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Abstract

Most genome-wide association and fine-mapping studies to date have been conducted in
individuals of European descent, and genetic studies of populations of Hispanic/Latino and
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African ancestry are limited. In addition, these populations have more complex linkage dis-
equilibrium structure. In order to better define the genetic architecture of these understudied
populations, we leveraged >100,000 phased sequences available from deep-coverage
whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medi-
cine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino
samples with genome-wide genotyping array data. We demonstrated that using TOPMed
sequencing data as the imputation reference panel improves genotype imputation quality in
these populations, which subsequently enhanced gene-mapping power for complex traits.
For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold
increase in the number of well-imputed variants, with 11-34% improvement in average
imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and
Haplotype Reference Consortium reference panels. Impressively, even for extremely rare
variants with minor allele count <10 (including singletons) in the imputation target samples,
average information content rescued was >86%. Subsequent association analyses of
TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin
(HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry
and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the
HBB gene (rs33930165 with higher WBC [p = 8.8x107'°] in African populations, rs11549407
with lower HGB [p = 1.5x10™"?] and HCT [p = 8.8x107"] in Hispanics/Latinos). By compari-
son, neither variant would have been genome-wide significant if either 1000 Genomes
Project Phase 3 or Haplotype Reference Consortium reference panels had been used for
imputation. Our findings highlight the utility of the TOPMed imputation reference panel for
identification of novel rare variant associations not previously detected in similarly sized
genome-wide studies of under-represented African and Hispanic/Latino populations.

Author summary

Admixed African and Hispanic/Latino populations remain understudied in genetic stud-
ies of complex diseases. These populations have more complex linkage disequilibrium
(LD) structure that can impair mapping of variants. Genotype imputation represents an
approach to improve genome coverage, especially for rare or ancestry-specific variation;
however, these understudied populations also have smaller relevant imputation reference
panels. In this study, we leveraged >100,000 phased sequences generated from the multi-
ethnic NHLBI TOPMed project for imputation in ~21,600 individuals of African ancestry
(AAs) and ~21,700 Hispanics/Latinos. We demonstrated substantially higher imputation
quality for low frequency and rare variants in comparison to the 1000 Genomes Project
and Haplotype Reference Consortium reference panels. Analysis of quantitative hemato-
logical traits led to the discovery of associations with two rare variants in the HBB gene;
one of these variants was replicated in an independent sample, and the other is known to
cause anemia in the homozygous state. By comparison, the same HBB variants would not
have been genome-wide significant using current reference panels due to lower imputa-
tion quality. Our findings demonstrate the power of TOPMed whole genome sequencing
data for imputation and subsequent association analysis in admixed African and His-
panic/Latino populations.
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Introduction

Genotype imputation, despite being a standard practice in modern genetic association studies,
remains challenging in populations of Hispanic/Latino or African ancestry, particularly for
rare variants [1-6]. One obstacle lies in the lack of appropriate whole genome sequence refer-
ence panels for these admixed populations. For individuals of European descent, the relevant
haplotypes available have increased by more than 500 times from 120 phased sequences in
HapMap?2 [7] to more than 64,000 phased sequences in Haplotype Reference Consortium
(HRC) [8] reference. However, HRC is predominantly European (other than included 1000
Genomes Project Phase 3 (1000G) SNPs) and includes mostly low-coverage sequencing data
(4-8x coverage). The state-of-the-art reference panels for African-ancestry (AA) and Hispanic/
Latino cohorts, including the 1000 Genomes Project Phase 3 (1000G) [9] and the Consortium
on Asthma among African-ancestry Populations in the Americas (CAAPA) [10], are at least
one order of magnitude smaller than HRC. This is especially problematic given the complex
LD structure in admixed populations. The NHLBI Trans-Omics for Precision Medicine
(TOPMed) Project has recently generated deep-coverage (mean depth 30x) whole genome
sequencing (WGS) on more than 50,000 individuals from >26 cohorts and from diverse
ancestral backgrounds (notably including ~26% AA and ~10% Hispanic/Latino participants),
and now provides an unprecedented opportunity for substantially enhancing imputation qual-
ity in under-represented admixed populations and subsequently boosting power for mapping
genes and regions underlying complex traits. Here we demonstrate the improvements in rare
variant imputation quality in AA and Hispanic/Latino populations using TOPMed as a refer-
ence panel versus 1000G and HRC panels, and subsequently identify two low-frequency/rare
HBB variant associations with blood cell traits in AA and Hispanic/Latino samples using
TOPMed-imputed genotyping array data.

Results and discussion

The cohort and ancestry composition of the TOPMed freeze 5b whole genome sequence refer-
ence panel used in our study and the samples with array-based genotyping used for imputation
and hematological traits association analyses in self-identified AA and Hispanic/Latino indi-
viduals are summarized in S1 and S2 Tables, respectively. We first selected two large U.S.
minority cohorts—one AA and one Hispanic/Latino—in order to comprehensively evaluate
imputation quality: the Jackson Heart Study (JHS, all AA, n = 3,082) and the Hispanic Com-
munity Health Study/Study of Latinos (HCHS/SOL, all Hispanic/Latino, n = 11,887). Both the
JHS and HCHS/SOL have external sources of dense genotype data available for comparison.
JHS is the largest AA general population cohort sequenced in TOPMed freeze 5b. Therefore,
we removed JHS samples from the TOPMed freeze 5b reference panel prior to performing
imputation into JHS samples using SNPs genotyped on the Affymetrix 6.0 array, treating the
TOPMed freeze 5b calls as true genotypes for evaluation of imputation quality in JHS. HCHS/
SOL is the largest and most regionally diverse population-based cohort of Hispanic/Latino
individuals living in the US. For HCHS/SOL, we used the entire set of 100,506 phased
sequences from TOPMed freeze 5b (including JHS) as reference and performed imputation
into 11,887 Hispanic/Latino samples genotyped on the Illumina Omni 2.5 SOL custom array
(with high quality genotypes at 2,293,536 markers). As the external source of genotype valida-
tion in HCHS/SOL, we used genotypes from the Illumina MEGA array genotyping data (con-
taining >1.7 million multi-ethnic global markers, including low frequency coding variants
and ancestry-specific variants) available in the same HCHS/SOL samples to assess imputation
quality, evaluating 688,189 imputed markers available on MEGA but not on Omni2.5.
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Compared with the 1000G Phase 3 reference panel [9], we were able to increase the number
of well-imputed variants from ~28 and ~35 million to ~51 and ~58 million in JHS and HCHS/
SOL, respectively (see S3 Table for genome-wide distribution of well-imputed variants). We
defined well-imputed variants based on our previous work [1, 2, 4], using MAF-specific esti-
mated R” thresholds to ensure an average R* > 0.8 in each imputed cohort separately. For all
rare variants with MAF < 0.5%, we observed ~4.2X (2.3X) and ~6.1X (3.3X) increases in the
number of well-imputed variants in JHS (HCHS/SOL), compared with 1000G and HRC,
respectively. We also observed 22% (11%) and 34% (20%) increases in imputation information
content (as measured by average true R*, which is the squared Pearson correlation between
imputed and true genotypes) (Fig 1 and S1 Fig, Table 1). For very rare variants with MAF
<0.05%, we observed ~22.1X (5.8X) and ~11.8X (10.7X) increases in the number of well-
imputed variants, with 6% (5%) and 13% (11%) increases in average true R?, in JHS (HCHS/
SOL), compared with 1000G and HRC respectively. Mismatch rates between true and imputed
genotypes were low; using the program CalcMatch, the mean concordance for heterozygote
individuals (generally the hardest to impute) for Jackson Heart Study is 97.5% for all well
imputed variants in Table 1, 96.6% for MAF <0.5%, and 97.6% for MAF < 0.05%. For HCHS/
SOL, the mean concordance is 98.2% for all well imputed variants, 92.9% for MAF <0.5%,
and 83.8% for MAF < 0.05%. Most well-imputed variants from 1000G and HRC were also
included in TOPMed freeze 5b imputation results (S2 Fig).

Even for extremely rare variants with sample minor allele count (MAC) <10 (including
cohort singleton variants in the target JHS cohort), average information content rescued
(again measured by true R*) was >86%. For example, out of the 8.67 million singleton variants
discovered in JHS by TOPMed WGS, 72% (6.24 million) can be well-imputed using Affyme-
trix 6.0 genotypes and using TOPMed freeze 5b (without JHS individuals) as reference,
with an average true R?0f 0.92 (Table 2). Singletons within JHS are defined as variants with
MAC = 1 among the JHS samples but which are present in multiple copies in the reference
panel. Specifically, the average reference MAC is 29.3 before post-imputation quality control
(QC) and 31.0 after QC, with all variants having a MAC>5 in the overall reference panel.
Imputation quality is similarly high when examining extremely rare MAC variants in the refer-
ence panel, and even higher, as expected, with higher MAC variants within the JHS sample (54
and S5 Tables). Similar observations hold true for HCHS/SOL, with slightly lower imputation
quality (S6 and S7 Tables). Compared to JHS African Americans, the lower imputation quality
in HCHS/SOL Hispanic/Latino individuals is likely attributable to multiple reasons, including
(1) the more complex LD structure among Hispanic/Latino individuals due to the admixture
of three ancestral populations; (2) the availability of a much smaller subset of rare variants for
quality evaluation through MEGA array genotyping in HCHS/SOL (in contrast to the avail-
ability of nearly all segregating variants in JHS through high-coverage sequencing); and (3) the
smaller number of relevant haplotypes in the TOPMed freeze 5b reference (~26% self-identi-
fied AAs compared to ~10% self-identified Hispanics/Latinos). Imputation quality for rare
and low-frequency variants that are estimated to be well imputed in Table 1 is further stratified
by regional background in HCHS/SOL and displayed in S8 Table. We note that greater num-
bers of AA and Hispanic/Latino individuals will be included in future releases of sequencing
datasets from TOPMed, which we anticipate will further improve imputation quality; inclu-
sion of JHS itself in imputation for other AA cohorts would also improve imputation quality.

Encouraged by these substantial gains in information content for low-frequency and rare
variants, we proceeded with imputation in several additional AA and Hispanic/Latino data
sets with array-based genotyping (S1 and S9 Tables), followed by association analyses with
quantitative blood cell traits to evaluate the power of TOPMed freeze 5b-based imputation in
minorities for discovery of genetic variants underlying complex human traits. We specifically
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Fig 1. Comparison of imputation reference panels, for variants with MAF < 1%. Imputation quality (measured by true R2 [Y-axis]) is plotted with
progressively more stringent post-imputation filtering from left to right, with filtering according to estimated R2 (X-axis), for variants with MAF < 1%.

Top panels are for the JHS cohort and bottom panels for the HCHS/SOL cohort. Three reference panels are shown: TOPMed (TOPMed freeze 5b),
1000G (the 1000 Genomes Phase 3), and HRC (the Haplotype Reference Consortium).

https://doi.org/10.1371/journal.pgen.1008500.g001

chose hematological traits for several reasons. First, these traits are important intermediate
clinical phenotypes for a variety of cardiovascular, hematologic, oncologic, immunologic, and
infectious diseases [11]. Second, these traits have family-based heritability estimates in the
range of 40-65% [12, 13], and have been highly fruitful for gene-mapping with >2,700 com-
mon and rare variants identified, though primarily in individuals of European ancestry [14-
19]. Third, these traits remain under-studied in admixed AA and Hispanic/Latino populations,
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Table 1. Number of well-imputed variants using TOPMed freeze 5b, 1000 Genomes Phase 3 (1000G) and Haplotype Reference Consortium (HRC).

Imputation Total number of | Total number of well Total number of well imputed variants with Total number of well imputed variants with
Reference variants in imputed variants MAF<0.5% MAF<0.05%
Panel reference panel
JHS HCHS/ JHS avgTrueR’> | HCHS/ |avgTrueR® JHS avgTrueR> | HCHS/ |avgTrueR®
SOL SOL SOL

TOPMed5b 88,062,238 51,467,522 | 57,845,194 | 33,355,468 | 89.89% | 44,439,594 | 89.99% | 16,205,279 | 88.64% | 28,230,718 | 75.21%
1000G 49,143,605 28,454,330 | 35,178,969 | 7,857,211 73.60% 19,192,645 81.08% 734,063 83.72% 4,901,159 71.39%
HRC 39,635,008 21,745,746 | 26,012,190 | 5,488,848 67.33% 13,330,317 75.19% 1,371,526 78.77% 2,637,393 67.78%

HCHS/SOL, Hispanic Community Health Study/Study of Latinos, JHS, Jackson Heart Study, MAF, minor allele frequency

The total number of well imputed variants is extrapolated from three selected 3 Mb regions: 16-19Mb region from chromosomes 3, 12, and 20. These regions were
chosen arbitrarily across a range of chromosome sizes, avoiding centromere, telomere, and low-mappability regions. Imputation was carried out using all typed SNPs
+/-1Mb (i.e., 15-20Mb) and quality was evaluated in the core 3Mb region. Post imputation quality control was carried out in seven MAF categories separately: < .05%,
.05-.2%, .2-.5%, .5-1%, 1-3%, 3-5%, and >5%. In each MAF category, an estimated R? threshold (standard imputation software metric calculated based on the ratio of
observed variance in imputed dosages over expected variance based on allele frequencies) was selected to ensure variants above the threshold have an average estimated
R? of at least 0.8. These variants constitute the well imputed variants. For variants with a MAF<0.5% and <0.05%, respectively, we additionally assessed angrueRz,
average true squared Pearson correlation between imputed genotypes and genotypes from available whole genome sequencing data (JHS) or genotyping array data
(HCHS/SOL).

https://doi.org/10.1371/journal.pgen.1008500.t001

despite evidence for the existence of variants with distinct genetic architecture in AAs and His-
panics/Latinos [20-22]. For example, while hundreds of variants identified in genome-wide
association studies (GWAS) of WBC in individuals of European descent explain only ~7% of
array heritability, the African specific Duffy null variant DARC rs2814778 alone accounts for
15-20% of population-level WBC variability in AAs [23]. Finally, we have previously success-
tully leveraged deep-coverage exome sequencing-based imputation using resources from the
Exome Sequencing Project for more powerful mapping of genes and regions associated with
hematological traits in AAs [1]. Hemoglobin level (HGB), hematocrit (HCT), and WBC were
chosen for our primary phenotypic analysis because these traits are available in the largest
sample size among the AA and Hispanics/Latinos included in our discovery cohorts.

Table 2. Imputation quality for rare variants (minor allele count< = 10) in the Jackson Heart Study (JHS).

JHS MAC #Variants #QC+ avgMAC avgMAC_QC+ avgEstR® avgTrueR”
1 8,673,112 6,236,211 29.3 31.0 86.9% 92.0%
2 5,488,071 4,502,844 37.2 39.0 89.0% 86.7%
3 3,865,676 3,304,749 46.7 48.4 90.3% 86.2%
4 2,786,048 2,425,855 59.1 60.9 91.1% 86.4%
5 2,058,252 1,809,190 73.7 75.8 91.6% 86.9%
6 1,570,124 1,377,280 91.0 93.9 92.0% 87.5%
7 1,223,738 1,088,972 110.3 112.4 92.3% 88.1%
8 992,012 890,572 127.3 129.0 92.5% 88.5%
9 836,222 753,584 145.7 147.4 92.8% 89.1%
10 713,541 643,909 163.4 165.0 93.0% 89.5%

MAC, minor allele count, #Variants, total number of variants with a given MAC in JHS which overlapped with the TOPMed freeze 5b reference panel, QC+, number of
these variants which passed imputation quality control, avgMAC, the average minor allele count in the (TOPMed freeze 5b minus JHS) reference panel of these variants,
avgMAC_QC+, the average minor allele count in the (TOPMed freeze 5b minus JHS) reference panel of variants which passed imputation quality control. avgEstR?,
average estimated R* for imputed variants (standard imputation software metric calculated based on the ratio of observed variance in imputed dosages over expected
variance based on allele frequencies), avgTrueR?, average true squared Pearson correlation between imputed genotypes and genotypes from available whole genome

sequencing data. Variants that did not have a MAC>5 in the full TOPMed freeze 5b reference panel were not evaluated.

https://doi.org/10.1371/journal.pgen.1008500.t002
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Our imputation sample used for discovery blood cell trait association analyses included
eight cohorts (21,513 AAs and 21,689 Hispanics/Latinos) (S1 Table). These discovery samples
do not overlap with individuals sequenced as part of TOPMed freeze 5b (S2 Table). We used
the full set of 100,506 phased sequences from TOPMed freeze 5b (including JHS) as the impu-
tation reference panel. We then carried out AA- and Hispanic/Latino-stratified association
analyses with quantitative HGB, HCT, and total WBC separately in each cohort genotyping
array data set, accounting for ancestry and relatedness. The genome-wide association results
for each imputed cohort data set were then meta-analyzed within each ancestry group. S3-58
Figs show the Manhattan plots from ethnic-specific meta-analyses for each trait. QQ plots
(S9-S14 Figs) show no obvious early departure, with genomic control lambda ranging from
1.008 to 1.044, indicating minimal global inflation of test statistics. For replication of any novel
associations identified in the imputation-based discovery analysis, we utilized WGS genotype
data and hematological trait data from the non-overlapping set of AA individuals within
TOPMed freeze 5b (S10 Table) (see Methods for details).

We first evaluated association statistics for variants previously associated with HGB, HCT,
or WBC count in AA and Hispanic/Latino populations (summarized in S11 Table). We assem-
bled a list of 24 AA and 13 Hispanic/Latino previously identified autosomal signals from
prior published GWAS or exome-based studies [1, 19, 20, 24-30]. Our lists excluded variants
reported in multi-ethnic cohorts or meta-analysis including individuals of non-AA or non-
Hispanic/Latino ancestry to guard against the scenario that the reported signals were driven
predominantly by individuals of European or Asian ancestry. Among the previously reported
24 AA and 13 Hispanic/Latino variants, all but five (four SNPs and a 3.8 kb deletion variant
esv2676630) passed variant quality-control filters in TOPMed freeze 5b and were subsequently
well-imputed in our target AA and Hispanic/Latino data sets with a stringent post-imputation
R? filter of >0.8 (detailed in S12 Table). Among the 31 known HGB, HCT, or WBC count
associations testable with TOPMed freeze 5b, our imputed/discovery cohorts confirmed 84%
of these previously reported findings with a consistent direction of effect, using a stringent
genome-wide significant threshold of p<5x10™®. Using more lenient p-value thresholds, we
could replicate 94% (p<5x10"®) and 100% (p<0.05) of the previously reported findings with
the same direction of effect. While these results help confirm the overall validity of our hema-
tological trait association results, it is important to note for these comparisons that many of
the samples included in the current TOPMed freeze 5b imputed genome-wide association
analysis were also used in the publications originally reporting associations in AA and His-
panic/Latino individuals.

Our ancestry-stratified imputation-based discovery meta-analysis revealed two blood
cell trait associations that have not been previously reported, at a genome-wide significant
threshold of p<5x10~° in Hispanics/Latinos and p<1x10™ in AA populations, based on
appropriate significance thresholds for whole genome sequencing analysis [31]. One signal
was revealed in each ancestry group: hemoglobin subunit beta (HBB) missense (p.Glu7Lys)
variant rs33930165 (gb38:11:5227003:C:T) associated with increased WBC in AAs (B =0.35
and p = 8.8x10™"°, adjusting for SNP rs2814778 and removing potential minor allele homozy-
gotes) (Table 3), and HBB stop-gain (p.Gln40Ter) variant rs11549407 (gb38:11:5226774:G:A)
associated with lower HGB and HCT in Hispanics/Latinos (B = -1.92, p = 1.5x10™'% B = -1.66,
p = 8.8x107'%). Both variants were either low frequency or rare: the HBB missense variant
rs33930165 (hemoglobin C variant) has a MAF of 1.14% among the imputed AA discovery
samples and is even rarer in non-AA individuals (absent in Europeans in 1000G); the stop
gain variant rs11549407 has a MAF of 0.03% (MAC ~ 15) among the imputed Hispanics/Lati-
nos and is monomorphic among the AAs. Both variants are classified as pathogenic in Clin-
Var. Both variants were well imputed with R* ranging from 0.831 to 0.994 and 0.862 to 0.999
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Table 3. Novel variants detected in TOPMed freeze 5b imputed Hispanic/Latino and African ancestry cohorts, in association analyses with white blood cell count,

hemoglobin, and hematocrit.

Ancestry rs# Estimated R> | Phenotype |  Effect EAF | B | SE |P-value| Replicationfp| ReplicationP- | Gene Annotation
! allele value
African rs33930165 | 0.831-0.994 WBC T 1.14% | 0.35]0.04 | 8.8E- 0.27 4.6E-04 HBB missense (p.
ancestry 15 Glu7Lys)
Hispanic/ rs11549407 | 0.862-1.000 HCT A 0.03% | -1.66 | 0.27 | 8.8E- NA* HBB stop gain (p.
Latino 10 GIn40Ter)
Hispanic/ | rs11549407 | 0.862-1.000 HGB A 0.03% | -1.92 | 0.27 | 1.5E- NA* HBB stop gain (p.
Latino 12 GIn40Ter)

EAF, effect allele frequency, HCT, hematocrit, HGB, hemoglobin, WBC, white blood cell count.

Imputation R* (estimated R?) range reported across all included imputed cohorts.

Association results adjusted for nearby known SNPs whenever applicable.

Association models for rs33930165 were adjusted for SNP rs2814778; removing potential minor allele homozygotes

Association models for rs11549407 were adjusted for SNPs rs334, rs33930165, and rs2213169 rs334 and rs2213169 did not pass variant quality filters in TOPMed freeze
5b and were not included in our main analyses. However, to follow up our novel results in the HBB locus, we phased the failed variants in freeze5b and performed
targeted imputation using TOPMed freeze 5b calls for rs334 and rs2213169

NA: among TOPMed freeze 5b Hispanic/Latino individuals, MAC = 1 so association statistics are not available

https://doi.org/10.1371/journal.pgen.1008500.t003

in the contributing AA and Hispanic/Latino cohorts, respectively (Table 3). Due to the low
allele frequency of these variants in AAs and Hispanics/Latinos and even lower frequency in
individuals of European descent, both variants were imputed with lower quality using other
reference panels (S13 and S14 Tables): the missense variant HBB rs33930165 had R as low as
0.127 and 0.456 using 1000G and HRC, respectively, as references; the HBB stop-gain variant
r$11549407 was not available in the 1000G reference panel and had R* as low as 0.413 using
HRC as the reference panel. Carrying the 1000G and HRC imputed genotypes forward to
association analyses with hematological traits in the subset of our target imputation cohorts
where the variants were well imputed (R® > 0.8), we observed none of the p-values exceeded
genome-wide significance threshold. This explains why these variants were not detectable at a
genome-wide significant level using previously available imputation reference panels, with
obvious implications for other complex trait association studies in ancestrally diverse study
populations.

Both of our previously unreported genotype-trait associations involve coding variants of
HBB, which encodes the beta polypeptide chains in adult hemoglobin. The HBB stop gain (p.
GIn40Ter) variant 11:5226774:G:A (rs11549407) is the most common cause of beta zero thalas-
semia in West Mediterranean countries, particularly among the founder population of Sar-
dinia [32, 33], where the variant has a population allele frequency of ~5%. The Sardinian
population is represented in the HRC reference panel (~3500 individuals), which likely con-
tributes to the reasonable imputation quality observed using HRC in most but not all cohorts,
in contrast to the absence of this variant in the 1000G reference panel due to very low minor
allele count, though imputation quality was clearly improved with the TOPMed freeze 5b ref-
erence panel. The p.GIn40Ter mutation is much less prevalent outside of the Western Mediter-
ranean, but has been detected among individuals with beta thalassemia among admixed
populations from Central and South America [34, 35], which are geographically and geneti-
cally similar to some of the Hispanic/Latino samples included in our imputation-based discov-
ery sample. While the individuals carrying the HBB p.GIn40Ter allele in our unselected
population-based Hispanic/Latino sample were all imputed heterozygotes (consistent with
“thalassemia minor” and generally considered healthy), there is increasing evidence that silent
carriers of beta-thalassemia and sickle cell mutations may be at risk for various health-related
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conditions [36, 37]. Due to the relatively small number of Hispanic/Latino individuals with
blood cell trait data in TOPMed freeze 5b (n~1,080), including only one heterozygote carrier
of rs11549407 in those with blood cell traits measured, we were unable to perform a well-pow-
ered replication of the association of rs11549407 with HGB and HCT. Moderate anemia is
known to occur in some individuals with thalassemia minor, however, concordant with our
results [38].

The association of the HBB missense (p.Glu7Lys) variant 11:5227003:C:T or rs33930165
with higher total WBC (B = 0.35, p = 8.8x10"'°) among AA was unexpected; rs33930165 has
been associated with red blood cell indices such as mean corpuscular hemoglobin concentra-
tion [20] but not with white blood cell traits. Because of the higher allele frequency of this
variant and also the larger number of AA samples (n = 6,743) in TOPMed freeze 5b, we were
able to replicate this HBB rs33930165 association with total WBC in an independent sample
(B=0.27 and p = 4.6x10"*) of AA individuals. By contrast, there was no significant associa-
tion of the HBB rs33930165 p.Glu7Lys variant with HGB and a modest association with
lower HCT in the AA discovery and replication data sets (discovery HCT B = -0.122,
p=0.012; HGB B =0.110, p = 0.022; replication HCT B = -0.239, p = 0.002; HGB B = -0.009,
p =0.909). The minor allele T of rs33930165 encodes an abnormal form of hemoglobin, Hb
C, which in the homozygous state is associated with mild chronic hemolytic anemia and
mild to moderate splenomegaly [39]. In our discovery and replication data sets, there were
no individuals homozygous for the Hb C variant, nor any compound heterozygotes for Hb
S/C (Hb S is sickling form of hemoglobin and individuals homozygous for Hb S have sickle
cell disease), which excludes the possibility that the apparently higher WBC is driven by an
“inflammatory response” confined to a small number of individuals clinically affected by
sickle cell disease or hemoglobin C disease. We next evaluated the association of HBB
rs33930165 with circulating number of WBC subtypes, including neutrophils, monocytes,
lymphocytes, basophils, and eosinophils. S15 Table shows the results in our AA imputation-
based discovery data sets (S16 Table), and TOPMed freeze 5b WGS replication samples (517
Table), which suggest that the apparent association of HBB rs33930165 with total WBC is
mainly driven by an association with higher lymphocyte count, with perhaps a more modest
association with higher neutrophil count. Further studies are needed to delineate the putative
mechanism of this unexpected association.

Our findings showcase the power of the large, ancestrally diverse TOPMed WGS data set as
an imputation reference panel for admixed populations, in terms of both imputation quality
and accuracy (especially for rare variants) and subsequent association studies for complex
traits. Specifically, we identified two rare variants associated with hematological traits in AA
and Hispanic/Latino populations and were able to validate our initial HBB association with
WBC in an independent replication sample of sequenced individuals. In our study, we used
EAGLE and minimac4 for imputation. We anticipate that the advantages of TOPMed as a ref-
erence panel also manifest when using alternative imputation methods. However, making
TOPMed available as a reference panel compatible with each imputation method (e.g., corre-
sponding recombination rate information) would be essential. In addition, computing time
and memory usage should be taken into consideration as not all existing methods can scale
to ~100 million markers in populations containing over thousands of individuals. TOPMed
freeze 5b imputation is slightly more computationally intensive than use of the HRC reference
panel (and takes nearly eight times longer than 1000G based imputation using the Michigan
imputation server). However, we feel this increase in computational time is more than justified
by the large number of additional well-imputed variants. We would note that the gains in
imputation quality for AA and Hispanic/Latino populations using the TOPMed WGS refer-
ence panel likely do not apply to populations poorly represented in TOPMed freeze 5b (such
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as South Asians); future large-scale sequencing, including in later freezes of TOPMed, will
improve imputation quality further across global populations.

Future studies should also evaluate potential increases in statistical power for gene- and
region- based tests using TOPMed imputed data. To demonstrate the potential gains, we have
performed a targeted analysis of genes previously identified for their association with white
blood cell count or hemoglobin/hematocrit levels in exome genotyping arrays or exome
sequencing studies. We compared gene-based SKAT test results at these known loci using
TOPMed freeze 5b based imputation to gene-based tests performed using 1000G and HRC
reference panels. These results are presented in S18-S21 Tables and demonstrate that in both
African ancestry and Hispanic/Latino populations more previously implicated genes from
exome arrays or sequencing based studies were significant using TOPMed freeze 5b as an
imputation reference panel versus 1000G phase 3 or HRC imputation. Further exploration
of gene- and region-based tests is warranted in future studies, however. We expect the combi-
nation of high-quality imputation and higher depth sequencing datasets in larger cohorts of
individuals will provide increased power for all rare variant association analyses in diverse
populations in the near future.

Methods
Ethics statement

We here performed secondary data analysis on deidentified data only (exempt research).
Access to TOPMed data was approved by the University of North Carolina at Chapel Hill
Institutional Review board (study 16-2213). All individual studies included in TOPMed were
approved by relevant local ethical review boards.

TOPMed 5b sequencing and phasing

The reference panel used for imputation was obtained from deep-coverage whole genome
sequences derived from NHLBI's TOPMed program (www.nhlbiwgs.org), freeze 5b (Septem-
ber 2017). This release included 54,035 non-duplicated, dbGaP released samples, of whom
50,253 have consent to be part of an imputation reference panel. The parent studies that con-
tributed these 50,253 samples are listed in S2 Table. Specific to our analyses, freeze 5b includes
3,082 individuals from the Jackson Heart Study, who were removed from the reference panel
for our analysis of imputation quality in this particular cohort. Overall, freeze 5b included 54%
European ancestry, 26% AA, 10% Hispanic/Latino, 7% Asian, and 3% other ancestry samples.
Detailed sequencing methods used in TOPMed are available at https://www.nhlbiwgs.org/
topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2. In brief, WGS with
mean genome coverage >30x was completed at six sequencing centers (New York Genome
Center, the Broad Institute of MIT and Harvard, the University of Washington Northwest
Genomics Center, Illumina Genomic Services, Macrogen Corp., and Baylor Human Genome
Sequencing Center). Sequence data files were transferred from sequencing centers to the
TOPMed Informatics Research Center (IRC), where reads were aligned to human genome
build GRCh38, using a common pipeline, and joint genotype calling was undertaken. Variants
were filtered using a machine learning based support vector machine (SVM) approach, using
variants present on genotyping arrays as positive controls and variants with many Mendelian
inconsistencies as negative controls. After filtering potentially problematic variant sites, freeze
5b contained ~438 million single nucleotide polymorphisms and ~33 million short insertion-
deletion variants. For our imputation analyses, we excluded from the reference panel variants
with an overall allele count of 5 or less (leaving 88,062,238 variants in our reference panel,
Table 1). Additional sample level quality control (such as detection of sex mismatches,
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pedigree discrepancies, sample swaps, etc.) was undertaken by the TOPMed Data Coordinat-
ing Center (DCC).

Genome-wide genotyping array data sets used for evaluation of imputation
quality and/or phenotype association analysis

Hispanic Community Health Study/Study of Latinos (HCHS/SOL). The HCHS/SOL
cohort began in 2006 as a prospective study of Hispanic/Latino populations in the U.S. [40-
42]. From 2008 to 2011, 16,415 adults were recruited from a random sample of households in
four communities (the Bronx, Chicago, Miami, and San Diego). Each Field Center recruited
>4,000 participants from diverse socioeconomic groups. Most participants self-identified as
having Cuban, Dominican, Puerto Rican, Mexican, Central American, or South American
heritage. The cohort has been genotyped both using an Illumina Omni2.5M array (plus
150,000 custom SNP, including ancestry-informative markers, Amerindian population specific
variants, previously identified GWAS hits, and other candidate polymorphisms for a total of
2,293,715 SNPs) [43] and using the Illumina Multi-Ethnic Genotyping Array (MEGA) array
(containing a total of 1,705,969 SNPs) in efforts from the Population Architecture for Genetic
Epidemiology [44] consortium to better assess variation in non-European populations. The
MEGA array also includes additional exonic, functional, and clinically-relevant variants. Illu-
mina 2.5M array genotypes were available for 12,802 samples, among whom 11,887 samples
also had MEGA array genotypes. The Illumina Omni2.5M array was used for imputation to
the TOPMed reference panel, with the MEGA array treated as true genotypes for evaluation of
imputation quality. For association analysis, imputation was performed on 11,887 samples
after merging Omni2.5M array genotypes and MEGA array genotypes (MEGA genotypes
were used for variants in both arrays, which resulted in 2,144,214 variants after quality con-
trol). Regional background (for evaluation of stratified imputation quality in S8 Table) was
defined using both self-identified background and genetic markers, as described in [43].

For the hematological traits association analysis, 11,588 Hispanic/Latino participants were
included.

Women’s Health Initiative. The Women’s Health Initiative (WHI) [45] is a long-term
national health study focused heart disease, cancer, and osteoporotic fractures in older
women. WHI originally enrolled 161,808 women aged 50-79 between 1993 and 1998 at 40
centers across the US, including both a clinical trial (including three trials for hormone ther-
apy, dietary modification, and calcium/vitamin D) and an observational study arm. The
recruitment goal of WHI was to include a socio-demographically diverse population with
racial/ethnic minority groups proportionate to the total minority population of US women
aged 50-79 years. This goal was achieved; a diverse population, including 26,045 (17%)
women from minority populations, was recruited. Two WHI extension studies conducted
additional follow-up on consenting women from 2005-2010 and 2010-2015. Genotyping was
available on some WHI participants through the WHI SNP Health Association Resource
(SHARe) resource, which used the Affymetrix 6.0 array (~906,600 SNPs, 946,000 copy number
variation probes) and on other participants through the MEGA array [44]. Imputation and
association analysis was performed separately in individuals with Affymetrix only, MEGA
only, and both Affymetrix and MEGA data (S1 Table). For variants with both Affymetrix and
MEGA genotypes available, MEGA genotypes were used. In total, 4,318 Hispanic/Latino and
8,494 AA women with blood cell traits were included.

UK Biobank. UK Biobank [46] recruited 500,000 people aged between 40-69 years in
2006-2010, establishing a prospective biobank study to understand the risk factors for com-
mon diseases such as cancer, heart disease, stroke, diabetes, and dementia). Participants are
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being followed-up through routine medical and other health-related records from the UK
National Health Service. UK Biobank has genotype data on all enrolled participants, as well as
extensive baseline questionnaire and physical measures and stored blood and urine samples.
Hematological traits were assayed as previously described [14]. Genotyping on custom Axiom
arrays and subsequent quality control has been previously described [47]. Samples were
included in our analyses if ancestry self-report was “Black Carribean”, “Black African”,” Black
or Black British”, “White and Black Carribean”, “White and Black African”, or “Any Other
Black Background”. Variants were selected based on call rate exceeding 95%, HWE p-value
exceeding 10~%, and MAF exceeding 0.5%. Subsequently, variants in approximate linkage equi-
librium were used to generate ten principle components. Samples were excluded if the first
principal component exceeded 0.1 and the second principal component exceeded 0.2, to
exclude individuals not clustering with most African ancestry individuals. In total, 6,820 AA
participants with blood cell traits were included in the analysis.

Genetic Epidemiology Research on Aging (GERA). The GERA cohort includes over
100,000 adults who are members of the Kaiser Permanente Medical Care Plan, Northern Cali-
fornia Region (KPNC) and consented to research on the genetic and environmental factors
that affect health and disease, linking together clinical data from electronic health records, sur-
vey data on demographic and behavioral factors, and environmental data with genetic data.
The GERA cohort was formed by including all self-reported racial and ethnic minority partici-
pants with saliva samples (19%); the remaining participants were drawn sequentially and ran-
domly from non-Hispanic White participants (81%). Genotyping was completed as previously
described [48] using 4 different custom Affymetrix Axiom arrays with ethnic-specific content
to increase genomic coverage. Principal components analysis was used to characterize genetic
structure in this multi-ethnic sample, as previously described [49]. Blood cell traits were
extracted from medical records. In individuals with multiple measurements, the first visit with
complete white blood cell differential (if any) was used for each participant. Otherwise, the
first visit was used. In total, 5,783 Hispanic/Latino and 2,246 AA participants with blood cell
traits were included in the analysis.

Jackson Heart Study (JHS). JHS is a population-based study designed to investigate risk
factors for cardiovascular disease in African Americans. JHS recruited 5,306 AA participants
age 35-84 from urban and rural areas of the three counties (Hinds, Madison and Rankin) that
comprise the Jackson, Mississippi metropolitan area from 2000-2004, including a nested fam-
ily cohort (> 21 years old) and some prior participants from the Atherosclerosis Risk in Com-
munities (ARIC) study [50, 51]. Genotyping was performed using an Affymetrix 6.0 array
through NHLBI’s Candidate Gene Association Resource (CARe) consortium [52] in 3,029
individuals, with quality control described previously [53]. Due to the greater JHS sample size
in TOPMed freeze 5b (n = 3,082), we extracted SNPs genotyped on Affymetrix 6.0 and which
passed CARe consortium quality control in the non-duplicated JHS TOPMed sequenced sam-
ples included in the imputation reference panel (821,172 variants which passed TOPMed qual-
ity controls used for imputation).

Coronary Artery Risk Development in Young Adults (CARDIA). The CARDIA study is
a longitudinal study of cardiovascular disease risk initiated in 1985-86 in 5,115 AA and Euro-
pean ancestry men and women, then aged 18-30 years. The CARDIA sample was recruited at
four sites: Birmingham, AL, Chicago, IL, Minneapolis, MN, and Oakland, CA [54, 55]. Similar
to JHS, genotyping was performed through the CARe consortium [52, 53] using an Affymetrix
6.0 array. In total, 1,619 AA participants with blood cell traits were included in the analysis.

Atherosclerosis Risk in Communities (ARIC). The ARIC study was initiated in 1987,
when participants were 45-64 years old, recruiting participants age 45-64 years from 4 field
centers (Forsyth County, NC; Jackson, MS; northwestern suburbs of Minneapolis, MN;

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008500 December 23,2019 13/25


https://doi.org/10.1371/journal.pgen.1008500

@.PLOS ‘ GENETICS

TOPMed Imputation based Hematology Association

Washington County, MD) in order to study cardiovascular disease and its risk factors [56],
including the participants of self-reported AA ancestry included here. Standardized physical
examinations and interviewer-administered questionnaires were conducted at baseline (1987-
89), three triennial follow-up examinations, a fifth examination in 2011-13, and a sixth exam
in 2016-2017. Genotyping was performed through the CARe consortium Affymetrix 6.0 array
[52, 53]. In total, 2,392 AA participants with blood cell traits were included in the analysis.

Imputation and post-imputation quality filtering

We first phased individuals from each cohort separately using eagle [57] with default settings.
We subsequently performed haplotype-based imputation using minimac4 [58] using phased
haplotypes from TOPMed freeze 5b as reference. We used 100,506 TOPMed freeze 5b whole
genome sequences as reference for all cohorts except JHS, for which we used 94,342 TOPMed
freeze 5b non-JHS sequences. We additionally imputed HCHS/SOL and JHS using 1000
Genomes Phase 3 [9] and HRC [8] reference panels. Post-imputation quality filtering was per-
formed using a R* threshold specific to each MAF category to ensure average R* for variants
passing threshold was at least 0.8, following our previous work [4, 59]. Restricting to variants
passing post-imputation quality control in at least two cohorts resulted in 34.4-35.8 million
variants assessed in the AA cohorts and 26.7-27.2 million assessed in the HA cohorts, depend-
ing on the exact sample size of the tested trait. Imputation and association analysis included
autosomal variants only. We assessed imputation quality (comparing true and estimated aver-
age R?) in three selected 3Mb regions: 16-19Mb region (relative to the start of each chromo-
some) from chromosomes 3, 12, and 20. Example scripts for imputation quality control are
available at https://yunliweb.its.unc.edu/topmed5bimputation/index.php.

Hematological traits

HGB, HCT, WBC and differential were measured in both the discovery data sets (S9 and S16
Tables) and a subset of the TOPMed freeze 5b samples (S10 and S17 Tables) using automated
clinical hematology analyzers. Prior to association analyses, we excluded extreme outlier val-
ues, notably WBC values >200x10°/L (as well as WBC subtype count values in these individu-
als), HCT >60%, and HGB >20g/dL. For longitudinal cohort studies, all values are from the
same exam cycle, chosen based on largest available sample size. WBC traits were log trans-
formed due to their skewed distribution. For all traits, we first derived trait residuals adjusting
for age, age squared, sex, and principal components/study specific covariates as needed. Trait
residuals were then inverse-normalized prior to analysis.

Association analysis in discovery cohorts

Association analyses were carried out for these variants via EPACTS for all cohorts except for
HCHS/SOL, using the g.emmax test to account for relatedness within each cohort. Association
tests were performed on inverse normalized residuals (adjusted for age, age squared, sex, and
principal components/study specific covariates), further adjusting for kinship matrices con-
structed in EPACTS using variants with a MAF>1%. Individuals with different starting geno-
typing platform(s) were also analyzed separately. Inverse-variance weighted meta-analysis
were further carried out using GWAMA [60], separately for AAs and Hispanics/Latinos.

Identification and replication of novel associations

To identify putative novel associations, we then filtered out any variant with LD r* > 0.2 in
any ethnic group with any previous reported variant from GWAS, sequencing, or Exome Chip
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analyses within +1Mb for a given blood cell trait. We calculated LD in self-reported European
ancestry, AA, and Hispanic/Latino individuals from TOPMed freeze 5b. For European and
African LD reference panels, we further restricted to individuals with global ancestry estimate
>0.8. The global ancestry estimates were derived from local ancestry estimates from RFMix
[61] using data from the Human Genome Diversity Project (HGDP) [62] as the reference
panel with seven populations, namely Sub-Saharan Africa, Central and South Asia, East Asia,
Europe, Native America, Oceania, and West Asia and North Africa (Middle East). Global
ancestry for each TOPMed individual is defined as the mean local ancestry across all HGDP
SNPs. For replication of novel signals, similar to the approach we adopted for the discovery
cohorts, we performed association analysis using EPACTS in each contributing cohort and
then meta-analyzed with GWAMA.

Supporting information

S1 Fig. Comparison of imputation reference panels, for variants with MAF > 1%. Imputa-
tion quality (measured by true R2 [Y-axis]) is plotted with progressively more stringent post-
imputation filtering from left to right, with filtering according to estimated R2 (X-axis), for
variants with MAF > 1%. Top panels are for the JHS cohort and bottom panels for the HCHS/
SOL cohort. Three reference panels are shown: TOPMed (TOPMed freeze 5b), 1000G (the
1000 Genomes Phase 3), and HRC (the Haplotype Reference Consortium).

(PDF)

S2 Fig. Comparison of well imputed variants included in results from TOPMed (TOPMed
freeze 5b), 1000G (the 1000 Genomes Phase 3), and HRC (the Haplotype Reference Con-
sortium).

(PDF)

S3 Fig. African ancestry hematocrit analysis Manhattan plot.
(PDF)

$4 Fig. African ancestry hemoglobin analysis Manhattan plot.
(PDF)

S5 Fig. African ancestry white blood cell count analysis Manhattan plot.
(PDF)

S6 Fig. Hispanic/Latino ancestry hematocrit analysis Manhattan plot.
(PDF)

S7 Fig. Hispanic/Latino ancestry hemoglobin analysis Manhattan plot.
(PDF)

S8 Fig. Hispanic/Latino ancestry white blood cell count analysis Manhattan plot.
(PDF)

S9 Fig. African ancestry hematocrit analysis QQ plot.
(PDF)

$10 Fig. African ancestry hemoglobin analysis QQ plot.
(PDF)

S11 Fig. African ancestry white blood cell count analysis QQ plot.
(PDF)
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$12 Fig. Hispanic/Latino ancestry hematocrit analysis QQ plot.
(PDF)

$13 Fig. Hispanic/Latino ancestry hemoglobin analysis QQ plot.
(PDF)

S14 Fig. Hispanic/Latino ancestry white blood cell count analysis QQ plot.
(PDF)

S1 Table. Cohorts used for imputation to TOPMed freeze 5b reference panel and subse-
quent association analysis with hematological traits, including self-identified African
ancestry and Hispanic/Latino individuals.

(PDF)

$2 Table. Cohorts included in the TOPMed freeze 5b imputation reference panels, with
self-reported ancestry.
(PDF)

S3 Table. Percentage and number of variants well-imputed with TOPMed freeze5b by
chromosome in Jackson Heart Study (JHS) and Hispanic Community Health Study/Study
of Latinos (HCHS/SOL).

(PDF)

S$4 Table. Imputation quality for variants with a minor allele count between 11 and 20 in
Jackson Heart Study (JHS).
(PDF)

S5 Table. Imputation quality for overall reference panel rare variants (20 or less MAC in
TOPMed freeze 5b) in Jackson Heart Study (JHS).
(PDF)

S6 Table. Imputation quality for rare variants (20 or less MAC) in Hispanic Community
Health Study/Study of Latinos (HCHS/SOL).
(PDF)

S7 Table. Imputation quality for rare variants (20 or less MAC) in TOPMed freeze 5b in
Hispanic Community Health Study/Study of Latinos (HCHS/SOL).
(PDF)

S8 Table. Imputation quality for rare and low frequency variants estimated to be well
imputed in Table 1 stratified by regional background in the Hispanic Community Health
Study/Study of Latinos (HCHS/SOL).

(PDF)

S9 Table. Demographics, hematological traits, and number of ancestry principal compo-
nents adjusted for in association analysis models for cohorts imputed to TOPMed freeze
5b reference panel.

(PDF)

$10 Table. Demographics, hematological traits, and number of ancestry principal compo-
nents adjusted for in association analysis for African American cohorts with sequencing
and hematological trait data from TOPMed freeze 5b.

(PDF)

S11 Table. Overall counts for variants replicated in TOPMed freeze 5b imputed cohorts.
(PDF)
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$12 Table. Results for previously identified variants in African ancestry and Hispanic/
Latino populations in TOPMed freeze 5b imputed samples (included cohorts detailed in
S1 and S8 Tables).

(PDF)

$13 Table. Imputation of novel variants identified with TOPMed freeze 5b-based imputa-
tion using current widely used reference panels from the Haplotype Reference Consortium
(HRC) and 1000 Genomes Phase 3, as well as subsequent association analysis results for
cohorts where the variants were well-imputed (R2>0.8).

(PDF)

S$14 Table. Estimated imputation quality for rs33930165 and rs11549407 using 1000G
phase 3 and Haplotype Reference Consortium (HRC) as references.
(PDF)

S15 Table. Association statistics for the hemoglobin C variant (rs33930165, 11:5227003:C:
T) with white blood cell subtypes, adjusting for age, sex, and ancestry principal compo-
nents.

(PDF)

$16 Table. White blood cell subtypes for cohorts imputed to TOPMed freeze 5b reference
panel.
(PDF)

$17 Table. White blood cell subtypes for African American cohorts with sequencing and
hematological trait data from TOPMed freeze 5b.
(PDF)

$18 Table. Results for meta-analysis of African ancestry cohorts from sequence kernel
association test (SKAT) association results for previously reported genes for hemoglobin
(HGB), hematocrit (HCT), or white blood cell count (WBC) using TOPMed freeze 5b, Hap-
lotype Reference Consortium (HRC), and 1000G phase 3 as imputation reference panels.
(PDF)

$19 Table. Overall counts for gene results replicated in African ancestry cohorts using
TOPMed freeze 5b, 1000G phase 3, and Haplotype Reference Consortium (HRC) as impu-
tation reference panels.

(PDF)

$20 Table. Results for meta-analysis of Hispanic/Latino cohorts from sequence kernel
association test (SKAT) association results for previously reported genes for hemoglobin
(HGB), hematocrit (HCT), or white blood cell count (WBC) using TOPMed freeze 5b, Hap-
lotype Reference Consortium (HRC), and 1000G phase 3 as imputation reference panels.
(PDF)

$21 Table. Overall counts for gene results replicated in Hispanic/Latino cohorts using
TOPMed freeze 5b, 1000G phase 3, and Haplotype Reference Consortium (HRC) as impu-
tation reference panels.

(PDF)

S1 File. TOPMed Banner Authors.
(PDF)
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S2 File. TOPMed Hematology & Hemostasis Working Group.
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