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Neuronal and glial 3D chromatin architecture
informs the cellular etiology of brain disorders
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Cellular heterogeneity in the human brain obscures the identification of robust cellular reg-

ulatory networks, which is necessary to understand the function of non-coding elements and

the impact of non-coding genetic variation. Here we integrate genome-wide chromosome

conformation data from purified neurons and glia with transcriptomic and enhancer profiles,

to characterize the gene regulatory landscape of two major cell classes in the human brain.

We then leverage cell-type-specific regulatory landscapes to gain insight into the cellular

etiology of several brain disorders. We find that Alzheimer’s disease (AD)-associated epi-

genetic dysregulation is linked to neurons and oligodendrocytes, whereas genetic risk factors

for AD highlighted microglia, suggesting that different cell types may contribute to disease

risk, via different mechanisms. Moreover, integration of glutamatergic and GABAergic reg-

ulatory maps with genetic risk factors for schizophrenia (SCZ) and bipolar disorder (BD)

identifies shared (parvalbumin-expressing interneurons) and distinct cellular etiologies

(upper layer neurons for BD, and deeper layer projection neurons for SCZ). Collectively, these

findings shed new light on cell-type-specific gene regulatory networks in brain disorders.
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The majority of human genetic variants imparting risk for
brain diseases are located within non-coding elements1.
Allelic variation in these elements is thought to have an

influence on complex human traits via impacting gene
regulation2, necessitating the understanding of gene regulatory
architecture in the human brain. We and others have identified
gene regulatory relationships in the developing and adult human
brain by integrating multi-dimensional datasets that include
transcriptomic, epigenomic, and higher-order chromatin inter-
action landscapes3–7. However, cellular heterogeneity poses sig-
nificant challenges for unraveling the complexity in the gene
regulatory architecture of the human brain, as it is comprised of
heterogeneous cell populations, mostly different types of neurons
and glia, each of which display distinct gene expression3,8–10 and
chromatin accessibility profiles11–14. To address this issue, several
groups have employed Hi–C and its derivatives (e.g. promoter-
capture Hi–C) to build higher-order chromatin interaction maps
in induced pluripotent stem cells (iPSC)-derived neurons and
astrocytes15. However, these published studies rely on in vitro
cultured cells that mark early brain development. Recently, pro-
moter interaction profiles were inferred from three types of brain
cells (neurons, oligodendrocytes, and microglia) obtained from
the postnatal human cerebral cortex16.

Here, we analyze genome-wide chromosome conformation at
cellular resolution to capture how chromatin structure affects cel-
lular expression profiles. We use fluorescence-activated nuclear
sorting (FANS, “Methods”)17 to sort neurons (NeuN+ cells) and
glia (NeuN− cells), two major cell classes in the brain, and generated
genome-wide chromosome conformation using Hi–C (Supplemen-
tary Figs. 1–2). We call multiple architectural units: A/B compart-
ments, which are mutually exclusive large-scale chromatin domains,
where compartment A is associated with actively transcribed regions
and compartment B is enriched with repressive chromatin regions;
Topologically Associating Domains (TADs), which are enriched
with self-contacts and thus delineate the genomic regions within
which most cis-regulatory interactions occur; Frequently Interacting
REgions (FIREs), which are local interaction hotspots that are
enriched with active regulatory elements; and gene loops within
NeuN+ and NeuN− cells which link promotors to presumed reg-
ulatory elements (Supplementary Fig. 1). Furthermore, we integrate
acetylated histone H3 lysine 27 (H3K27ac) peaks from glutamatergic
(Glu) and medial ganglionic eminence (MGE)-derived GABAergic
(GABA) neurons18 with NeuN+ chromatin interactions to obtain
finer-scale gene regulatory relationship within these two major
neuronal subtypes. We then leveraged cell-type-specific gene reg-
ulatory relationships to help decipher the genetic mechanisms
contributing to Alzheimer’s disease (AD), schizophrenia (SCZ), and
bipolar disorder (BD). Our results illustrate deciphering the epige-
netic landscape in a cell-type-specific fashion offers substantial
advantages for inferring the functional impact of genetic risk factors
associated with brain disorders.

Results
Differential FIREs and super-FIREs are associated with cell-
type-specific gene regulation. Hi–C libraries were generated from
NeuN+ and NeuN− cells sorted from four dorsolateral prefrontal
cortex (DLPFC) samples (Supplementary Table 1 and Supple-
mentary Fig. 2). We first measured the reproducibility across Hi–C
libraries using a stratum-adjusted correlation coefficient (SCC) that
systematically quantifies similarities between two Hi–C contact
maps19. Notably, we found that samples were clustered by cell
types, not individuals, and showed high correlation between the
same cell types from different individuals (NeuN+= 0.95–0.97;
NeuN−= 0.86-0.91; Supplementary Fig. 3a), demonstrating the
reproducibility across Hi–C libraries.

We also compared the chromatin contacts of NeuN+ and
NeuN− cells with other existing Hi–C datasets from brain-
relevant tissues (Supplementary Fig. 3b, “Methods”). We found
that NeuN− cells showed higher structural similarity with the
adult brain than the fetal brain, indicative of gliogenesis in the
postnatal brain20. Intriguingly, NeuN− cells did not show high
structural similarity with iPSC-derived astrocytes, consistent with
the previous report that the majority of NeuN− cells are
oligodendrocytes21. NeuN+ cells showed high similarity with
adult brains, fetal brains, and iPSC-derived neurons. The fact that
NeuN+ cells show high similarity with fetal brain may reflect
extensive neurogenesis at midgestation, the developmental stage
at which the fetal brain was obtained22.

We next interrogated the cell-type-specific nature of 3D
chromatin structures such as compartments23 and FIREs6,24. We
detected extensive compartment switching between NeuN+ and
NeuN− cells: 4,333 regions (in 100kb resolution) switched from
compartment A to B between NeuN− to NeuN+ cells, while 2098
regions switched from compartment B to A in NeuN+ to NeuN−
cells. Importantly, genes located in compartments that switch from
A to B between NeuN− and NeuN+ were highly expressed in
oligodendrocytes and astrocytes, while those that switch from B to A
in NeuN− to NeuN+ were highly expressed in neurons, suggesting
that the difference in chromosome conformation between NeuN+
and NeuN− cells is associated with cell-type-specific gene regulation
(Supplementary Fig. 3c).

FIREs represent regions that act as interaction hubs, containing
active enhancers that show high tissue specificity6. They are also
enriched for genome-wide association study (GWAS) variants and
exhibit variability across individuals25,26. We therefore compared
FIREs in NeuN+ and NeuN− cells to identify how local chromatin
architecture differs among these major brain cell types. We detected
3966 and 3967 FIREs in NeuN+ and NeuN− cells, respectively
(Fig. 1a and Supplementary Data 1)24. Among them, 1248 FIREs
were shared between NeuN+ and NeuN− cells based on the
coordinate-level overlap and similarities in FIRE scores (hereafter
referred to as common FIREs, “Methods”, Supplementary Data 1).
Genes located in common FIREs were involved in housekeeping
functions (e.g., microtubule polymerization, cell junction assembly)
as well as pathways that involve both neurons and oligodendrocytes
(e.g., main axon, Supplementary Data 1).

To further investigate how FIREs are associated with cell-type-
specific gene expression, we used a stringent statistical cutoff to
define differential FIREs on the basis of FIRE scores (“Methods”),
detecting 287 differential FIREs between NeuN+ (145) and NeuN
− (142) cells (hereby referred to as NeuN+ and NeuN− FIREs,
respectively, Fig. 1b, Supplementary Data 2). Since previous
reports have suggested that FIREs are closely linked to cell-type-
specific enhancers6, we intersected differential FIREs with
differential H3K27ac peaks between NeuN+ and NeuN− cells27.
We found that the majority of NeuN+ and NeuN− FIREs
overlapped with NeuN+ and NeuN− differential H3K27ac peaks,
respectively, displaying remarkable cell-type-specificity (Fig. 1c, d).
We next examined whether differential FIREs overlap with cell-
type-specific marker genes. Indeed, NeuN+ FIREs overlapped
with neuronal genes that were enriched for synaptic function
(Fig. 1g), while NeuN− FIREs overlapped with genes involved in
myelination, glial differentiation, and oligodendrocyte differentia-
tion (Fig. 1h). Salient examples include GRIN2B, which overlaps
with a NeuN+ FIRE, and OLIG1 and OLIG2, which overlap with a
NeuN− FIRE (Fig. 1e, f, Supplementary Fig. 4). We further
checked cellular expression profiles of genes assigned to
differential FIREs using single-cell (sc)RNA-seq data10. As
expected, NeuN+ and NeuN− FIRE-associated genes were mainly
enriched in neurons and glia, respectively (Fig. 1i, j). In particular,
NeuN− FIRE-associated genes were most highly expressed in
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oligodendrocytes, confirming that NeuN− fraction is enriched for
oligodendrocytes21.

Super-FIREs represent a small proportion of FIRE clusters with
the most significant local interaction frequency6. Super-FIREs are
thought to have a strong gene regulatory potential and often overlap
with super enhancers6. We therefore identified super-FIREs in
NeuN+ and NeuN− cells (“Methods”) and found that they also
displayed substantial cellular specificities. Only 9 super-FIREs were
detected in both NeuN+ and NeuN− cells, leaving 253 and 157 cell-
type-specific super-FIREs in NeuN+ and NeuN− cells, respectively
(Supplementary Fig. 5a, Supplementary Data 2). Over 95% of super-
FIREs overlapped with differential H3K27ac peaks and all super-
FIREs overlapped with promoters, indicating that they have a
particularly strong cell-type-specific regulatory impact (Supplemen-
tary Fig. 5b, c). In line with these findings, super-FIREs were tightly

coupled with cell-type-specific gene expression. NeuN+ super-
FIREs overlapped with genes functioning in synapses and ion gated
channels that were highly expressed in neurons, while NeuN−
super-FIREs overlapped with genes involved in cell adhesion,
myelination, and ensheathment of neurons, with high expression in
glia (Supplementary Fig. 5d-f, 6). Taken together, these analyses
show that differential FIREs and super-FIREs are strongly associated
with cell-type-specific gene regulation in the nervous system.

Characteristics of chromatin interactions in NeuN+ and NeuN−
cells. We next identified promoter-anchored chromatin loops in
NeuN+ and NeuN− cells to examine how chromatin interactions
are associated with intricate regulation of cell-type-specific expres-
sion profiles. We detected 187,674 and 167,551 promoter-based

Fig. 1 Differential FIREs are associated with cell-type-specific gene regulation. a The number of FIREs detected in NeuN+ and NeuN− cells. b Differential
FIREs were identified in NeuN+ and NeuN− cells. c, d Differential FIREs overlap with differential H3K27ac peaks in the corresponding cell types. A neuronal
gene, GRIN2B, is located in NeuN+ specific FIREs (e), while two oligodendrocytic genes, OLIG1 and OLIG2, are located in NeuN− specific FIREs (f). FIREs and
significance of FIRE scores in NeuN+ and NeuN− cells are depicted in green and purple, respectively. Boxplots in the right show expression levels of GRIN2B
(FDR= 3.71e−12), OLIG1 (FDR= 7.34e−26) and OLIG2 (FDR= 8.06e−23) in NeuN+ (n= 4) and NeuN− (n= 4) cells. FPKM Fragments Per Kilobase of
transcript per Million mapped reads. Center, median; box= 1st to 3rd quartiles (Q); minima, Q1− 1.5 × interquartile range (IQR); maxima, Q3+ 1.5 × IQR.
*FDR < 0.05 calculated by DESeq2 (two-sided Wald test). Source data are provided as a Source Data file. Gene ontology (GO) analysis for genes assigned to
differential NeuN+ (g) and NeuN− (h) FIREs. The red line denotes FDR= 0.05. i Cellular expression levels of genes assigned to differential NeuN+ and
NeuN− FIREs. Center, median; box=Q1−Q3; minima, Q1− 1.5 × IQR; maxima, Q3 + 1.5 × IQR. Neurons, n= 131; astrocytes (Astro), n= 62; microglia
(Micro), n= 16; endothelial (Endo), n= 20; oligodendrocytes (Oligo), n= 38. Source data are provided as a Source Data file. j Genes assigned to differential
NeuN+ and NeuN− FIREs are enriched in neurons and glia, respectively. Ex excitatory neurons, In inhibitory neurons.
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interactions3,4 from NeuN+ and NeuN− cells, respectively (Fig. 2a).
Over 75% of promoter-based interactions were detected within
TADs (Supplementary Fig. 7a). Roughly 37% of interactions
occurred between enhancers and promoters and ~23% of interac-
tions occurred between two different promoters (Supplementary

Fig. 7b). We infer that the promoter–promoter interactions are likely
attributed to transcription factors (TFs) of coregulated genes. A
substantial fraction of chromatin interactions were distal, as ~50% of
chromatin interactions brought two genomic regions linearly sepa-
rated by 320 kb or more into close proximity (Supplementary

Fig. 2 Enhancer–promoter interactions in NeuN+ and NeuN− cells. a (Left) cell-type-specific regulatory networks were built by linking genes to NeuN+
and NeuN− specific H3K27ac peaks via Hi–C interactions in NeuN+ and NeuN− cells, respectively. (Right) The number of cell-type-specific peaks and
their assigned genes in NeuN+ and NeuN− cells is described. A neuronal gene, HOMER1, is engaged with NeuN+ specific H3K27ac peaks via loops in
NeuN+ cells (b), while an oligodendrocyte gene, SOX10, is engaged with NeuN− specific H3K27ac peaks via loops in NeuN− cells (c). The regions that
interact with the gene promoter (gray) are highlighted in green (NeuN+) and purple (NeuN−), respectively. Boxplots in the right show expression levels of
HOMER1 (FDR= 7.26e−32) and SOX10 (FDR= 1.88e−49) in NeuN+ (n= 4) and NeuN− (n= 4) cells, respectively. FPKM Fragments Per Kilobase of
transcript per Million mapped reads. Center, median; box=Q1–Q3; minima, Q1− 1.5 × IQR; maxima, Q3+ 1.5 × IQR. *FDR < 0.05 calculated by DESeq2
(two-sided Wald test). Source data are provided as a Source Data file. d Genes assigned to NeuN+ specific peaks are enriched for synaptic co-expression
modules, while genes assigned to NeuN− specific peaks are enriched for co-expression modules involved in transcriptional regulation and immune
response during neurodevelopment. Significant enrichment (Sig.), FDR < 0.05. Fisher’s exact test was used for statistics analysis. OR, odds ratio. e Genes
assigned to NeuN+ specific peaks are more highly enriched for synaptic functions such as exocytosis, intracellular signal transduction, protein cluster and
structural plasticity than genes assigned to NeuN− specific peaks. Sig., FDR < 0.05. Fisher’s exact test was used for statistics analysis. f Genes assigned to
NeuN+ specific peaks are highly expressed in neurons, while genes assigned to NeuN− specific peaks are highly expressed in oligodendrocytes and
astrocytes. Astro astrocytes, Micro microglia, Endo Endothelial, Oligo oligodendrocytes.
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Fig. 7c) and captured complex enhancer–promoter interactions. For
example, we found that the majority of promoters interact with
more than one enhancer (Supplementary Fig. 7d), consistent with
the previous findings that multiple enhancers can interact with one
promoter3,7. Notably, the number of enhancers that interact with
promoters was strikingly correlated with gene regulation, as gene
expression linearly increased with the number of physically inter-
acting enhancers up to a total of 10 or more (Supplementary
Fig. 7e)3,28.

We next leveraged chromatin states predicted by ChromHMM29

to delineate the epigenetic properties of the genomic regions that
interact with promoters (Supplementary Fig. 7f). As expected,
promoters often interact with active chromatin features such as
other transcription start sites (TSS, 1_TssA and 2_TssAFlnk) and
enhancers (6_EnhG and 7_Enh). However, it is of note that a
significant proportion of promoters also interact with bivalent marks
(10_TssBiv, 11_BivFlnk and 12_EnhBiv), suggesting that the
associated regions are poised to be activated upon stimulation.
Together, our results confirmed that gene expression was
coordinately controlled by physical interactions of promoters with
enhancers, indicative of transcriptional regulators that underlie cell-
type-specific gene regulation. So, we implemented GimmeMotifs30

to evaluate differential TF motif enrichment at cell-type-specific
enhancers that interact with promoters in NeuN+ and NeuN−
cells. TFs involved in neuronal fate commitment, including ZBTB18,
SMARCC1, TBR1, and NEUROD2, were enriched in NeuN+ cells
(Supplementary Fig. 7g). Conversely, TF motifs for SOX2, SOX3,
SOX4, SOX6, and SOX9 were enriched in NeuN− cells (Supple-
mentary Fig. 7g). NeuN− distal enhancers were also enriched for
motifs for the IRF family, such as IRF4, IRF7, IRF8, and IRF9
(Supplementary Fig. 7g), which contains key regulators of neural
immune pathways expressed in glial cells31.

To further identify how enhancer–promoter interactions
regulate cellular expression profiles, we next overlapped chroma-
tin interactions with cell-type-specific enhancers (“Methods”).
We were able to assign 10,167 and 11,242 cell-type-specific
H3K27ac peaks to 7828 and 8851 genes via chromatin
interactions in NeuN+ and NeuN− cells, respectively (Fig. 2a,
Supplementary Data 3). Linking cell-type-specific enhancers to
cell-type-specific loops revealed specific aspects of chromatin
architecture regulating cell-type-specific gene expression. For
example, a gene that encodes a synaptic scaffolding protein,
HOMER132, was engaged in NeuN+ specific peaks and loops and
its expression was significantly higher in NeuN+ cells compared
with NeuN− cells (Fig. 2b). In contrast, a glial gene, SOX1033,
was engaged in NeuN− specific H3K27ac peaks and Hi–C loops,
and had higher expression in NeuN− cells than in NeuN+ cells
(Fig. 2c). In line with these findings, NeuN+ enhancer–promoter
interactions were enriched for synaptic and axonal genes, whereas
NeuN− enhancer–promoter interactions were associated with
actin-based motility (Supplementary Data 3). Moreover, genes
assigned to NeuN+ specific peaks were enriched in the synaptic
co-expression modules during neurodevelopment34 (Fig. 2d).
Within a synapse, they were involved in specialized functions
including exocytosis, intracellular signal transduction, and
synaptic plasticity35 (Fig. 2e). Lastly, genes assigned to NeuN+
specific peaks were more highly expressed in neurons, while those
assigned to NeuN− specific peaks were highly expressed in
oligodendrocytes and astrocytes (Fig. 2f), demonstrating the tight
relationship between cell-type-specific chromatin architecture
and expression signature.

Enhancer–promoter interactions in glutamatergic and
GABAergic neurons. Single-cell expression profiles have
demonstrated a remarkable transcriptional diversity within

neuronal subtypes10. We therefore used H3K27ac peaks defined
in purified Glu and MGE-derived GABA (hereafter referred to as
GABA) neurons18 to deconvolute NeuN+ chromatin interactions
into two major neuronal subtypes. We obtained 45,911 Glu-
specific and 32,169 GABA-specific H3K27ac peaks and assigned
them to 6234 and 4342 genes, respectively (Supplementary
Fig. 8a, Supplementary Data 4). These genes showed a remarked
level of neuronal specificity. Genes assigned to Glu peaks were
highly expressed in excitatory neurons, such as layers (L)2/3
pyramidal neurons (Ex1) and L5/6 corticothalamic projection
neurons (Ex7), while genes assigned to GABA peaks were highly
expressed in inhibitory neurons, such as parvalbumin-expressing
GABA interneurons (In6, Supplementary Fig. 8b, the definition of
Ex1–8 and In1–8 neuronal subtypes is available in Supplementary
Table 2). GRIK4, a gene that encodes an ionotropic class of
glutamate receptor36, displayed complex chromatin interactions
with multiple Glu peaks. In contrast, GAD1, a gene that encodes a
well-known cellular marker for inhibitory neurons37, was
engaged in GABA peaks via chromatin interactions (Supple-
mentary Fig. 8c). Collectively, we established neuronal subtype-
specific gene regulatory relationships by integrating Glu- and
GABA-specific peaks with the NeuN+ (neuronal) chromatin
interaction profiles defined here.

Cell-type-specific nature of AD-associated epigenetic dysregu-
lation. We next used the cell-type-specific gene regulatory rela-
tionship to refine cell-type-specific aspects of disease
vulnerability. Studies in AD have revealed changes in gene reg-
ulation manifested by differences in H3K27ac in bulk tissue38, but
how this relates to cell-type-specific vulnerability is not known.
To this end, we attempted to deconvolve the cell-type-specificity
of epigenetic dysregulation detected in the AD brain tissue38 by
overlapping AD-associated hyperacetylated and hypoacetylated
H3K27ac peaks with NeuN+ and NeuN− peaks (Fig. 3a). We
detected that AD-associated hyperacetylated peaks were largely
active in NeuN− cells, while AD-associated hypoacetylated peaks
were largely active in NeuN+ cells in neurotypical controls
(Fig. 3b). To decipher the biological impact of AD-associated
epigenetic dysregulation, we annotated these AD-associated
hyperacetylated and hypoacetylated H3K27ac peaks using chro-
matin interaction profiles. We were able to link hypoacetylated
peaks in AD to 460 genes using NeuN+ Hi–C data and hyper-
acetylated peaks in AD to 676 genes using NeuN− Hi–C data
(hereby referred to as NeuN+ hypo- and NeuN− hyperacetylated
genes, respectively, Fig. 3c, Supplementary Data 5). NeuN+
hypoacetylated genes include CACNG3, whose promoter formed
a loop with a peak, which was preferentially active in NeuN+
cells and was hypoacetylated in postmortem AD brain. CACNG3
encodes a voltage-gated calcium channel39 and had significantly
higher expression in neurotypical NeuN+ cells compared to
NeuN− cells (Fig. 3d). NeuN− hyperacetylated genes include
EHD1 (Fig. 3e), a gene involved in endocytic recycling with
another AD-associated gene BIN140. EHD1 was both hyper-
acetylated and highly expressed in neurotypical NeuN− cells
compared to NeuN+ cells. Importantly, the promoter of EHD1
formed a loop with the AD hyperacetylated peak that was pre-
ferentially active in NeuN− cells. GO analysis demonstrated that
NeuN+ hypoacetylated genes included synaptic genes while
NeuN− hyperacetylated genes were involved in catalytic activity
and glycoprotein binding (Supplementary Data 5). Cellular
expression profiles also confirmed these findings, as NeuN+
hypoacetylated genes were highly expressed in neurons, while
NeuN− hyperacetylated genes were highly expressed in oligo-
dendrocytes, astrocytes, and endothelial cells (Fig. 3f). These
results collectively suggest that in AD brains, many neuronal
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genes are downregulated due to their hypoacetylation in neurons,
whereas many glial genes are upregulated due to their hyper-
acetylation in glia. To validate this prediction, we tested whether
this epigenetic dysregulation in AD is associated with altered gene
expression in AD by comparing NeuN− hyperacetylated and
NeuN+ hypoacetylated genes with mRNA co-expression mod-
ules constructed from AD brains41 (Fig. 3g). Among 11 co-
expression modules differently regulated in AD (see Supple-
mentary Table 3 for module definition), NeuN− hyperacetylated

genes were enriched in co-expression modules that were upre-
gulated in AD (T-M8 and T-M14)41. These modules were
involved in transcriptional regulation and cellular proliferation
and were annotated as astrocyte-specific41. In contrast, NeuN+
hypoacetylated genes were enriched in co-expression modules
that were downregulated in AD (T-M1 and T-M16)41. Both
modules were associated with synaptic transmission. This result
demonstrates that cell-type-specific epigenetic dysregulation in
AD is coupled with gene expression changes.

Fig. 3 Cell-type-specific nature of epigenetic dysregulation in AD. aWe built AD-associated gene regulatory networks by linking genes to hypoacetylated
(hypo) and hyperacetylated (hyper) peaks in AD via Hi–C interactions in NeuN+ and NeuN− cells. b AD-associated hyperacetylated peaks were largely
active in NeuN− cells, while AD-associated hypoacetylated peaks are largely active in NeuN+ cells in neurotypical controls. c The number of genes
mapped to AD-associated hyperacetylated (top) and hypoacetylated (bottom) peaks via Hi–C interactions in NeuN+ and NeuN− cells. CACNG3 is linked
to an AD-associated hypoacetylated peak (marked in yellow) in NeuN+ cells (d), while EHD1 is linked to an AD-associated hyperacetylated peak (marked
in yellow) in NeuN− cells (e). CACNG3/EHD1 promoter is highlighted in gray and its interacting regions are highlighted in green and purple for NeuN+ and
NeuN− cells, respectively. Boxplots in the right show expression levels of CACNG3/EHD1 in NeuN+ (n= 4) and NeuN− (n= 4) cells. FPKM Fragments Per
Kilobase of transcript per Million mapped reads. Center, median; box=Q1–Q3; minima, Q1− 1.5 × IQR; maxima, Q3+ 1.5 × IQR. *FDR < 0.05 (FDR= 2.81e
−9 for CACNG3 and FDR= 0.004 for EHD1), calculated by DESeq2 (two-sided Wald test). Source data are provided as a Source Data file. f NeuN+
hypoacetylated genes are highly expressed in neurons, while NeuN− hyperacetylated genes are highly expressed in glia. g NeuN− hyperacetylated genes
are enriched in astrocyte-specific co-expression modules (T-M14 and T-M8) that are upregulated in AD. NeuN+ hypoacetylated genes are enriched in
neuronal co-expression modules (T-M1, T-M16) that are downregulated in AD. Fisher’s exact test was used for statistical analysis. The red line denotes
FDR= 0.01. Astro astrocytes, Micro microglia, Endo endothelial, Oligo oligodendrocytes.
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Genetic risk factors associated with AD converge onto micro-
glial function. Changes in gene expression or histone modifica-
tions may be a consequence or compensatory in disease and not
necessarily causal. To link changes in chromatin and gene reg-
ulation to causal genetic factors, we next tested for enrichment of
common genetic risk factors associated with AD by GWAS42. We
reasoned that cell-type-specific annotation of the regulatory
impact of genetic risk factors would provide support or refine our
knowledge of causal mechanisms underlying AD, which to date
heavily implicate neural immune/microglial mechanisms43,44.
Therefore, we first performed linkage disequilibrium score
regression (LDSC)45 analysis to determine the enrichment of AD-
associated common genetic variants in NeuN− and NeuN+
H3K27ac peaks. AD SNP-based heritability was highly enriched in
NeuN− enhancers (NeuN+ p= 0.205, NeuN− p= 8.41 × 10−9),
suggesting that NeuN− gene regulatory relationships would be the
most appropriate for refining biological insight from AD GWAS
(Fig. 4a).

We next ran H-MAGMA46 built upon the NeuN− interactome
to convert SNP-level association statistics into gene-level
association statistics, thereby connecting non-coding variants to
their cognate genes. This analysis identified 181 AD risk genes

(FDR < 0.05) based upon their potential regulation by associated
non-coding variants (“Methods”, Supplementary Data 6), many
of which included well-known AD risk genes47. For instance, we
found that AD genome-wide significant (GWS) SNPs interact
with the promoter of BIN1, whose transcript level is increased in
AD brains48 (Fig. 4b). Notably, the BIN1 promoter was connected
to multiple enhancers in NeuN−, but not in NeuN+ cells,
demonstrating the highly cell-type-specific gene regulatory land-
scape within the locus. AD risk genes were enriched for amyloid
−beta (Aβ) pathways, lipoprotein assembly, and immune
processes (Fig. 4c, Supplementary Data 6). Consistent with
previous studies16,42,49, these genes were highly expressed in the
postnatal brain samples (Fig. 4d) and microglia (Fig. 4e). Notably,
they were enriched for genes that are upregulated in microglia
from postmortem AD brain50 (Fig. 4f). In line with this, we
observed that AD risk genes that we identified here were enriched
for a microglial co-expression module upregulated in AD
postmortem brains (T-M3, Fig. 4g)41. This module is distinct
from the module associated with epigenetic dysregulation in AD
(Fig. 3g), in that the former represents microglia, while the latter
is enriched in astrocytes. This is consistent with recent single-cell
sequencing studies identifying genetic risk enrichment and gene

Fig. 4 Identification and characterization of putative target genes of AD genetic risk factors by incorporating NeuN− chromatin interaction. a The
SNP-based heritability enrichment of AD GWAS in differential NeuN+ and NeuN− peaks suggests glial enrichment. Enrichment ± standard error is depicted.
The red broken line indicates heritability enrichment= 1. Source data are provided as a Source Data file. b BIN1 promoter physically interacts with an AD
GWS locus in a NeuN− specific manner. The regions that interact with BIN1 promoter (marked in gray) are highlighted in purple. c GO analysis for GWAS-
guided AD risk genes identified by NeuN− H-MAGMA. The red line denotes FDR= 0.05. d AD risk genes are highly expressed in postnatal brain samples
compared with prenatal samples. Pre prenatal (n= 410); Post, postnatal (n= 453). p= 6.93e−193, calculated by Wilcoxon Rank Sum test. Center, median;
box=Q1–Q3; minima, Q1− 1.5 × IQR; maxima, Q3+ 1.5 × IQR. Source data are provided as a Source Data file. e AD risk genes are highly expressed in
microglia. f AD risk genes are significantly enriched for genes differentially regulated in AD microglia. Fisher’s exact test was used for statistics analysis. The
red line denotes FDR= 0.01. g AD risk genes are enriched in a microglial co-expression module that is upregulated in AD. Fisher’s exact test was used for
statistical analysis. The red line denotes FDR= 0.01. Astro astrocytes, Micro microglia, Endo endothelial, Oligo oligodendrocytes.
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expression changes within microglia in AD, accompanied by
significant gene expression changes in other cells, including
astrocytes50–52, which is where we observe epigenetic signature
enrichment. Since genetic risk resides at the initiation of the
causal chain in disease pathogenesis, this differential enrichment
of genetic risk factors and epigenetic regulation underscores
different expression signatures in AD with distinct cellular
specificities and likely causal relationships.

Refined cellular etiology of SCZ and BD. In our previous study,
we found that genes associated with psychiatric disorders display
substantial molecular convergence within neurons, which was in
stark contrast to neurodegenerative disorders like AD46. Indeed,
LDSC (“Methods”) confirmed that SCZ and BD displayed strong
SNP-based heritability enrichment in NeuN+ cells (Fig. 5a). We
next hypothesized that enhancer-gene networks at a more refined
cellular resolution (e.g. Glu and GABA neurons) would help
elaborate molecular processes associated with these two major
psychiatric disorders. Therefore, we assessed SNP-based herit-
ability enrichment for SCZ and BD in Glu- and GABA-specific
enhancers18. Notably, both disorders showed strong enrichment
of SNP-based heritability in Glu- and GABA-specific enhancers,
suggesting that both excitatory and inhibitory neurons may
contribute to the genetic etiology of SCZ and BD (Fig. 5b). Since
Hi–C data from neuronal subtypes is yet unavailable, we con-
structed Glu and GABA H-MAGMA maps by integrating Glu-
and GABA-enhancers with NeuN+ Hi–C data, respectively
(“Methods”), obtaining 753 SCZ risk genes from Glu (hereby
referred to as Glu-SCZ genes) and 624 risk genes from GABA-
specific regulatory interactions integrated via H-MAGMA
(GABA-SCZ genes) (Supplementary Data 7). Glu-SCZ genes
were implicated in synaptic organization, ion channel activity,
and neuron projection, while GABA-SCZ genes were associated
with dendrite, axon, and hormonal response (Supplementary
Data 7). We also identified 143 and 101 BD candidate risk genes
from Glu (Glu-BD genes) and GABA (GABA-BD genes) H-
MAGMA, respectively (Supplementary Data 7). Glu-BD genes
were enriched for neurogenesis, cell adhesion molecules, and
synapses, while GABA-BD genes were enriched for transcrip-
tional regulation and NMDA receptor activity (Supplementary
Data 7). Neuronal subtype expression profiles of SCZ and BD risk
genes identified by Glu and GABA H-MAGMA were evaluated
using scRNA data obtained from excitatory (Ex1 to Ex8) and
inhibitory (In1 to In8) neuronal subtypes8. Neuronal subtype
enrichment showed a clear distinction between risk genes iden-
tified by Glu and GABA H-MAGMA, uncovering cellular and
disease specificities that have not been described before (Fig. 5c).

Glu-SCZ genes displayed widespread expression among many
Glu neuronal subclasses, with relatively higher expression sig-
natures in L3/4 neurons (Ex2) and L5/6 corticothalamic projec-
tion neurons (Ex7). Glu-BD genes showed a much stronger cell-
type-specificity, with the highest expression signature in L2/3
cortical projection neurons (Ex1) and L5/6 corticothalamic pro-
jection neurons (Ex7-8). In interneurons, GABA-SCZ genes and
GABA-BD genes showed similar enrichment for parvalbumin-
expressing cells (In6). Given that genetic correlation between SCZ
and BD is remarkably high (rg= 0.67)46,53,54, these findings
suggest cellular substrates for molecular convergence (Ex7 and
In6 are shared between two disorders) and divergence (Ex1 is
BD-specific, while Ex2 is SCZ-specific) among two highly
genetically correlated disorders.

Discussion
Here we provide a high-resolution map of chromosome con-
formation from two major brain cell classes, neurons (NeuN+
cells) and glia (NeuN− cells, Supplementary Fig. 1). The genome-
wide analysis of chromosome conformation in these two cell
classes captures the major known elements of 3D architecture
such as compartments, FIREs, and loops, addressing the roles and
impact of these different hierarchical units in cell-type-specific
gene regulation. We further refined maps of neuronal chromatin
architecture by integrating Hi–C data from sorted neurons with
H3K27ac peaks identified in two major neuronal subtypes, Glu
and GABA neurons, which led to a successful delineation of
neuronal subtype-specific regulatory relationships. We found that
multiple architectural units that include compartments, FIREs,
and chromatin loops display a remarked level of cellular speci-
ficity that is tightly coupled with gene regulation. We reasoned
that these cell-type-specific gene regulatory networks would
provide a window through which to understand the cellular
etiology of brain diseases.

We first leveraged these networks to deconvolve epigenetic
dysregulation in AD postmortem brain samples into the corre-
sponding cell types. In their original work, Marzi et al.38 reported
AD-associated H3K27ac peaks that are either hypo- or hyper-
acetylated in AD-affected individuals compared to age-matched
low-pathology controls38 and linked these peaks to target genes
on the basis of linear distance. We and others have shown that
enhancers often regulate distal genes4,15,16, so this initial assign-
ment is likely to be underpowered and inaccurate. Furthermore,
these peaks were obtained from the brain homogenates, which
would mask opposing interactions and obscure the cell-type-
specific substrate of these changes. By developing neuronal and
glial enhancer–promoter interaction maps, we not only accurately

Fig. 5 Comparison of SCZ and BD risk genes. a The SNP-based heritability enrichment of SCZ and BD GWAS in differential NeuN+ and NeuN− peaks
demonstrates neuronal enrichment (SCZ NeuN+, FDR= 9.33e-24; SCZ NeuN−, FDR= 2.14e-16; BD NeuN+, FDR=3.94e-15; BD NeuN−, FDR=6.09e-07).
Enrichment ± standard error is depicted. The red broken line indicates heritability enrichment= 1. Source data are provided as a Source Data file. b The SNP-
based heritability enrichment of SCZ and BD GWAS in differential Glu and GABA peaks suggests that both Glu and GABA neurons are associated with
the psychiatric disorders (SCZ GABA, FDR= 4.54e−9; SCZ Glu, FDR= 3.49e−10; BD GABA, FDR=1.10e−03; BD Glu, FDR= 3.63e−06). Enrichment ±
standard error is depicted. The red broken line indicates heritability enrichment= 1. Source data are provided as a Source Data file. c Neuronal subtype
expression profiles of SCZ and BD risk genes detected by GABA and Glu H-MAGMA.
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annotate these peaks with respect to their cognate genes, but also
within their corresponding cell types. Notably, AD-associated
hyperacetylation was enriched for glial enhancers that are asso-
ciated with upregulation of astrocytic co-expression modules in
AD, while AD-associated hypoacetylation was enriched for neu-
ronal enhancers that potentially affect downregulation of a neu-
ronal co-expression module in AD. These results highlight the
importance of obtaining cell-type-specific epigenetic landscapes
in diseases. This may reflect either the cellular composition
changes (expansion of glia and neuronal death) or changes in
regulatory landscape and cellular function (glial activation and
decreased neuronal activity) in AD, which requires future
investigation.

It is of note that while AD-associated hyperacetylation was
linked to oligodendrocyte genes and astrocyte co-expression
modules, genetic risk factors for AD were mapped onto a dif-
ferent glial cell type, microglia. These results are consistent with a
newly emerging literature which indicates that different types of
glia may contribute to the disease via different regulatory
mechanisms55–57. In linking AD genetic risk factors to their
cognate genes, we also recapitulated a previously found associa-
tion between rs6733839 and BIN1. Nott et al. found that this SNP
is causally implicated in the regulation of an AD risk gene, BIN1,
in a microglia-specific manner16 as predicted by our analysis.

In contrast to AD in which multiple glial cells are implicated,
previous work has indicated neurons as the central cell-type
harboring genetic risk for the majority of psychiatric
disorders3,22,46,58–61. However, given the strong genetic overlap
between BD and SCZ53,62, we do not have much indication about
specific biological pathways that are driving one disease versus
the other. Here, we reasoned that neuronal subtype-specific gene
regulatory networks would help refine the cellular etiology of
disease and potentially identify discrete molecular neuropathol-
ogy across psychiatric disorders. Indeed, when we applied Glu
and GABA neuronal enhancer-gene networks to BD and SCZ, we
were able to delineate discrete cellular substrates that may con-
tribute to difference between BD (Ex1) and SCZ (Ex5), a dis-
tinction that has not been previously recognized. It is also of note
that common genetic risk for SCZ and BD also indicated shared
pathways coalescing onto parvalbumin-positive interneurons,
paralleling what has been among the most robust pathologic
findings in SCZ and BD63,64. However, we note that these find-
ings need to be further verified by neuronal subtype-specific Hi–C
data (e.g. Glu and GABA Hi–C). Moreover, CRISPR/Cas9-
mediated genome engineering can be used to target risk genes’
enhancers to further investigate their roles in a neuronal subtype-
specific manner. Our study provides a foundation for such future
study by characterizing cell-type-specific 3D chromatin structure
in the adult human brain, which we show can be used to improve
our understanding of gene regulatory landscape in brain
disorders.

Methods
Human tissue collection and nuclei isolation. Prefrontal cortex with no history
of neurological disease was procured from tissue collections at the Department of
Neuroscience at Yale University School of Medicine. Additional specimens were
procured from the Brain and Tissue Bank at the University of Maryland. Tissue
was collected after obtaining next of kin consent and with approval by the insti-
tutional review boards at the Yale University School of Medicine, the National
Institutes of Health, and at each institution from which tissue specimens were
obtained. Tissue specimens were handled in accordance with ethical guidelines and
regulations for the research use of human brain tissue set forth by the NIH and the
WMA Declaration of Helsinki. All available non-identifying information was
recorded for each specimen (metadata available in Supplementary Table 1).

Procedures in preparation for flow cytometry (nuclei extraction, NeuN
neuronal marker immunotagging using DAPI staining) for frozen never-fixed
brain tissue specimens were previously described in detail27,65. Briefly, we dissected
and homogenized 300 mg of frozen DLPFC tissue in lysis buffer (0.32 M Sucrose;

5 mM CaCl2; 3 mM Mg(Ace)2; 0.1 mM EDTA, pH8; 10 mM Tris-HCl, pH8; 1 mM
DTT, 0.1% Triton X-100). Brain homogenate was fixed in 1% formaldehyde for
10 min prior to NeuN immunotagging66. Nuclei were isolated via
ultracentrifugation in sucrose gradient. Isolated nuclei were subjected to NeuN
immunotagging using 1:1000 anti-NeuN-488 (Millipore, MAB377X) and 1:1000
DAPI (Thermo Fisher Scientific, 62248) diluted in DPBS with 0.2% BSA. For each
Hi–C assay, 2–5 × 106 sorted NeuN+ or NeuN− nuclei were used. For each
nuclear RNA-seq assay, ~5 × 104 sorted nuclei were used.

Hi–C library generation and data processing. Sorted cells were fixed in 1%
formaldehyde for 10 min. Cross-linked DNA was then digested by HindIII (NEB,
R0104). Digested chromatin ends were filled, marked with biotin-14-dCTP
(Thermo Fisher, 19518-018), and ligated within the nucleus. DNA was sheared into
300–600-bp fragments (Covaris, M220), and biotin-tagged DNA was pulled down
with streptavidin beads (Invitrogen, 65001) and ligated with Illumina paired-end
adapters. The resulting Hi–C library was amplified by PCR (KAPA Biosystems
HiFi HotStart PCR kit, KK2502), and sequenced by Illumina 50 bp paired-end
sequencing.

The resulting Hi–C reads were mapped and filtered using hiclib (v.0.9)67.
Filtered reads were binned at 10 kb, 40 kb, and 100 kb resolution to build a
genome-wide contact matrix at a given bin size, which was subsequently
normalized using Iterative Correction and Eigenvector decomposition. We then
used 100 kb resolution matrices for compartment analysis, 40 kb for TAD analysis,
and 10 kb for loop detection. Heatmaps of Hi–C contact matrices at 10 kb
resolution were plotted using R package pheatmap (v.1.0.12) with scale=“column”.

Comparison across multiple brain-derived Hi–C data. We used HiCRep
(v.1.10.0)19 to measure reproducibility across biological replicates of Hi–C libraries
using normalized Hi–C contact matrices at 40 kb resolution. HiCRep generates a
smoothed contact matrix, and stratifies the matrix by the distance between the
interacting regions of chromatin. From this stratified matrix, a SCC is defined,
which provides a measure of similarity of genome-wide chromatin contacts across
cell types.

HiCRep was also used to compare similarities between brain-derived genome-
wide normalized chromatin contacts at 40 kb resolution. We compared Hi–C
datasets derived from homogenized adult brain tissue (Adult brain)3, mature non-
neuronal cells (NeuN−), mature neuronal cells (NeuN+), postmitotic neuron-
enriched cortical plate from the fetal brain (Fetal brain CP)4, progenitor-enriched
ventricular zone from the fetal brain (Fetal brain VZ)4, iPSC-derived neurons
(iPSC Neuron)15 and iPSC-derived astrocytes (iPSC Astrocytes)15.

Compartment calling. HiCExplorer (v.2.2.1.1)68 was used to call compartments
from normalized genome-wide chromatin contact matrices at 100 kb resolution68.
Principal component analysis (PCA) was performed using 4 eigenvectors. PC
values were selected for each chromosome and correlated with gene density to
determine compartments. The correlations between PC values from each Hi–C
data were then used to compare similarity in compartments across cell types.

TAD. We conducted TAD-level analysis as described previously4. In brief, we
quantified the directionality index by calculating the degree of upstream or
downstream (2Mb) interaction bias of a given bin (40 kb), which was processed by
a hidden Markov model (HMM) to remove hidden directionality bias.

FIRE analysis. We used FIREcaller (v.1.10)24 to define FIREs and super-FIREs
based on raw Hi–C contact matrices at 40 kb resolution. As FIREcaller defines
FIREs based on a specific statistical threshold (p < 0.05 which corresponds to a
FIRE score >1.56), NeuN+ or NeuN− specific FIREs defined by FIREcaller
although displaying similar FIRE scores between two cell types, may be called
significant only in one cell, as only one cell type exceeds the statistical cutoff (e.g.
FIRE score= 1.6), while the other fails to reach the statistical cutoff (e.g. FIRE
score= 1.5). Therefore, rather than using an all-or-none FIRE definition, we
identified significantly differential FIREs based on the difference in FIRE scores
between NeuN+ and NeuN−. NeuN+ differential FIREs were identified by
obtaining the genomic regions that have NeuN+ FIRE scores greater than qnorm
(0.975) and NeuN− FIRE scores lower than qnorm (0.9). NeuN− differential
FIREs were defined in the opposite way; NeuN− FIRE scores<qnorm (0.9) & NeuN
+ FIRE scores>qnorm (0.95). To link differential and super-FIREs to target genes,
we intersected these differential FIREs and super-FIREs with gene promoters
(defined as 2 kb upstream and 1kb downstream of TSS).

We also defined common FIREs, which are FIREs detected in both NeuN+ and
NeuN− cells, and the difference of FIREs score between two cell types was less than
0.5. Common FIREs were then overlapped with promoters to identify common
FIRE-associated genes. Since some of the common FIRE-associated genes also
overlapped with NeuN+ and NeuN− FIREs, we removed those potential cell-type-
specific genes to obtain common FIRE-associated genes.

Loop calling. Promoter-based interactions were identified as previously
described3,4. Briefly, we constructed background interaction profiles from
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randomly selected length- and GC content-matched regions to promoters. Using
these background interaction profiles, we fit interaction frequencies into Weibull
distribution at each distance for each chromosome using the fitdistrplus69 package
in R. Significance of interaction from each promoter was calculated as the prob-
ability of observing higher interaction frequencies under the fitted Weibull dis-
tribution, and interactions with FDR < 0.01 were selected as significant promoter-
based interactions. We overlapped promoter-based interactions with genomic
coordinates of TADs, and found that the majority (~75%) of promoter-based
interactions were located within the same TADs. We also applied Fit-Hi-C2
(v.2.0.7)70 with -U 2000000 -L 20000 -r 10000 -p 2 to call loops.

RNA-seq library generation and data processing. Nuclei (50,000 in DPBS) were
sorted into 300 µl of Trizol (Fisher; Cat#: 15596018) such that the volume ratio of
nuclei:Trizol was 1:3. Nuclei were lysed by pipetting 20 times in the Trizol solution
on ice. RNA extraction was performed using the Zymo Directzol Microprep RNA
Kit (Zymo; Cat#: R2062). RNA quality was evaluated using an Agilent Bioanalyzer
2100 with an RNA 6000 Pico Kit (Agilent; Cat#5067-1513). The RNA was then
converted into cDNA and prepared into RNA-seq libraries using the Smarter-
Stranded kit (Takara; Cat#634843). The libraries were size selected for an average
fragment size of 300 bp using SPRI beads (Beckman Coulter Life Sciences;
Cat#B23317). Library quality was assessed with a Qubit and Agilent Bioanalyzer
2100 using the Agilent High Sensitivity DNA Kit (Cat#5067-4626).

Once RNA-seq libraries were sequenced, we used FastQC (v.0.11.8)71 to check
the quality of RNA-seq reads, and removed adapter with Cutadapt program
(v.1.18)72. Next, clean reads were mapped to the human reference genome (Release
19 (GRCh37.p13)) from GENCODE database with HISAT2 (v.2.1.0)73 using
default parameters. And, we assembled and quantified transcripts using StringTie
(v.1.3.5)74. Differential analysis was done with DESeq2 (v.1.22.2)75. RNA-seq data
from Glu and GABA neurons were obtained from a previously published study18.

ChIP-seq data analysis. Differential H3K27ac peaks between NeuN+ and NeuN
− cells were obtained from the previously published datasets27. We re-analyzed
previously published H3K27ac ChIP-seq data from Glu and GABA neurons18 to
define differential peaks between Glu and GABA neurons. We first used FastQC
(v.0.11.8)71 to check the quality of ChIP-seq reads18. Next, we used Bowtie2
(v.2.3.4.3)76 with—very-sensitive to align reads to human reference genome build
(Release 19 (GRCh37.p13)) from the GENCODE database. We removed duplicate
reads using Picard (v.2.20.1, http://broadinstitute.github.io/picard/) MarkDupli-
cates function. We then called H3K27ac peaks using MACS2 (v.2.1.0.20150731)77

with—broad-cutoff 0.00001. Finally we used DiffBind (v.2.13.1)78 to analyze dif-
ferentially binding regions between Glu and GABA ChIP-seq data.

Motif analysis. To identify TFs that are involved in cell-type-specific distal reg-
ulation, we first extracted differentially accessible chromatin peaks by combining
differential H3K27ac27 and ATAC-seq peaks79 that are brought to the promoters
via chromatin loops. We then performed differential motif analyses on these cell-
type-specific distal regulatory peaks using GimmeMotifs (gimme maelstrom)
(v0.14.1)30 with the default settings.

Gene Ontology Enrichment analysis. We used gProfileR2 (v.0.1.9)80 to identify
GO terms that were overrepresented in particular gene sets such as genes assigned
to common FIREs, differential FIREs, and super-FIREs. We set the arguments as
following:

gost(input,organism= “hsapiens”,ordered_query= F,significant= T,evcodes=
TRUE, user_threshold= 0.05, correction_method= “fdr”,sources= c(“GO”))
$result

Top GO terms for super-FIRE-associated genes were highly redundant, which
hindered the identification of biological pathways implicated for super-FIREs. We
therefore applied REVIGO with default arguments (http://revigo.irb.hr/)81 to
remove redundant GO terms.

To analyze functional enrichment of H-MAGMA genes, we used a previously
reported rank-based approach46. This approach is a threshold-free method,
because it does not require a specific FDR cutoff. Instead, biological pathways
enriched in the top ranked genes are queried. Briefly, gProfileR (v.0.7.0)80 was used
to perform GO analyses for ranked gene lists from H-MAGMA (v.1.08)82 for AD,
SCZ, and BD GWAS:

gprofiler(input,organism= “hsapiens”, ordered_query= T, significant= T,
max_p_value= 0.05, min_set_size= 15, max_set_size= 600, min_isect_size= 5,
custom_bg= background gene set, correction_method= “fdr”, hier_filtering=
“moderate”, include_graph= T, src_filter=“GO”)

custom_bg: H-MAGMA output genes overlapping with MCH regions were
filtered (background gene set);

input: background gene set was ordered based on p value (Ranked gene list)
We used gProfileR to perform GO analysis for NeuN+ hypoacetylated and

NeuN− hyperacetylated genes:
gprofiler(input,organism=“hsapiens”, ordered_query=F, significant=T,

max_p_value=0.05, min_set_size=15, min_isect_size=5,
correction_method=“fdr”, hier_filtering=“moderate”, include_graph=T,
src_filter=“GO”).

Cellular expression profile analysis. To quantify the significance of cellular
expression of the genes assigned to cell-type-specific chromatin architecture (e.g.,
differential FIREs and loops), we used EWCE (v.1.3.0)83. In addition, cellular
expression profiles of the disease risk genes were interrogated by plotting centered
expression values for each cell type using the scRNA-seq data as described
before10,46. Each neuronal subtype definition is provided in Supplementary Table 2.

Module enrichment analysis. Developmental and synaptic modules were
obtained from Parikshak et al.34 and Lips et al.35, respectively. We employed
Fisher’s exact test to compare developmental and synaptic modules with genes
engaged in NeuN+ and NeuN− enhancer–promoter interactions. AD-associated
co-expression networks were obtained from Seyfried et al.41 (Supplementary
Table 3).

AD co-expression modules were compared with (1) genes that were linked to
hyper and hypoacetylated genes in AD and (2) AD-associated genes identified by
H-MAGMA46 using Fisher’s exact test.

Linking AD-associated epigenetic dysregulation to cognate genes. We
downloaded AD-associated hyper- and hypoacetylated H3K27ac peaks from Marzi
et al.38. Because these peaks were obtained from the brain homogenate that lacks
cellular resolution, we overlapped them with NeuN+ and NeuN− differential
peaks. Since we found that hyperacetylated peaks in AD significantly overlapped
with NeuN− differential peaks, we used NeuN− loops to assign them to the target
genes. On the other hand, hypoacetylated peaks in AD overlapped with NeuN+
differential peaks, so they were annotated to the target genes by NeuN+ loops.

GWAS data. We downloaded the following GWAS summary datasets: BD
(n= 20,352 cases; 31,538 controls)84, SCZ (n= 11,260 cases; 24,542 controls)1, and
AD (n= 71,880 cases; 383,378 controls)49.

LD score regression analysis. We implemented the LDSC software45 (v.1.0.0) to
estimate the enrichment of SNP-based heritability for brain disorder GWAS in
differential H3K27ac peaks between (1) NeuN+ and NeuN− cells and (2) Glu and
GABA neurons. Genetic variants were annotated to differential H3K27ac peaks,
and SNP-based heritability statistics were calculated using the GWAS summary
statistics mentioned above. Enrichment statistics was calculated as the proportion
of SNP-based heritability divided by the proportion of SNPs annotated to differ-
ential H3K27ac peaks.

H-MAGMA input file generation. We generated H-MAGMA (v.1.08) input files
that provide SNP-gene relationships based on chromatin interaction profiles from
NeuN+ and NeuN− cells. Exonic and promoter SNPs were directly assigned to
their target genes based on their genomic location. Intronic and intergenic SNPs
were assigned to their cognate genes based on chromatin interactions with pro-
moters and exons as previously described46. To provide SNP-gene relationships at
a neuronal subtype resolution, we also generated Glu and GABA H-MAGMA
input files. For example, we obtained SNPs that map onto Glu H3K27ac peaks,
then SNPs active in Glu neurons were assigned to their genes by either genomic
coordinates (when located in promoters and exons) or distal interactions (non-
coding SNPs were mapped to their cognate genes via NeuN+ chromatin interac-
tions). We used the same framework to obtain GABA SNP-gene relationships.
Input files can be found in the github repository: https://github.com/thewonlab/
NeuN.

H-MAGMA. Based on the SNP-based heritability enrichment result, we used NeuN−
H-MAGMA to infer AD risk genes and Glu/GABA H-MAGMA to infer SCZ and BD
risk genes.

We set the arguments as following: magma_v1.08/magma—bfile g1000_eur
–pval <GWAS summary statistics> use= rsid,p ncol=N—gene-annot <MAGMA
input annotation file>—out <output file>.

g1000_eur denotes the reference data file for European ancestry population.

Python and R environments. We used Python v.2.7 and R v.3.6.0.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Hi–C data described in this manuscript is available through the PsychENCODE
Knowledge Portal with the accession code of syn21760712. H3K27ac, ATAC-seq, and
RNA-seq data from NeuN+ and NeuN− cells are available through syn4566010,
GSE83345, and syn20545534, respectively. H3K27ac ChIP-seq data from Glu and GABA
neurons are available through syn12034263. Human reference genome and gene
definition was obtained from GENCODE and UCSC genome browser [http://genome.
ucsc.edu]. All other relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files or from the corresponding
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authors upon reasonable request. Source data are provided with this paper. A reporting
summary for this Article is available as a Supplementary Information file. Source data are
provided with this paper.

Code availability
All custom code used in this work is available in the following github repository: https://
github.com/thewonlab/NeuN 85.
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