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ABSTRACT
DNA methylation (DNAm) has a well-established association with age in many tissues, including
peripheral blood mononuclear cells (PBMCs). Compared to DNAm, the closely related epigenetic
modification known as DNA hydroxymethylation (DNAhm) was much more recently discovered in
mammals. Preliminary investigations have observed a positive correlation between gene body
DNAhm and cis-gene expression. While some of these studies have observed an association
between age and global DNAhm, none have investigated region-specific age-related DNAhm in
human blood samples. In this study, we investigated DNAhm and gene expression in PBMCs of 10
young and 10 old, healthy female volunteers. Thousands of regions were differentially hydro-
xymethylated in the old vs. young individuals in gene bodies, exonic regions, enhancers, and
promoters. Consistent with previous work, we observed directional consistency between age-
related differences in DNAhm and gene expression. Further, age-related DNAhm and genes with
high levels of DNAhm were enriched for immune system processes which may support a role of
age-related DNAhm in immunosenescence.
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Introduction

DNA methylation (DNAm) is the process whereby
enzymes known as DNA methyltransferases cova-
lently bind methyl groups (-CH3) to DNA. DNAm
usually occurs at a CpG site, i.e. a 5' cytosine
nucleotide directly upstream of a 3' guanine
nucleotide [1]. An epigenetic modification closely
related to DNAm is DNA hydroxymethylation
(DNAhm), distinguished by the hydroxylation of
the methyl to a hydroxymethyl group (CH2OH).
The ten-eleven translocation (TET) enzymes are
a family of three proteins (TET1, TET2, TET3)
that catalyse the hydroxylation of 5-methylcytosine
to 5-hydroxymethylcytosine[2].

DNAm undergoes changes in an orchestrated
fashion throughout mammalian development, and
coordinates with proteins to regulate gene expres-
sion states [1]. A large body of work has established
that DNAm robustly associates with age in human
whole blood [3–7], whereas age-related changes to
DNAhm are less well characterized. This is partially
because DNAhm was only discovered in mammals
in 2009 [8]. Previously, bisulphite-based methods to
detect DNAm were unable to differentiate between
DNAm and DNAhm, but newer methods are able to
detect and quantify DNAhm [9–13]. Initially,
DNAhmwas regarded as a transient epigeneticmod-
ification intermediate between DNAm and
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demethylation. However, recent work suggests it can
be stably maintained and may serve as a blocker to
proteins that would otherwise bind to methylated
DNA [14], which opens the possibility that
DNAhm could play a more important role in gene
regulation than previously recognized.

DNAhm has been most extensively studied in the
brain, where 13% of all CpG sites have been reported
to have high DNAhm levels [15]. Studies have found
thatDNAhm is enriched in active genes of human and
mouse frontal cortex [15–17], and associates with
active transcription and age throughout brain devel-
opment [18–22]. In neural tissue of mice from
embryonic day 7 to 6 weeks, Szulwach et al. (2011)
observed an association between developmental stage
and increased DNAhm in developmentally active
genes [18]. An association between gene activation
and gene body DNAhm has also been observed in
neural progenitor cells and neurons isolated from
mice [19]. These studies suggest that DNAhm may
mediate the effect of gene activation on
neurodevelopment.

Age-related gene body DNAhm in the brain is
enriched for pathways associated with neurode-
generative disorders[21]. A genome-wide
decrease in DNAhm was observed in a fragile-
X mouse model [23]. In post-mortem human
prefrontal cortex, Bernstein et al. (2016)
observed differential gene body DNAhm in
Alzheimer’s disease in 325 genes in both discov-
ery and replication datasets [24]. DNAhm has
also been shown to associate with
Alzheimer’s-associated neuritic plaques and neu-
rofibrillary tangles in postmortem human dorso-
lateral prefrontal cortex tissue [25]. Together,
these studies suggest DNAhm may be involved
in neurodegeneration.

Most previous studies have examined brain
DNAhm, while few have investigated DNAhm in
blood. It is possible that whole blood DNAhm has
escaped interest due to its low content, which is esti-
mated to be 0.027% [26]. A longitudinal study of
peripheral blood samples from mice observed 8,613
genomic regions differentially hydroxymethylated
with age, and 28,196 CpG sites differentially methy-
latedwith age, with little overlap between the two [27].
Although regional changes with age in DNAhm have
yet to be investigated inhumanblood, global decreases
in DNAhm with age have been reported [28,29].

While previous work has established a potential
role for DNAhm in active gene transcription as
well as development and ageing in brain tissue, its
role in blood remains unclear. The objective of our
study was to investigate age-related DNAhm in
human peripheral blood and its possible gene reg-
ulatory and biological roles. To do this, we per-
formed genome-wide DNAhm capture sequencing
and RNA-sequencing (RNA-seq) in peripheral
blood mononuclear cells (PBMCs) from 10
young and 10 old healthy Caucasian females. Our
study is the first to investigate these changes
regionally, and one of the first to investigate the
interplay between genome-wide gene expression
and DNAhm in peripheral blood.

Results

To investigate associations between age, DNAhm,
and gene expression, we performed DNAhm cap-
ture sequencing[9] and RNA-seq on DNA and
RNA samples isolated from PBMCs of 10 young
(23–30 years) and 10 old Caucasian females (68–
76 years). The number of reads that uniquely
mapped to the genome were 11,668,072 to
36,532,555 for DNAhm-capture sequencing and
13,354,493 to 36,314,069 for RNA-seq across sam-
ples. Among the samples from the 20 individuals,
48-81% of the DNAhm-capture reads (Table S1)
and 74-80% of the RNA-seq reads (Table S2)
uniquely mapped to the genome. DNAhm profiles
clustered by both batch and age group in
a principal components analysis (Figure S1), indi-
cating that both of these variables capture varia-
tion in the data. To account for the variation due
to batch, batch was included as a covariate in all
subsequent analyses of the DNAhm data. The
sample gene expression profiles clustered into the
young and old age groups (Figure S2). These ana-
lyses show that both the gene expression profiles
and DNAhm profiles of our sample data capture
variation originating from sample age.

We first investigated DNAhm content across
different genomic features. The mean DNAhm
read density was highest in enhancers (p < 10−15)
(Figure 1), followed by exons, which had a higher
density than that observed in gene bodies
(p < 10−15) or genome-wide (p < 10−15). 52% of
promoters had no overlapping reads, although the
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overall mean density was comparable between
exons and promoters.

We observed 6,650 differentially hydroxymethy-
lated regions (DhMRs) (FDR<0.05): 4,664 asso-
ciated with increased ((+) DhMRs) and 1,986
associated with decreased ((-) DhMRs) DNAhm
with age (Figure 2; Table S3). Log2-fold-change
ranged from 0.35 to 2.48 for (+) DhMRs and
−0.37 to −2.14 for (-) DhMRs (Figure 3). The
read counts for the 20 samples for these 6,650
bins clustered by age group, with one exception
(Figure 4). We observed 732 regions with multiple
DhMRs directly adjacent to one another: 658 asso-
ciated with lower DNAhm and 74 with higher
DNAhm in the old age group. Most DhMRs over-
lapped a gene body, enhancer, or promoter with
an overrepresentation of both (+) and (-) DhMRs
overlapping gene bodies and enhancers (Table 1).
The most significant DhMR had decreasing
DNAhm with age and occurred on chromosome
20 in an intronic region of TOX2 (Figure S3),

which belongs to a family of transcription factors
that modify chromatin structure in T cell develop-
ment [30], and was recently linked to CD8+ T cell
exhaustion [31]. The second most significant
DhMR was on chromosome 1 and also had
decreasing DNAhm with age, and overlapped an
exon and intronic regions of the gene LRRN2,
which is overexpressed in malignant gliomas
(Figure S4) [32]. The most significant DhMR
with increasing DNAhm was on chromosome 7
overlapping an intron of STK17A (Figure S5), also
known as DRAK1, which is involved in apoptosis
and is overexpressed in some cancers [33].

To investigate whether our DhMRs mapped to
regions showing differential DNAhm with age in
brain, we compared our results to two studies of
post-mortem cerebellar tissue samples. To maxi-
mize comparability, we re-analysed raw data from
the previous studies using similar methods of gen-
ome tiling, quality control, and testing for DhMRs
between the studies. We observed a small but

Figure 1. Overlapping reads per kbp across genomic features. To calculate read density, reads that overlapped a genomic feature
were counted and averaged across individuals.

Figure 2. Manhattan plot of DhMR analysis. The y-axis represents the signed negative log10-p-value and the x-axis represents the
chromosome number and position, with chromosome X appearing to the very right.
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significant positive correlation between test statis-
tics (0.12 ≤ r ≤ 0.37; Figure S6) in a comparison of
our DhMRs to age-DhMRs called from 19 publicly
available cerebellar tissue DNAhm samples (age
range: 4–55 years) [34]. However, we observed
no correlation between the test statistics corre-
sponding to our DhMRs and DhMRs called from
DNAhm profiles of 6 young (<20 years) and 6 old
(>69 years) cerebellar tissue samples from the NIH
NeuroBioBank tissues repositories (r < 0.02; Figure
S7) [35] To investigate whether our DhMRs
mapped to regions showing differential DNAm

with age, we compared our DhMRs to age-
related differential DNAm identified in human
whole blood samples from two cohorts, one with
similar demographics to our 20-sample cohort
(European-American) and one African-American
cohort [36,37]. Although differentially methylated
regions (DMRs) were highly correlated between
the two cohorts (r = 0.95; Figure S8), we did not
observe a correlation between our DhMR test sta-
tistics and DNAm test statistics for either cohort
(r < 0.1, Figure S8).

To investigate the potential gene regulatory role of
age-related DNAhm, we performed an age-related
differential gene expression analysis. We observed
124 differentially expressed genes (DEGs)
(FDR<0.05), 45 with higher ((+) DEGs) and 79
with lower ((-) DEGs) expression in old vs. young
samples (Table S4). For these 124 DEGs, the RNA-
seq read counts clustered perfectly by age group
(Figure S9). We compared our DESeq2 test statistics
to the published Z-scores of 1,497 genes significantly
associated with age in a previous study of gene
expression in whole blood [38] and observed
a significant correlation between the two (r = 0.58;
p < 10−15; Figure S10), indicating that our results
were consistent with those from a much larger study
(N = 14,983). We next investigated the overlap

Figure 4. Heatmap of log10-normalized read counts of the 6,650 DhMRs. The numbers along the x-axis indicate ages.

Figure 3. Volcano plot of DhMRs in 2000 bp bins. Bins in light
blue are those with FDR<0.05.
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between DEGs and DhMRs in our study. 160
DhMRs overlapped 39 of the 124 DEGs. We
observed directional consistency between age-
related DNAhm and gene expression at 159 of
these 160 DhMRs (Table S5). 154 of these DhMRs
exhibited age-related decreases in both DNAhm and
gene expression.

Because DNAm marks cell lineage skewing [39]
and age-related cell lineage skewing is observed in
both peripheral blood [40] and haematopoietic stem
cells (HSCs) [41], we investigated the possibility that
age-related changes in cell type proportions could
explain our age-related results. To do this, we esti-
mated cell type proportions (Figure S11) from our
RNA-seq data using the DeconRNASeq package
[42]. The DESeq2 test statistics generated with esti-
mates of cell type proportions as covariates strongly
correlated with the test statistics obtained without
cell type proportions included as covariates for both
DEGs (Figure S12; r = 0.64) andDhMRs (Figure S13;
r = 0.83). All DhMRs and 123 of the 124 DEGs from
the original models showed directional consistency
in themodels with cell types as covariates, suggesting
that our age-related results are robust to cell
composition.

We also evaluated whether gene body, exonic, pro-
moter, or enhancer DNAhm associated with gene
expression of the same gene controlling for age and
batch. We observed 16 genes with a significant posi-
tive association between gene expression and exonic
DNAhm and none with a negative association
(FDR<0.05; Table S6). 25 genes had a significant asso-
ciation between gene expression and gene body
DNAhm, 23 of which had a positive association
(FDR<0.05; Table S7). 3 of these 25 genes overlapped
with the 16 genes with a significant association
between exonic DNAhm and gene expression. The

lack of overlapping results between exonic regions
and gene bodies could be because exonic regions do
not make up a large portion of the total gene length
(~16%). Thus, 5hmC could feasibly overlap the gene
body without overlapping an exon. We also observed
1 significant association between gene expression and
enhancer DNAhm for an enhancer linked to the gene
TBX21 (p = 5.3x10−8). However, this enhancer over-
laps a substantial portion of the gene body (2274 bp)
andwe also observed a significant association between
gene expression and 5hmC in both gene body and
exonic regions for TBX21; thus, it is not clear which to
attribute the association to, although the association is
strongest in the analysis of the enhancer region
(Figure S14).We did not observe a significant associa-
tion between gene expression and promoter DNAhm
for any gene. Among both significant and non-
significant results, the majority of genes had
a positive slope coefficient of gene expression on
DNAhm in gene bodies (62%), exonic regions
(58%), promoters (56%), and enhancers (55%)
(Figure S15). Further, the average T-statistic corre-
sponding to the slope coefficient of gene expression
on DNAhm was significantly greater than zero for all
four genomic features (p < 10−15). The positive asso-
ciation between DNAhm and gene expression for
most significant genes is consistent with previous
work observing enrichment of DNAhm in active
genes in the brain [17,19,22,43].

To test whether age moderates the association
between DNAhm and gene expression, we per-
formed additional analyses that included an interac-
tion term between age and DNAhm. We only tested
for an interaction among genes that were significant
in the main effect analysis described above. We did
not observe a significant interaction for exonic or
enhancer regions. For gene body 5hmC, we detected
a significant interaction between 5hmC and age in
predicting expression of a tumour suppressor gene
known as PRDM5[44] (p = 4.9x10−5; Figure S16),
suggesting a large positive correlation between
5hmC and gene expression in older individuals that
was not seen in young individuals.

We performed gene ontology (GO) analyses on 9
gene sets: the 1500 genes with the highest DNAhm
content, genes showing age-related increased or
decreased DNAhm in gene bodies, promoters, and
enhancers, and (+) and (-) DEGs. After Bonferroni
adjustment (p < 3.8x10−6) we observed enrichment

Table 1. Total number (and percentages) of DhMRs showing
decreased DNAhm with age, denoted (-) DhMRs, and DhMRs
showing increased DNAhm, denoted (+) DhMRs, and for refer-
ence, all 2,000 bp bins overlapping at least one promoter,
enhancer, or gene body.

Feature (-) DhMRs (+) DhMRs
All 2,000 bp

bins

Overlap
with:

Promoter 184 (0.04%) 10 (0.005%) 19,481 (0.01%)
Enhancer 2,144 (46%) 904 (46%) 321,938 (21%)
Gene body 3,261 (70%) 1,423 (72%) 825,172 (53%)
Total 4,664

(100%)
1,986
(100%)

1,544,146
(100%)
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for a total of 94 GO terms (Table S8).We observed 7
GO terms enriched in positive gene body DhMRs as
well as 1 enriched in negative enhancer DhMRs and
19 enriched in positive enhancer DhMRs (Table 2).
Genes with high DNAhm were enriched for 66 GO
terms and positive DEGs were enriched for 1 GO
term. Many of the significant GO terms observed
are involved in immune system function. Genes
with high DNAhm were enriched for cell activation
involved in immune response, immune system
development, immune effector process, immune
response-activating cell surface receptor signalling
pathway, immune response-regulating signalling
pathway, phagocytosis, Fc-receptor signalling path-
way, and Fc-gamma receptor signalling pathway
involved in phagocytosis. Positive gene body
DhMRs associated with leukocyte mediated immu-
nity, neutrophil activation, neutrophil degranula-
tion, and myeloid cell activation involved in
immune response. The set of genes with positive
enhancer DhMRs were enriched for neutrophil
degranulation, immune response, immune system
development, and positive regulation of leukocyte
differentiation.

Discussion

Our study is the first to discover region-specific
changes in DNAhm with age in human blood.

Among overlapping DhmRs and DEGs, the vast
majority had the same direction of effect, i.e. both
with associated increases with age or both with asso-
ciated decreases with age. Further, we observed
a positive correlation between gene expression and
DNAhm, supporting a possible gene regulatory role
for DNAhm in PBMCs. We observed no correlation
in test statistics between DMRs and DhMRs (Figure
S6), which could suggest that DNAm and DNAhm
regulate distinct genes. Based on these results, it is
possible that DNAm and DNAhmwork in tandem to
shape the development and function of tissues
throughout life.

Unlike CpG island promoter DNAm, which typi-
cally holds genes in a stably repressed state [45,46],
the relationship between promoter DNAhm and
gene transcription may depend on the presence of
certain transcription factors. Unlike DNAm,
DNAhm does not bind to methyl-binding proteins
(MBD1, MBD2, and MBD4), which are known
repressors of transcription [47,48]. However,
a transcriptional repressor known as methyl CpG
binding protein-2 (MeCP2) binds to DNAm and
DNAhm with similar affinity [43]. Further, work
suggests that promoter DNAhm may mediate the
binding of MeCP2 thereby blocking transcription
[49]. Among both significant and non-significant
results, we observed 56% of genes to have a positive
correlation between promoter DNAhm and gene

Table 2. Significantly enriched GO terms by direction of differential DNAhm and genomic feature showing differential DNAhm.
Genomic Region Gene Body Enhancer

Direction of
DhMR

↑ with age ↓with age ↑ with age

Enriched GO
Terms

1. Leukocyte mediated immunity
2. Neutrophil activation
3. Neutrophil degranulation
4. Myeloid cell activation involved in immune
response
5. Cell activation
6. Regulated exocytosis
7. Exocytosis

1. Nucleic acid metabolic
process

1. Neutrophil degranulation
2. Positive regulation of catalytic activity
3. Amide transport
4. Organic substance transport
5. Immune response
6. Cellular response to organic substance
7. Protein modification process
8. Immune system development
9. RNA splicing, via transesterification
reactions
10. Positive regulation of leukocyte
differentiation
11. Secretion by cell
12. Regulation of peptide transport
13. Vesicle-mediated transport
14. Establishment of localization
15. Response to organonitrogen compound
16. Peptide secretion
17. Positive regulation of secretion
18. Positive regulation of metabolic process
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expression. This contrasts a previous report of pro-
moter eCpGs having a negative correlation between
DNAm and gene expression ~80% of the time [50].
The difference in the direction of association with
gene expression between DNAm and DNAhm at
promoters could be a result of a lack of transcrip-
tional repressors that bind to DNAhm.

The link between DNAhm and active transcrip-
tion has been better established for gene bodies than
promoter regions. Consistent with previous work
[19–23,43], we observed mostly positive associations
between DNAhm and gene expression: 16 of the 16
genes were positively associated among genes with
an association between exonic DNAhm and gene
expression, and 23 of 25 genes were positively asso-
ciated among genes with an association between
gene body DNAhm and gene expression. Further,
for 62% of all genes tested (including those that were
not significant), the test statistic corresponding to
the correlation between gene expression and gene
body DNAhm was positive. In contrast, previous
work on human blood samples observed 60-80% of
CpG sites with a significant association between gene
expression and DNAm to be negatively correlated in
both exons and promoters, as well as other genomic
contexts [50].

Among the 23 genes with an association
between gene body DNAhm and gene expression,
the gene PRDM5 had a significant interaction
between DNAhm and age (Figure S16), indicative
of a much stronger association among old subjects
compared to young subjects. PRDM5 is a tumour
suppressor gene, which is downregulated in some
carcinoma cell lines, as well as a stress response
gene whose response to stress has been reported to
be impaired by promoter DNAm [44]. The asso-
ciation we observed between gene body DNAhm
and gene expression at PRDM5 in our healthy old
subjects, but not young subjects, suggests DNAhm
may regulate the expression of this gene in healthy
ageing.

Previous work in prefrontal cortex has observed
the highest levels of DNAhm in exons and enhan-
cers [23]. Consistent with this study, we observed
the highest density of read counts overlapping
enhancers followed by exons. The density in both
enhancers and exons was significantly higher than
gene bodies and genome-wide, and nominally sig-
nificantly higher than promoters. It is unclear

what role DNAhm might play in enhancers, but
its similarly high abundance in both brain and
blood may be indicative of a congruent role of
this epigenetic modification across tissues.

Gene ontology analyses support the interpretation
that DNAhm is involved in immune system function,
similar to DNAm [47]. In our study, genes showing
increased DNAhm in gene bodies in older subjects
were enriched for biological processes related to mye-
loid cell activation involved in immune response. One
of the hallmarks of the ageing immune system is
skewing towards the myeloid lineage of HSCs [41].
Experiments in mice have shown that both DNAm
and DNAhm alter lineage skewing in HSCs [51–53].
Cell types of the myeloid lineage undergo major
changes during immunosenescence such as an age-
related impairment of phagocytosis among mono-
cytes [54], which are themost abundant mononuclear
phagocytes found in blood [55]. Our findings could
indicate that age-related DNAhm is involved in these
changes. Another myeloid cell type that incurs age-
related changes is neutrophils, including an age-
related impairment of degranulation [56]. We
observed genes showing increased DNAhm in older
subjects to be enriched for biological processes related
to neutrophil function including neutrophil activation
and degranulation. Interestingly, neutrophils are not
mononuclear and therefore should not be present in
PBMCs. Although contamination of PBMCs with
low-density granulocytes has been observed, this is
more typically observed in diseases such as systemic
lupus erythematosus, whereas such contamination is
usually negligible in healthy individuals [57], such as
the subjects in our study. The enrichment with neu-
trophil function could be an indication of cross-talk
between cell types, that is, age-related DNAhm could
be regulating genes related to neutrophil function in
PBMCs which is subsequently communicated to
neutrophils.

In addition to age-related DNAhm, we observed
enrichment for immune system function among
genes with the highest levels of DNAhm, which
suggests a possible role of DNAhm in the regula-
tion of immune-related genes independent of age.
One of the enriched biological processes was the
Fc-gamma receptor signalling pathway involved in
phagocytosis, which becomes activated in both
macrophages [58] and neutrophils [56,59] to com-
bat pathogens. We also observed enrichment for
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biological processes suggesting DNAhm is
involved in immune response, including immune
effector process, immune response-activating cell
surface receptor signalling pathway, cell activation
involved in immune response, and immune
response-regulating signalling pathway.

One of the limitations of this study is the small
sample size, which limits power and is likely why
we only detected 124 DEGs, much fewer than
a previous study that observed 1,497 DEGs in
PBMCs of 14,983 individuals of European ancestry
[38]. In addition, we used a capture based
approach (hMe-Seal), which quantifies DNAhm
regionally rather than at CpG site resolution.
Thus, our age-related DNAhm results could
potentially differ from those generated at CpG
site resolution. Another limitation is the differ-
ences in sequencing lengths for batch 1 (151 bp)
and batch 2 (51 bp), which could explain the lower
alignment rate of batch 2 compared to batch 1
(Table S1). Because batches were randomized,
and batch was included as a covariate in all ana-
lyses, this difference will not bias or confound our
analysis, but the lower coverage in batch 2 repre-
sents a further limit on power. Finally, all 20 sub-
jects were Caucasian and female and are thus not
representative of other demographic groups.
While the homogeneity of our sample means it is
unlikely that sex or ancestry could confound our
results, it is possible that our results may not
generalize to males or people of non-European
ancestry. However, this was a pilot study intended
to investigate 1) the possible presence of region-
specific age-related DNAhm in PBMCs and 2)
whether DNAhm was enriched for active tran-
scription. We observed evidence of both of these
phenomena. Further, our GO analyses suggest that
age-related DNAhm may be involved in immune
system function in PBMCs. Our findings motivate
future investigations into age-related DNAhm in
human PBMCs and its possible involvement in
gene regulation and immunosenescence, ideally
in cohorts that are larger and more heterogeneous.

Conclusion

Our study is the first to show that DNAhm associ-
ates with age at thousands of regions in human
PBMCs. The directional consistency between age-

related differences in DNAhm and gene expression
supports previous work in brain reporting that
DNAhm is enriched for active transcription. Our
study adds to previous work suggesting a possible
role of DNAm [51] and DNAhm [52,53] in immu-
nunosenescence within HSCs, and supports the
premise that age-related DNAhm plays a role in
immune system function in PBMCs.

Methods

Data collection

We collected DNAhm and gene expression data from
PBMCs of 10 young (23–30 years) and 10 old (68–
76 years) Caucasian females, all of whomwere disease-
free, unmedicated non-smokers. Ascertainment of
participants and sample collection was performed by
iSpecimen®, and samples were subsequently shipped
to Emory University for analysis. We extracted DNA
using the QIAGEN DNeasy Blood and Tissue Kit.

We extracted 1 μg of RNA from each subject
using the QIAGEN RNeasy Kit, synthesized cDNA
with Invitrogen Oligo(dT)20 primers, and ampli-
fied DNA with q-PCR analysis. We performed all
laboratory analyses blinded from knowledge of age
group of the samples collected.

DNAhm data generation

We performed DNAhm-enrichment using hMe-Seal,
a previously described selective chemical labelling
method [22]. To perform DNAhm labelling, we
used a 100-μl solution containing 50 mM HEPES
buffer (pH 7.9), 25mMMgCl2, 300 ng μl−1 sonicated
genomic DNA (100–500 bp), 250 μM UDP-6-N3-
Glu, and 2.25 μM wild-type β-glucosyltransferase.
We incubated the reactions at 37°C for 1 hour, after
which we purified DNA substrates using either
a Qiagen DNA purification kit or phenol-
chloroform precipitation followed by reconstitution
in H2O. With the addition of 150 μM dibenzocy-
clooctyne modified biotin in the DNA solution, we
performed click chemistry followed by incubation of
the solution for 2 hours at 37°C. Using Pierce
Monomeric Avidin Kit (Thermo), we purified sam-
ples according to the manufacturer’s recommenda-
tions. Subsequent to elution, we concentrated DNA
containing biotin-5-N3-gmC using 10 K Amicon
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Ultra 0.5-mL Centrifugal Filters (Millipore) and then
purified using a Qiagen DNA purification kit.

DNAhm-enriched DNA library preparation

We generated libraries following the Illumina proto-
col ‘Preparing Samples for ChIP Sequencing of DNA’
(Part# 111,257,047 Rev. A). We initiated the protocol
using 25 ng of DNAhm-captured DNA or input
genomicDNA.We gel-purified fragments of approxi-
mately 150–300 bp subsequent to adapter ligation.
We quantified PCR-amplified DNA libraries using
an Agilent 2100 Bioanalyzer. We diluted these
libraries to 6–8 pM for cluster generation and sequen-
cing. We used version 4 Cluster Generation (Part
#15,002,739), Sequencing Kits (#15,005,236) and
Version 7.0 recipes to perform 38-cycle single-end
sequencing. Due to a change in lab protocol between
batches 1 and 2, the sequence read length was 151 bp
for batch 1 and 51 bp for batch 2. We processed
images and extracted sequences using the standard
Illumina Pipeline.

DNAhm data processing

We used Bowtie 2 [60] to align samples to the
hg38 build of the human genome using the pre-
built index from Illumina’s iGenomes collection.
Bowtie 2 outputs SAM-formatted files, which we
then sorted, converted to BAM format, and
removed reads with MAPQ values lower than 23
(Figure S17; Table S9) using samtools [61].

Creation of DNAhm count matrices

We used the Rsamtools [62], GenomicRanges [63],
and BSgenome.Hsapiens.UCSC.hg38 libraries in
R Bioconductor to create a 1,544,146-row by 20-
column matrix, each row corresponding to a 2000
bp non-overlapping region of the genome and each
column corresponding to a sample. The value in the
ith row of the jth column indicates the number of
DNAhm reads overlapping the ith 2000 bp segment
of the jth sample. To create count matrices for reads
overlapping gene bodies and exonic regions, we
used the same R Bioconductor packages and an
Ensembl gene annotation file of 60,675 genes
based on the hg38 build of the human genome. To
determine DNAhm reads overlapping promoters,

we used the NIH Roadmap Epigenomics
Consortium’s 18,692 PBMC-specific promoters,
which were determined using ChromHMM
[64,65]. In our analysis, we used 13,782 of the
18,692 promoters, which were within 2000 bp
upstream of the transcription start site of the
60,675 Ensembl genes. We also created a count
matrix of DNAhm reads overlapping enhancers
using the GeneHancer annotation, which contains
annotations of enhancers and their linked
genes [66].

RNA-seq library preparation

We generated RNA-seq libraries using 0.5 ug of
total RNA samples from young or old PBMCs via
the TruSeq RNA Sample Preparation Kit v2
(Illumina). We validated libraries by DNA Chips
using Agilent 2100 Bioanalyzer. We then
sequenced these libraries using 50-cycle single-
end runs with Illumina HiSeq 2000.

RNA-seq data processing

We aligned RNA-seq reads to the hg38 build of the
human genome and discarded reads shorter than
50 bps and with quality scores below 20 using the
STAR [67] RNA-seq aligner.

We used the Rsamtools, GenomicFeatures, and
GenomicAlignments R Bioconductor packages to
count RNA-seq reads overlapping each Ensembl-
annotated gene of the hg38 build of the human gen-
ome. Using the same Ensembl-annotated genome, we
counted RNA-seq reads that overlapped exons of
these genes.

Quality control of count matrices

For quality control of the RNA-seq and DNAhm
read count matrices, we excluded genes/regions
that had <10 reads for 5 or more samples. For
the DNAhm and RNA-Seq Joint Data Analysis
described below, we used genes that passed quality
control for both the RNA-seq data using STAR
and the DNAhm count matrix of reads overlap-
ping gene exons.

To evaluate data clustering of the gene expres-
sion profiles using FPKM values and DNAhm
profiles of the 2000 bp binned count matrix, we
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performed principal component analyses. We then
plotted the second principal component against
the first principal component for both the gene
expression profiles and the DNAhm profiles.

Age-differential analyses of DNAhm and gene
expression

To test for age-differentially expressed genes
(DEGs) and age-differentially hydroxymethylated
2000 bp regions (DhMRs), we used the
R Bioconductor package DESeq2 which models
read counts as a negative binomial distribution
[68]. Read counts were included as the outcome
variable and age group as the predictor variable.
When testing for DhMRs we also included batch
as a covariate. To correct for multiple testing, we
used the Bioconductor qvalue package to apply an
FDR cut-off of 0.05 [69].

Comparison of age-related DNAhm and DNAm

To compare our age-related DNAhm to age-
related DNAm, we used CpG-specific results
from a previous study investigating age-related
DNAm (N = 336) [36]. We used Stouffer’s method
to combine site-specific T-statistics from the
regression of DNAm on age into region-specific
Z-scores for each DhMR.

DNAhm and RNA-seq joint data analysis

We used a regression model to test for an associa-
tion between gene expression (in fragments per
kilobase of transcript per million mapped reads,
or FPKM values) and quantile-normalized log-
transformed DNAhm counts overlapping gene
exons, gene bodies, gene enhancers, and gene pro-
moters using the following model:

FPKMij ¼ β0 þ βDNAhmDNAhmij

þ βAge groupAge groupj þ βBatchBatchj
þ εij

where the response variable, FPKMij, corresponds
to the FPKM value and the predictor variable,
DNAhmij, corresponds to the normalized log-
transformed DNAhm count for the ith gene and
the jth individual. We also included two covariates:

Age groupj of the jth individual and Batchj, the
batch run for the DNAhm reads of the jth indivi-
dual. The error term for the ith gene and the jth

individual is denoted εij. To test for an interaction
between DNAhm and age group, we performed
additional regressions for models that had signifi-
cant main effects by including the interaction term
DNAhmij × Age groupj in the model.

Cell mixture estimation

We used previously published cell-type-specific
RNA-seq signatures from flow-sorted PBMCs[70]
and the R Bioconductor package DeconRNASeq
[42] to estimate proportions of myeloid cells,
T cells, and B cells in our samples of PBMCs. To
investigate whether our models were robust to
possible age-related lineage skewing, we compared
the DESeq2 analyses run with and without cell
type proportions included as covariates for both
DEGs and DhMRs.

Gene enrichment analyses

We used the software package GOstats available
in R Bioconductor to test for an association
between gene sets and Gene Ontology (GO)
terms [71]. We first used DESeq2 to perform
a feature-based age-differential analysis of
DNAhm reads overlapping gene bodies, promo-
ters, and enhancers, applying an FDR<0.05 on the
combined set of genomic features. We then did
a separate GO analysis on the following nine gene
sets: DEGs with decreased and increased expres-
sion with age, genes with decreased DNAhm in
gene bodies, promoters, enhancers and genes with
increased DNAhm in gene bodies, promoters,
and enhancers as well as the top 1,500 genes
with the most overlapping DNAhm reads. For
all GO analyses, we used a Bonferroni correction
of α = 0.05.

Data availability

Raw 5hmC- and RNA-seq data are available
through dbGaP (accession number phs001916.
v1.p1).
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