center institutions.

Supplies and procedures were standardized across all field centers; 4ml of whole blood for

complete blood count (hemogram) was collected in a tube containing EDTA as an anticoagu-

lant. CBC values were measured from whole blood using an automated hematology analyzer

(Sysmex XE-2100, Sysmex America, Inc., Mundelein, IL 60060) at the central laboratory at the

University of Minnesota Medical Center, Fairview, in Minneapolis.

Exclusion criteria

Of the 16,415 individuals in the HCHS/SOL cohort study, 12,803 consented to genotyping and

passed QC. Several individuals from the genotyped subset were excluded from the analysis,

including individuals with predominantly Asian ancestry (n = 19), pregnant women (n = 8),
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participants with >5% immature granulocytes (n = 2), end-stage kidney disease (n = 46),

hematologic cancer (n = 28), or those undergoing cancer chemotherapy (n = 54). After exclu-

sions, a total 12,502 participants were included for HCT, HGB, RBC, MCH, and MCV; 12,501

for RDW; and 12,500 for MCHC.

Genotype data cleaning and QC

HCHS/SOL subjects who consented to genetic studies had DNA extracted from whole blood,

which was genotyped on the Illumina SOL HCHS Custom 15041502 B3 array. This array com-

prised the Illumina Omni 2.5M array (HumanOmni2.5-8v1-1) and additional custom content

[51, 54]. In order to capture more Amerindian variation, the Omni2.5M array was modified

by the addition of custom content comprised of ~150K SNPs selected from the CLM, MXL,

and PUR 1000 Genomes Phase I samples for higher informativeness to identify Amerindian

continental ancestry and for higher frequency in Amerindian genomic segments. Standard

quality assurance/quality control (QA/QC) methods for SNP- and sample-level quality were

applied. Quality metrics used to filter SNPs included Illumina/LA Biomed assay-failure indica-

tor, missing call rate (>2%), deviation from Hardy-Weinberg equilibrium (p<10−5), Mende-

lian errors (>3 in 1343 trios or duos), and duplicate sample discordance (>2 in 291 sample

pairs). Following genotyping QA/QC procedures, there were 12,803 unique study participants

and 2,232,944 SNPs available for imputation.

Imputation

For imputation, we used 1000 Genomes Project phase 1 reference panel and IMPUTE2 soft-

ware. Genotypes were initially pre-phased using SHAPEIT2 (v2.r644, www.shapeit.fr), and

subsequently imputed using IMPUTE2 software (v2.3.0, https://mathgen.stats.ox.ac.uk/

impute/impute_v2.html, last accessed Dec 2016)[54]. Only variants with at least two copies of

the minor allele present in any of the four 1000 Genomes continental panels were imputed,

yielding a total of 25,568,744 imputed variants (SNPs and indels). Imputed genotype dosages

were modeled on a continuous scale from 0 to 2 in order to account for genotype uncertainty.

Oevar is an imputation quality metric, defined as the ratio of the observed variance of imputed

dosage to the expected binomial variance. Variants with an oevar<0.3 were considered low

quality and excluded from analysis. Additional information about imputation and quality met-

rics is found in Conomos, et al[55].

Copy number variant genotyping and association analysis at the alpha-

globin locus

The SOL Illumina Omni 2.5M array contains five variants (rs2362744, rs4021971, rs4021965,

rs11639532, rs2858942) within the 3,811bp alpha-globin structural variant that can be used for

determining copy number. Raw probe intensity data (normalized X and Y values) were

exported from GenomeStudio as FinalReport files and then imported into the Genvisis soft-

ware package (http://genvisis.org, last accessed Jan 2017) in order to use its specialized CNV

calling algorithm. The first step in the process is to re-compute the Log R ratios (LRRs) using

centroids derived from only high-quality samples (standard deviation of the autosomal LRRs

<0.32 and genotype call rate>98%). LRRs from a set of ~50,000 curated markers were in-

cluded in a principal components analysis (PCA) to capture DNA quality, DNA quantity, and

batch effects. After regressing out 60 PCs from the raw intensity data, we recomputed LRRs

and determined the median LRR value for the five markers in the alpha-globin region. Copy-

number (0, 1, 2, 3, or 4) calling for the structural variant was then performed after visual

inspection of the cluster boundaries with median LRR on the x-axis and median absolute
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difference on the y-axis. For RBC phenotype association analyses, genotypes were then coded

and analyzed separately for the presence of the 3.8kb alpha-globin deletion (0, 1, or 2 copies)

and the presence of the 3.8kb alpha-globin duplication (0, 1, or 2 copies).

Replication samples

For replication of discovery associations in HCHS/SOL, 1000 Genomes Project phase

1-imputed GWAS data were utilized from three Hispanic/Latino study populations. These

included the Women’s Health Initiative (WHI) SNP Health Association Resource (SHARe)

project (n = 3,454), the Multi-Ethnic Study of Atherosclerosis (MESA) cohort (n = 782), and

Mount Sinai BioMe biobank (n = 2,854)[56]. Genotyping in WHI-SHARe and MESA was per-

formed using Affymetrix 6.0 array and imputation was performed with MaCH software[57].

BioMe was genotyped using the Illumina OmniExpressExome beadchip array, phasing was

performed using ShapeIt Version 2 release 644 and imputation with Impute version 2.3 using

the All 1000 Genomes Project phase 1 integrated variant set (Aug 2012) as the reference.

Statistical analyses in HCHS/SOL

All outcomes were analyzed using linear mixed-effect models (LMMs), with random effects

accounting for inter-individual correlation (due to either relatedness, shared household, or

census block group). The covariates (fixed effects) included age, sex, five principal compo-

nents, recruitment center, current cigarette smoking, sampling weight, and genetic analysis

group (Cuban, Dominican, Puerto Rican, Mexican, Central American and South American)

[54]. When performing analysis on the X chromosome, we included the first two X chromo-

some-specific principal components as covariates. Additionally, pairwise genetic relatedness as

estimated from the X chromosome was included as a random effect along with the autosomal

genetic relatedness matrix. Additionally, since males have only one copy of X chromosome,

genotypes on the X chromosome were coded 0, 1, 2 for females and 0, 2 for males. We also

conducted three additional analyses for the known G6PD locus on the X chromosome: (1)

sex-stratified analysis (S10 Table); (2) genotype-specific analysis in women, since there is evi-

dence for skewed X chromosome-inactivation with age[58] (S11 Table); and (3) age-genotype

interaction analysis (S12 Table).

More information about the principal components, kinship matrix computation, and the

genetic analysis groups, is provided in Conomos, et al[54]. Potential inflation was assessed

using quantile-quantile plots of the test statistics against the standard normal distribution, and

a calculated inflation factor λgc. We report genome-wide significant results at significance

threshold of p-value�5.0x10-8 and suggestive significance threshold of p-value <1.0x10-7 in

the HCHS/SOL discovery sample for all variants with MAF = 0.01 and imputation oevar>0.3

All SNPs exceeding genome-wide significance threshold of p-value <1x10-7 are described in

S9 Table.

Admixture mapping analysis

Local ancestry estimates were previously inferred in the HCHS/SOL[59]. A genome-wide

admixture mapping scan was performed using a linear mixed model with covariates and ran-

dom effects described above, jointly testing the three ancestries (European, African, Amerin-

dian) at each available locus. On the basis of previous simulation results, a nominal p-value of

5.7x10-5 yielded a genome-wide type I error of 0.05. There are currently no well-developed,

validated methods available for local ancestry estimation on the X chromosome. Hence, we

performed admixture mapping analysis only on the autosomes.

GWAS of red blood cell traits in HCHS/SOL Hispanics/Latinos

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006760 April 28, 2017 14 / 25

https://doi.org/10.1371/journal.pgen.1006760


Replication significance criteria

Association testing was performed in each of the three Hispanic replication data sets (WHI,

BioMe, MESA) using linear regression and the same RBC trait transformation as the discovery

samples, adjusted for age, sex, and principal components. Meta-analysis of results from the 3

independent Hispanic replication study samples was performed using the inverse-variance-

weighted method implemented in METAL (http://csg.sph.umich.edu//abecasis/Metal, last

accessed Dec 2016). We defined novel, replicated loci as those which exceeded a Bonferroni-

corrected significance threshold of p<0.05/7, or 0.0071 (accounting for 7 SNPs carried for-

ward for replication) and are located>1 megabase (Mb) from a previously reported genome-

wide significant association signal.

Conditional analysis

We performed step-wise conditional analysis for each RBC phenotype to identify secondary,

independent association signals within 500kb of known and newly discovered GWAS loci. In

the first round of the conditional analysis for each trait, we used the same regression model as

in the discovery GWAS, with additional adjustment for previously reported or novel variants

identified in this study. The list of variants used in conditional analysis of each trait is provided

in S13 Table. The significance threshold for discovering new, independent association signals

was the same as the genome-wide discovery threshold (α = 5.0x10-8) as well as MAF�0.01.

Subsequent rounds of conditional analysis were repeated for each genomic region, adding

the strongest genome-wide significant variant from the previous round as a covariate in the

regression model, until no further genome-wide significant variants satisfying the MAF

threshold remained in that region after covariate adjustment. The full models for each trait

used in the final round of conditional analysis are listed in S14 Table. After obtaining probe

intensity-based CNV calls for the 3.8kb alpha-globin CNV, we conducted conditional analysis

on chromosome 16 using the calls from the re-typed CNV. The full models for each trait used

in these conditional analysis are also listed in S14 Table. Conditional analysis with the re-

typed 3.8kb alpha-globin CNV was conducted on the subset of 12,390 individuals for whom

the re-typed CNV calls were available.

Generalization analysis

Variants used in generalization analyses were identified by one of two inclusion methods: (1)

any variant listed as genome-wide significant for any of the seven RBC traits in our study in

the European Bioinformatics Institute GWAS catalog (http://www.ebi.ac.uk, last accessed Jan

2017); or (2) any RBC trait genome-wide-significant variants published in the main text or

supplement of an English-language GWAS indexed in PubMed prior to December 2016. (Of

note, we did not identify any GWAS published in a language other than English, hence we

expect our list of variants identified using these methods to be complete prior to 2017.) We

tested each published RBC-associated variant to see whether that association generalized to

Hispanics/Latinos. The directional generalization null hypothesis is rejected if there is enough

evidence that the published variant is directionally consistent and associated with the outcome

in both the discovery study and HCHS/SOL. We evaluated for generalization all available sig-

nals previously reported in any GWAS published in English, for all seven traits evaluated in

this paper (S4 Table). Most of these SNPs were reported in studies of adults of European

ancestry, but we also generalized associations from African- and Japanese-ancestry popula-

tions. No variants identified in Danjou, 2015, were included in our genotyped or imputed

dataset and hence these variants could not be evaluated for generalization[60]. To test the gen-

eralization null hypotheses, we computed directional FDR r-values for each of the tested SNPs.
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Directional r-values were calculated based on one-sided p-values from both the “discovery”

study (reported in the literature) and the HCHS/SOL, and based on the number of tests per-

formed in the discovery study, in order to properly account for multiple testing. A SNP was

considered generalized if its r-value was<0.05[61]. In generalizing associations reported by

Ganesh et al. (2009), we did not employ directional control since Ganesh, et al., (2009) did not

report effect sizes or directions[8]. The implication is a slight loss of power.

Generalization analysis was performed by looking up reported SNPs in HCHS/SOL results,

in an analysis that mimics the analysis reported in the discovery study. For example, if a trait

was reported as an association analysis with the natural-log-transformed trait, we performed

the analysis with the same transformation in the HCHS/SOL population. In some cases, as with

Kamatani, et al. (2010), we also matched effect-size reporting methods (standard deviations) for

ease of comparison. Transformations, when applicable, are described in S1 Table. Since the

same SNP-trait association may be reported by multiple studies, we counted only unique SNP-

trait associations. In instances where more than one study reported associations for the same

SNPs and trait, but used different trait transformations, we selected the results from the general-

ization analysis in which the trait transformation matched our primary analysis.

Since some SNPs are associated with more than one RBC trait, and some genomic regions

contain multiple SNPs associated with multiple traits, we summarize the generalization results

as follows. Overall, we summarize the number of generalized unique trait-SNP associations

(the same SNP may be counted more than once, if associated with more than one trait). Then,

for each trait, we summarized (1) the number of unique SNPs, and (2) the number of unique

genomic regions. To define genomic regions, we identified specific SNPs, and a 1Mb genomic

region around them. Other SNPs within these regions were clumped together. We say that a

genomic region generalized for a specific trait if at least one SNP in the region was associated

with the trait.

Functional annotation of novel loci

We assessed any novel, replicated red blood cell associated loci to determine potentially causal

variants. At each locus, we determined if the lead or proxy variants (r2� 0.8) were located

within putative erythroid regulatory elements, defined on the basis of enrichment for various

histone-modification and ChIP-Seq signals in either erythroblasts or the erythroleukemia cell

line K562[34–36]. We defined these regulatory regions as follows: enrichment for histone

H3K4me1 as an enhancer, enrichment for histone H3K4me3 as a promoter. Variants located

within a putative promoter or enhancer, and that overlapped a DNaseI hypersensitive site in

proerythroblasts or K562 cells, were prioritized as putatively functional [34, 36, 62]. Regulatory

elements often are bound by transcription factors and hence we report ChIP-Seq peak overlaps

of key erythroid transcription factors (GATA1, TAL1), and others in proerythroblasts and

K562 cells to provide further support for the functional role of putative regulatory elements

in erythroid cells[34, 36, 62]. The ENCODE and BLUEPRINT datasets were accessed through

the ENCODE analysis Hub and Blueprint Hub respectively via the UCSC genome browser

[63, 64]. Datasets from Xu, et al, were accessed from codex (http://codex.stemcells.cam.ac.uk,

last accessed Dec 2016)[62, 65]. To hypothesize likely mode of action via which the causal

variants influence the trait, we report eQTL targets and or motifs disrupted by prioritized vari-

ants using HaploReg v4.1[66]. All the datasets used for functional annotation were mapped to

Human GRCh37/hg19 assembly. Functional annotation is summarized in S5 Table. We also

used in silico prediction algorithms to annotate variants. These included RegulomeDB, the

Combined Annotation Dependent Depletion (CADD) phred score, GWAVA, and deltaSVM

[67–70]. These annotations are summarized in S6 Table.
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In vitro analysis of functional candidates within SLC12A2-LINC01184,

PSMB5, and PROX1

The CRISPR/Cas9 system was used to mutagenize individual variants or small regions of inter-

est identified during discovery analysis and subsequent bioinformatics interrogation. All oligo-

nucleotide sequences used in CRISPR-Cas9 genome editing experiments are listed in S7

Table. The human umbilical cord blood derived erythroid progenitor cell line #2 (HUDEP-2)

was cultured and used for genome editing as previously described[71]. Individual and tandem

pairs of single chimeric guide RNAs were cloned to lentiviral expression vectors (lentiGuide-

Puro, Addgene plasmid 52963). Cells were transduced and selected for lentiviral integrants by

antibiotic selection (10 μg/ml blasticidin for lentiCas9-Blast [Addgene plasmid 52962], 1 μg/

ml puromycin for lentiGuide-Puro). For SLC12A2 individual sgRNA promoter editing, indel

frequencies were assessed after 7 days by nested PCR followed by amplicon deep sequencing.

For SLC12A2-LINC01184,PSMB5, and PROX1 interstitial deletions, cells were plated at limit-

ing dilution to isolate clones 7 days after transduction with tandem sgRNAs. Clones with

biallelic deletions were characterized by presence of gap PCR amplification with primers out-

side the deleted segment and absence of PCR amplification from inside the deleted segment.

Expression of mRNA of genes of interest was compared to GAPDH expression using quantita-

tive reverse transcription PCR (RT-qPCR) in control and edited HUDEP-2 cells. For SLC12A2
individual sgRNA promoter editing, the total population of edited cells was evaluated in

bulk by RT-qPCR. For SLC12A2-LINC01184,PSMB5, and PROX1 interstitial deletions, clones

were first identified by PCR screening and then evaluated by RT-qPCR. For differentiation

experiments, control and edited HUDEP-2 cells were cultured separately for 4 days in Ery-

throid Differentiation Media (EDM) with Iscove’s Modified Dulbecco’s Medium (IMDM)

(Life Technologies) supplemented with 330 mg/ml holo-transferrin (Sigma), 10 mg/ml recom-

binant human insulin (Sigma), 2 IU/ml heparin (Sigma), 5% human solvent detergent pooled

plasma AB (Rhode Island Blood Center), 3 IU/ml erythropoietin, 100 ng/ml human SCF,

(R&D), 1 mg/ml doxycycline, 1% L-glutamine, and 2% penicillin/streptomycin. Subsequently

the cells were cultured an additional 4 days in EDM lacking SCF, and then an additional 4

days in EDM lacking both SCF and doxycycline. Erythroid maturation was evaluated by flow

cytometry staining with CD71 (eBiosciences), CD235a (eBiosciences), CD49f (Miltenyi), and

DRAQ5 (eBiosciences) as well as morphology by May-Grunwald-Giemsa staining, Student’s

t-tests were used for statistical analysis of results.

Data availability statement

Genotype data and GWAS results of discovery analysis of all the seven RBC traits can be

requested via dbGaP study accession phs000880. Phenotype data can be requested via dbGaP

study accession phs000810

Supplemental data

Supplemental data includes five figures, nine tables, and five Excel spreadsheets.

Supporting information

S1 Fig. Manhattan plots and accompanying QQ plots for seven RBC traits in 12,502

HCHS/SOL Hispanics/Latinos. A: Hematocrit; B: Hemoglobin; C: Red Blood Cell Count;

D: Red Cell Distribution Width; E: Mean Corpuscular Hemoglobin; F: Mean Corpuscular

Hemoglobin Concentration; G: Mean Corpuscular Volume. �All Manhattan plots include

only variants with MAF� 0.01. X-axis of Manhattan plots = ordered chromosomes; Y-axis of

GWAS of red blood cell traits in HCHS/SOL Hispanics/Latinos

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006760 April 28, 2017 17 / 25

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006760.s001
https://doi.org/10.1371/journal.pgen.1006760


Manhattan plots = -log10(p-value). X-axis of QQ plots = expected p-value; Y-axis of QQ

plots = observed p-value.

(PDF)

S2 Fig. Locus-Zoom plots of loci significantly associated with RBC traits. All variants with

minor allele count>30 were plotted using Locus-Zoom software and genome build 37/hg19

positions on the x-axis. The left y-axis is the negative log10 p-value for the association between

each variant and the relevant RBC trait; the gray line represents genome-wide significance

(p<5x10-8). The left y-axis (blue lines on the plot) is the recombination rate in percent. The lead

SNP at each locus is designated with a triangle if the SNP is imputed, and a diamond if the SNP

is genotyped. Each symbol represents one variant, with circles for genotyped and x’s for imputed

variants. Linkage disequilibrium (correlation, r2) with the lead variant in HCHS/SOL is indicated

by color, with the colors for each level of LD shown in the upper-right corner of the plot. The

genes at each locus are aligned underneath the plot with the corresponding genomic positions.

(PDF)

S3 Fig. Impact of deletion of LINC01184 Exon-3 on expression of LINC01184 and SLC12A2.

HUDEP-2 human erythroid precursor cells were transduced with lentivirus expressing Cas9 and

a pair of guide RNAs targeting cleavages flanking exon-3 of LINC01184. After limiting dilution,

clones were screened by PCR for deletion of LINC01184 exon-3. Twelve clones with biallelic

deletion of LINC01184 exon-3 were identified and utilized for quantitative reverse transcription

PCR to measure expression of LINC01184 and SLC12A2. Primers for LINC01184 measurement

annealed to sequences at exons 1 and 2, i.e., non-deleted sequences. Data is shown for each of 12

biallelic deletion clones performed in technical triplicate. Gene expression is normalized to the

level of parental cells. Lines indicate means and standard deviations.

(DOCX)

S4 Fig. Small indels in DNase I hypersensitive sites do not exhibit cis effects on expression

of PROX1 and PSMB5 in HUDEP-2 cells. Deletions of DNase I hypersensitive sites (DHSs) at

PSMB5 and PROX1 loci were not associated with significant gene expression changes in cis.

HUDEP-2 human erythroid precursor cells were transduced with lentivirus expressing Cas9

and a pair of guide RNAs targeting cleavages flanking DHSs at PSMB5 and PROX1. After limit-

ing dilution, clones were screened by PCR for deletion of DHSs. Biallelic deletion clones were

identified and utilized for quantitative reverse transcription PCR to measure expression of

neighboring genes. As a control, nondeletion clones were isolated in parallel. Data is shown

for RT-qPCR for indicated gene in a single clone, normalized to GAPDH, and then to median

of the nondeletion clones. Each measurement was performed in technical triplicate. Lines indi-

cate medians of each set of clones. No significant differences were identified between deletion

and nondeletion clones (p> 0.05 for all comparisons).

(TIF)

S5 Fig. Manhattan plots from admixture mapping analysis of RBC traits in HCHS/SOL

participants. X-axis of Manhattan plots = ordered autosomal chromosomes; Y-axis of Man-

hattan plots = -log10(p-value). The X chromosome was not evaluated because established

methods for admixture mapping of this chromosome are not available.

(DOCX)

S1 Table. Red blood cell trait descriptions. Genomic inflation factor refers to the ratio

between the median test statistics value and the expected median for variants with

MAF� 0.01.

(DOCX)
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S2 Table. Characteristics of discovery and replication cohorts. �Units for each trait are as

follows: Hematocrit, %; Hemoglobin, g/dL; RBC count, cells x109; RDW, %; MCH, pg;

MCHC, g/dL; MCV, fL. Population means for hematocrit and hemoglobin are presented as

sex-stratified due to significant differences between adult males and females.
�� Hematocrit and hemoglobin were available at the baseline exam for WHI SHARe in 3,539

participants. The remaining measures were available in a sub-sample of 1,205 WHI SHARe

participants.

(DOCX)

S3 Table. Association results in the six genetic subgroups for genetic variants significantly

associated with red blood cell traits in HCHS/SOL Hispanics/Latinos. # The full DNA

sequence of the deletion for esv2676630 can be found in S9 Table. �het pval: p-value for test of

heterogeneity. C/A = coded and alternate alleles. CAF = coded allele frequency. Chromosomal

positions refer to hg build19/GRCh37. Sub-groups were generated using self-identified back-

ground and genetic principal components analysis.

(XLSX)

S4 Table. Generalization of variants previously associated with seven red blood cell traits

in European-, Asian-, and African-ancestry populations to HCHS/SOL Hispanics/Latinos.

A: Hematocrit; B: Hemoglobin; C: Red Blood Cell Count; D: Red Cell Distribution Width; E:

Mean Corpuscular Hemoglobin; F: Mean Corpuscular Hemoglobin Concentration; G: Mean

Corpuscular Volume.

CAF = Effect Allele Frequency; N = number of study participants; NR = not reported; "—" =

alternate allele not reported. Generalization was based on statistical significance (r� 0.05) and

directional consistency with the published variant in HCHS/SOL Hispanics/Latinos.

(XLSX)

S5 Table. Summary of findings from the functional annotation of novel red blood cell

trait-associated variants and their LD partners (r2�0.8) identified in HCHS/SOL. C/A =

coded and alternate alleles. CAF = coded allele frequency.

(DOCX)

S6 Table. Summary of in silico functional prediction algorithm results for novel significant

variants and their LD partners (r2�0.8) in discovery and conditional analyses. � Chromo-

some and base pair position reported from GRCh37/hg19. † SNP type: 0 = imputed, 2 = geno-

typed. 1 CADD score = PHRED-scale score indicating deleteriousness of variants and all other

substitutions in the genome; 2 Unmatched score presented from GWAVA; 3 Regulome DB

score is on a scale from 1 to 7, with lower numbers indicating more evidence for the variant

being functional; 4 deltaSVM score predicts the impact of SNPs on DNaseI sensitivity. "oevar"

is defined as the ratio of the observed variance of imputed dosage to the expected binomial var-

iance.

(XLSX)

S7 Table. Oligonucleotide sequences used in CRISPR-Cas9 genome editing,PCR screening

and RT-qPCR quantification. F = forward, R = reverse. Chromosomal positions refer to hg

build19/GRCh37.

(DOCX)

S8 Table. Comparison of 1000 genomes phase I and re-typed (based on probe intensity)

deletion genotype calls for the alpha globin 3.8kb deletion. � value of 0 = 0 copies of 3.8kb

deletion, 1 = 1 copy of deletion, 2 = 2 copies of deletion.

(DOCX)
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S9 Table. All variants reaching suggestive significance (1E-7) for association with seven red

blood cell traits in HCHS/SOL. A: Hematocrit; B: Hemoglobin; C: Red Blood Cell Count; D:

Red Cell Distribution Width; E: Mean Corpuscular Hemoglobin; F: Mean Corpuscular Hemoglo-

bin Concentration; G: Mean Corpuscular Volume. Variants with a low imputation value (oevar<

0.3) were not included in association analyses. Variants with minor allele frequency (MAF)<

0.01 excluded. † imputed calls for esv2676630 were used in these analyses (see Methods).
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S10 Table. Sex-stratified results for genome-wide significant X-chromosome associations.

Chromosomal positions are aligned to build hg19/GRCh37. Alt = alternative; CAF = coded

allele frequency; MCH = mean corpuscular hemoglobin; MCV = mean corpuscular volume;

RBC = red blood cell count; RDW = red cell distribution width; SE = standard error.

(DOCX)

S11 Table. Genotype-specific association results for lead X chromosome variant in HCHS/

SOL female participants. Chromosomal positions are aligned to build hg19/GRCh37. Alt =

alternative; CAF = coded allele frequency; MCH = mean corpuscular hemoglobin; MCV =

mean corpuscular volume; RBC = red blood cell count; RDW = red cell distribution width;

SE = standard error.

(DOCX)

S12 Table. Interaction results of age and lead X chromosome variant genotype in HCHS/

SOL female participants. Chromosomal positions are aligned to build hg19/GRCh37. Alt =

alternative; CAF = coded allele frequency; MCH = mean corpuscular hemoglobin; MCV =

mean corpuscular volume; RBC = red blood cell count; RDW = red cell distribution width;

SE = standard error.

(DOCX)

S13 Table. List of all variants used in conditional analysis. Allele frequencies reported for

1000 Genomes super-populations European (EUR), African (AFR), American (AMR), South

Asian (SAS) and East Asian (EAS). HCT, hematocrit; HGB, hemoglobin; MCH, mean corpuscu-

lar hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular

volume; RBC, red blood cell count; RDW, red cell distribution width; NA: “not applicable”

because this deletion has not been characterized in 1000 Genomes populations; �I/D: coded

allele = insertion, alternative allele = deletion; # During sequential conditional analysis, the

round number in which the variant was conditioned for. CAF, coded allele frequency; SE, stan-

dard error. † imputed calls for esv2676630 were used in all conditional analyses (see Methods).

(XLSX)

S14 Table. Full models used for conditional analyses. EV = Eigenvector; HCT = hematocrit;

HGB = hemoglobin; MCH = mean corpuscular hemoglobin; MCHC = MCH concentration;

MCV = mean corpuscular volume; RBC = red blood cell count; RDW = red cell distribution

width; hba_cnv_countDel = intensity-based calls for the alpha gene deletion; hba_cnv_count-

Dupl = intensity-based calls for the alpha gene duplication. † imputed calls for esv2676630

were used for conditional analyses (see Methods). †† probe intensity-based re-typed calls were

used for esv2676630 in the chromosome 16 conditional analyses (see Methods).
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