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Dropout imputation and batch effect correction
for single-cell RNA sequencing data
Gang Lia, Yuchen Yangb, Eric Van Burenc, Yun Lib,c,d,∗

Abstract
Single-cell RNA sequencing (scRNA-seq) allows researchers to examine the transcriptome at the single-cell level and has been
increasingly employed as technologies continue to advance. Due to technical and biological reasons unique to scRNA-seq data,
denoising and batch effect correction are almost indispensable to ensure valid and powerful data analysis. However, various aspects
of scRNA-seq data pose grand challenges for such essential tasks pertaining to data pre-processing, normalization or
harmonization. In this review, we first discuss properties of scRNA-seq data that contribute to the challenges for denoising and batch
effect correction from a computational perspective. We then focus on reviewing several state-of-the-art methods for dropout
imputation and batch effect correction, comparing their strengths and weaknesses. Finally, we benchmarked three widely used
correction tools using two hematopoietic scRNA-seq datasets to show their performance in a real data application.
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Introduction

In living organisms, cells are the fundamental composition and
functional units.[1] Identification and characterization of cell
types and their biological functions from amass of heterogeneous
cells are of great interest and importance in understanding the
molecular mechanisms underlying growth, development and
disease.[2–4] In recent years, RNA sequencing (RNA-seq) has been
widely used to study the transcriptome as well as to help construct
gene expression networks underlying the complex processes of
cellular proliferation, differentiation, and reprograming.[5–7]

However, for most genes, expression levels are found to vary
dramatically both across different cell types and even across
single cells of the same type. Possible reasons underlying such
variation in gene expression profiles include different cellular
functions, developmental stages, cell cycle phase, and adjacent
microenvironments,[8–10] among others. When RNA-seq data are
generated from bulk tissue or many cells in aggregate (commonly
referred to as bulk RNA-seq in the literature), they measure the
average expression across many cells of potentially different types
and/or across states, and thus may mask biologically varying
functional capacities across cell types or across single cells.[11] In

contrast to bulk RNA-seq, single-cell RNA-seq (scRNA-seq)
provides researchers refined resolution to investigate cellular
heterogeneity in gene expression profiles, as well as to discover
novel cell types and to infer cell fates, presenting enormous
potential from basic science studies of cell biology, all the way to
facilitating transformative clinical applications.[7,12–17]

scRNA-seq based studies are becoming increasingly common
as technological improvements allow sequencing of an increasing
number of cells measured with ever-improving accuracy. As
scRNA-seq technologies continue to advance and mature,
together with decreasing sequencing costs, analyses integrating
multiple scRNA-seq datasets have become common practice.
Such analyses enable joint investigation of gene expression
profiles across multiple scRNA-seq datasets collected across
different conditions or time points, and/or from different
laboratories or experimental assays. Integrating data in an
unbiased and valid manner enables researchers to better
understand transcriptional dynamics during a certain biological
process (eg, across different development stages) at the single-cell
level by leveraging as much data as possible. Such integration
approaches also encourage and enable re-using published
datasets, maximizing the value of scRNA-seq datasets already
generated and substantially reducing the costs associated with
generation of new data. However, integration cannot be carried
out by simply pooling multiple datasets naively together. To
ensure drawing valid scientific conclusions, before integrating
multiple datasets, it is critical to first take careful steps to denoise
naturally sparse scRNA-seq data and to properly adjust for batch
effects across datasets. In this review, we discuss computational
strategies commonly employed for denoising and batch effect
correction of scRNA-seq data. Specifically, the review is
organized as follows. We first describe the commonly used
scRNA-seq technologies, focusing on aspects that later lead to
challenges in computational analysis. We then highlight several
state-of-art methods for dropout imputation and batch effect
correction, with an emphasis on their advantages and drawbacks
in practical applications. Finally, we benchmark some of these
methods using two real scRNA-seq datasets studying hemato-
poietic cells.
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Database search strategy

The articles used in this review were largely based on the authors’
knowledge. But they could be retrieved by searching the terms
“single-cell RNA sequencing”, “batch effect correction” and
“dropout imputation” via Google Scholar and PubMed. The
results from such search can be further screened by title and
abstract to focus on methodological work for batch effect
correction and dropout imputation for single-cell RNA sequencing
data. In addition, we recommend conducting electronic searches
for papers that cited batch effect correction methods, such as
“Seurat”, “MNN”, and “LIGER”, and dropout imputation
methods, such as “MAGIC”, “scImpute”, “VIPER”, “DCA” and
“SAVER”. Results from these additional searches are further
filtered again to focus on methodological work or review articles.

Experimental technologies for single-cell RNA
sequencing

Since the first scRNA-seq experiment was published in 2009,[18]

we have been witnessing rapid development of scRNA-seq
technologies. Technological advancements manifest in many
different ways, particularly in the number of cells that can be
profiled simultaneously and dramatically reduced costs per single
cell.[19] Different scRNA-seq technologies are distinct in various
aspects. We highlight below two key aspects: strategy for single-
cell isolation, and transcript coverage.[20] Regarding the first
aspect, there are two popular strategies for single cell partition-
ing: plate-based platforms and microdroplet-based microfluidics.
Plate-based methods, as adopted by technologies such as
SMART-seq,[21] MARS-Seq,[22] and Fluidigm C1,[23] first lyse
single cells, then isolate and place them into individual wells on a
single plate by flow-activated cell sorting. Microdroplet-based
microfluidic platforms, such as those employed by Drop-seq,[24]

inDrop,[25] and Gencode (10X Genomics),[26] load cells and gel
beads into the channels of a microfluidic chip to generate
gel beads each containing transcripts from one single cell
(identified by a cell barcode unique within each gel bead, or
droplet). Plate-based platforms suffer from rather limited number
of single cells that can be profiled at the same time (maximally
800 single cells per run for Fluidigm C1 system, for instance).
Comparatively, microfluidic technologies enable simultaneously
capturing tens of thousands of cells with a reduced reagent cost.
These larger sample sizes provide researchers a more powerful
and comprehensive way to investigate the transcriptional
dynamics underlying various biological processes—one example
is the identification of rare cell types from a mass of highly
heterogeneous cells during cell type differentiation or reprogram-
ming.[19,27] Because of these advantages, microfluidic platforms
technologies have become more widely adopted commercial
scRNA-seq platforms.[19,28] Furthermore, scRNA-seq is an area
of fast growth, and a lot of new sequencing technologies have
been recently developed. For instance, a new method called
SPLiT-seq uses the combinatorial indexing solution.[29] Com-
pared to previous methods, SPLit-seq has 2 advantages:

1) it uses the single cells themselves as partitioning compartments
instead of separating cells into custom microwells or micro-
fluidics; and

2) SPLiT-seq enables simultaneous sequencing of tens of
thousands of cells from multiple biological samples in one
single experiment. It can largely reduce the batch effects
introduced during the processes of library preparation and
sequencing.[29]

The other key technological aspect is the captured regions of
transcripts enabled by library preparation.[19] Some of technolo-
gies, such as Smart-seq,[21] Quartz-Seq[30] and MATQ-seq,[31]

offer full-length transcript coverage. Other methods (relatively
few), for example, STRT-seq, only capture the 5’-end of
transcripts.[32] The more commonly used platforms, including
MARS-seq,[22] Drop-seq,[24] 10X Genomics[26] and SPLiT-
seq,[29] only capture the 3’-end of transcripts. The methods
producing full-length transcripts typically also offer a higher
capture rate of transcripts and thus enable researchers to
investigate alternative-splicing events and allele-specific expres-
sion at single-cell level. However, the arguable disadvantage of
full-length transcript libraries is that they require higher
sequencing depth for accurate quantification of transcripts in
full length. Comparatively, technologies only capturing 3’-end
require relatively shallow sequencing depth, and therefore have a
substantially reduce sequencing cost.
Here we only highlight a few widely-used scRNA-seq

experimental technologies, for a more comprehensive review,
please refer to Hwang et al.[19]

Computational challenges for single-cell RNA
sequencing data

Compared to bulk RNA-seq, scRNA-seq can simultaneously
investigate transcriptional profiles of tens of thousands of single
cells, which enables researches to investigate cellular heterogene-
ity in gene expression as well as transcriptional kinetics, to
identify new cell types/states and to recover cell trajectory during
proliferation and differentiation processes. However, multiple
characteristics specific to scRNA-seq data present large chal-
lenges to computational analyses.
First, scRNA-seqdata often exhibit high level of heterogeneity in

the composition of cell populations, owing to both natural
variability in cell type proportions across individuals and
systematic biases created during single-cell capture, library
preparation and sequencing. Such heterogeneity makes many
tasks difficult. For example, the detection and classification of rare
cell types can be challenging because of their low abundance.
Although there are several tools, such as GiniClust[33] and
RaceID,[13] designed for identifying rare cell types from heteroge-
neous scRNA-seq datasets, these methods suffer from impaired
performance in common cell type clustering.[28] Furthermore,
heterogeneity poses additional challenges when integrating
multiple scRNA-seq datasets. Such challenges cannot be readily
addressed by standard methods used by bulk RNA-seq. One
reason is that these bulk RNA-seq methods assume a uniform cell
population compositions across different samples, which may
mask the underlying biological structure and be unrealistic.[34]

Second, the high dimensionality of scRNA-seq data poses
additional challenges for data analysis. Even with increasingly
larger numbers of single cells evaluated in a single experiment, the
number of genes/features can often substantially exceed the
number of single cells. Under such a scenario, directly applying
classic statistical methods would result in problematic parameter
estimation. In the context of batch effect correction, for instance,
high dimensionality may lead to inaccurate estimates of the
distances between pairs of single cells, thus resulting in sub-
optimally, if not wrongly, corrected expression profiles across
batches. These sub-optimally adjusted expression matrices could
subsequently lead to many problems in downstream analysis,
including cell type misclassification and false positives and/or
false negatives in the identification of differentially expressed
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genes. Moreover, the high dimensionality of scRNA-seq data can
easily render computational costs prohibitive, especially indatasets
involvinga large number of single cells or fromacomplicated study
design. For these reasons, dimension reduction is a standard and
important step in the pre-processing of scRNA-seq data. Various
methodshavebeenutilized to reduce the dimensionality of scRNA-
seq data. For example, t-distributed stochastic neighbor embed-
ding is one commonly used dimension reduction method in
scRNA-seq analysis.[28,35,36] There are many alternative dimen-
sion reduction methods, such as canonical component analysis
employed by Seurat,[37] latent factor analysis used ZIFA,[38]

integrative non-negative matrix factorization (iNMF)[39] adopted
by Link Inference of Genomic Experimental Relationships
(LIGER),[40] and variational autoencoder exploited by single-cell
variational inference.[41] Assuming that the true biological signals
in the original data can be represented in some lower-dimensional
manifold, these dimension reduction techniques can enhance both
statistical and computational efficiency when analyzing scRNA-
seq data. Unfortunately, choosing among the many options for
dimension reduction and deciding on the appropriate number of
dimensions to represent an arbitrary high-dimensional dataset
remains more art than science.
Lastly, scRNA-seqdata frequently contain excessive zero counts. In

some datasets, particularly those involving a large number of single
cells andwithout aggressive qualityfiltering (eg, onminimumnumber
of single cellswhere agene is expressed),more than80%of counts are
observed as zero.[28] It is difficult to separate two sources of zeros:
“true,” meaning that there is truly no corresponding transcript
expressed in the corresponding single cell; or “false,” meaning that
true non-zero number of transcripts is measured as zero count in data
due to low capture rate, insufficient sequencing depth, or other
technological factors such that the observed zero does not reflect the
underlying true expression level.[28,42] Despite improvements in
scRNA-seq technologies, these false zeros, which are frequently
referred to as dropout events, still exist and can introduce substantial
noise and bias to many downstream analyses, including cell type
classification, cell trajectory construction, differential expression
analysis, and integrationacrossmultiple experiments. Simply ignoring
dropout events underestimates gene expression level in a cell and can
lead to misleading results. Therefore, many methods have been
developed for dropout imputation in scRNA-seq data (see more
details in the following section).

Computational tools for dropout imputation in
single-cell RNA sequencing data

As mentioned, dropout events can bias downstream analyses if
ignored. Therefore, imputing dropout events and denoising

scRNA-seq data are crucial preprocessing steps to ensure valid
and powerful analysis, as well as to make data more comparable
across different batches. In recent years, a diverse collection of
scRNA-seq denoising algorithms have been proposed. Here we
review several state-of-the-art dropout imputation methods
(Table 1).
Markov Affinity-based Graph Imputation of Cells (MAGIC) is

an algorithm to perform denoising and dropout imputation in
scRNA datasets using diffusion geometry.[43] The lower-
dimensional manifold assumed to be underlying scRNA datasets
is learned though a diffusion operator coupled with signal
processing principles. Subsequently, a transformed cell-to-cell
similarity matrix is built on the low dimensional space. The
rationale behind MAGIC is that mapping cellular phenotypes
(reflected by single-cell transcriptome profiles) onto the low
dimensional manifold can effectively recover the true expression
levels hidden under dropout events. By borrowing information
across similar cells, selected via data diffusion, MAGIC fills in the
missing transcripts or dropout events. MAGIC demonstrates that
recovers gene-gene relationship by filling. MAGIC is one of the
first paper to impute dropout event. One major caveat is that
MAGIC projects data to low dimensional space, which makes it
inevitably lose some natural biological variability across cells[44]

and abolishes a key feature of single-cell sequencing data.[45]

scImpute is a statistical method which robustly imputes
scRNA-seq data.[46] scImpute aims to impute only the zero
counts that are most likely to be dropout events. This can limit
biases introduced to the true biological zero counts and thus
improve power and validity in downstream analyses, including
clustering and differential gene analyses. Both MAGIC and
scImpute pool data across similar cells for each gene, whichmight
lead to over-smoothing and wipe out genuine biological
variability in gene expression. Also, neither MAGIC nor
scImpute provides a measure of uncertainty quantification for
the estimated values.
Single-cell Analysis Via Expression Recovery (SAVER) is an

expression recovery method for unique molecule index (UMI)-
based scRNA-seq data.[44] SAVER assumes that the count in each
gene of each cell follows a Poisson-gamma mixture (negative
binomial) model and uses the posterior mean as the recovered or
imputed gene expression value. Once the parameters are
estimated through an empirical Bayes-like approach with Poisson
Lasso regression, SAVER can recover the true gene expression
levels and subsequently better reflect biological gene-to-gene
correlations and distribution-level features. However, because
SAVER relies onMarkov Chain Monte Carlo algorithms to infer
parameters, it is computationally intensive and might not be
suitable for large datasets.

Table 1

Tools for dropout imputation in single-cell scRNA sequencing data.

Name (reference) Year Method type Strengths Limitations

MAGIC[43] 2018 Diffusion geometry One of the first methods Could over-correct, leading to loss of
natural biological variability, no
measure of uncertainty quantification

scImpute[46] 2018 Zero-inflated mixture Robust, focusing on imputing likely
dropout events rather than all
observed zeros

Might over-smooth, no measure of
uncertainty quantification

SAVER[44] 2018 Poisson-gamma mixture Has uncertainty quantification Computationally intensive
VIPER[45] 2018 Non-negative regression Free of tuning, computationally efficient No measure of uncertainty quantification
DCA[47] 2019 Deep count autoencoder Directly models counts in a deep

autoencoder framework
Requiring tuning, thus computationally
intensive

DCA=deep count autoencoder, MAGIC=Markov affinity-based graph imputation of cells, SAVER= single-cell analysis via expression recovery, VIPER= variability-preserving imputation for expression recovery.
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Variability-preserving ImPutation for Expression Recovery
(VIPER) focuses squarely on imputing zero values via a non-
negative regression model.[45] In VIPER’s framework, for each
cell of interest, a most predicative sparse set of local neighbor-
hood cells is identified to impute zero counts in that cell under
study. VIPER is free of tuning parameters and computationally
efficient as compared to Bayesian methods with many hyper-
parameters that need to be tuned. More importantly, VIPER
claims that it can better preserve gene expression variability after
imputation, demonstrated in real data applications (Fig. 5 in the
original paper).[45] However, VIPER has similar drawbacks to
MAGIC and scImpute: it does not provide any uncertainty
quantification either.
Deep Count Autoencoder (DCA) adopts a neural network

framework for denoising scRNA datasets.[47] The main idea
behind DCA is to infer parameters associated with a negative
binomial or zero-inflated negative Binomial distribution assumed
for the input count data, using a deep neural network framework.
DCA employs such negative binomial distributions both with and
without zero-inflation to model expression count data, allowing
overdispersion and dropout events, as well as taking into account
the sparsity of scRNA datasets. Many techniques, including
standard regularization methods and neural network “dropout”
(distinct from dropout in scRNA-seq data, “dropout” here is a
neural network terminology, and refers to the special regulariza-
tion technique where certain units [both hidden and visible] are
dropped out in a neural network), have been employed to avoid
overfitting. By utilizing the deep count autoencoder neural
network architecture and gradient-based optimization algo-
rithms, DCA is computationally efficient. Specifically, computa-
tional costs scale only linearly with the number of cells. However,
tuning parameters in DCA can be computationally intensive.
In summary, many powerful imputation tools have been

developed and tailored specifically for scRNA datasets. These
methods have demonstrated their utility in both simulated and
real datasets. By properly imputing dropout counts in scRNA-
seq, we can recover the true underlying biological structure and
therefore enhance validity and/or statistical power in down-
stream analyses. However, each imputation method has its own
strengths and weaknesses. Suitable imputation methods must be
carefully selected and tuned based on nature of the data under
study to maximally reduce false positive findings, to improve
statistical power to detect true positive signals, and to enhance
reproducibility. For instance, Andrews andHemberg[48] reported
low reproducibility of cell-type-specific markers identified after
dropout imputation via several different methods, suggesting
potentially false signals introduced by imputation.

Computational tools for batch effects correction of
single-cell RNA sequencing data

Large-scale scRNA-seq studies including tens of thousands to
even millions of cells (eg, the Human Cell Atlas),[4,49] have
become increasingly feasible with rapid improvement in single-
cell capture and library preparation technologies as well as
decreasing sequencing costs. Large datasets typically involve
interrogation of cells across multiple batches, from different
laboratories, across varying time points, and/or via different
experimental protocols and techniques. Batch effects, also
understood as systematic differences between cells from different
batches, present large challenges to integrative analyses across
multiple experiments. When not properly corrected, batch effects
may lead to false positives as well as false negatives for many

analyses including identification of novel cell type(s) and
detection of differentially expressed genes (Fig. 1).[28,42]

Traditional batch effect correction methods, for example
limma[50] and ComBat,[51] are mainly based on linear regression,
where batch effects are modeled either as known variables and
regressed out from the raw joint data matrix. These methods have
proven to be valuable in correcting batch effects for bulk RNA-
seq data.[50–52] However, these methods, proposed largely for
bulk data, are not designed to address issues unique to scRNA-
seq data, including the aforementioned over-dispersion, excessive
zero counts, and more pronounced heterogeneity across single-
cell samples. Applying these correction methods designed for
bulk RNA-seq to scRNA-seq datasets can result in improperly
corrected data which can subsequently result in misleading
findings and/or failure to reveal true underlying variation.
Recently, many batch effect correction methods have been
developed for scRNA-seq data to address the aforementioned
challenges.[53,54] Instead of providing a complete list of all the
correction methods proposed in recent literature, here we select
three state-of-the-art methods to review.
One integrative algorithm for jointly analyzing multiple

scRNA-seq datasets is LIGER.[40] The main goal of LIGER is
to infer cell types across datasets by simultaneously characteriz-
ing shared and specific features between different modalities or
batches. iNMF is applied to reduce the high dimensionality of
each cell into one shared and one batch-specific set of factors that
represent the common and unique biological features, respec-
tively. In the resulting factor space, LIGER constructs a shard
factor neighborhood graph where cells are connected to the
nearest neighborhoods having similar patterns based on the
maximum factor loadings, and then performs a joint clustering
using the shared factor neighborhood graph constructed.
Compared to alternative methods that only focus on similarities
among datasets,[34,51,55,56] LIGER also takes the batch-specific
features into consideration, which can maximally recover the
latent differentiations among different batches.[40] For example,
benchmarking results of two datasets of human peripheral blood
mononuclear cells showed that the integrative analysis by LIGER
can well preserve the underlying cell-type structures after
correction.[40] However, LIGER is designed for inferring cell
types simultaneously from multiple scRNA-seq datasets. It does
not provide batch-corrected expression profiles for the single
cells. Because of that, it is incredibly challenging, if not
impossible, to use other single-cell analysis packages in a
valid manner for other downstream analyses such as cell
trajectory analysis,[6,57–61] or analysis of differentially expressed
genes.[62–65]

Realizing the importance of generating batch-corrected gene
expression profiles for scRNA-seq data, a few groups have
developed strategies to correct gene expression values across
different batches. For example, MNN adopts the information of
mutual nearest neighbors for correcting technical biases between
expression profiles of different batches.[34] MNN first globally
scales the data into a cosine space, then identifies nearest
neighbors across batches, and finally matches pairs of mutual
nearest neighbors, which are assumed to be cells from the same
cell type or state. MNN calculates a correction vector specific for
each pair of mutual nearest neighbors to represent the technical
variation between batches, and then derives a correction vector
for each cell by calculating a weighted average of all correction
vectors with its mutual nearest neighbors. Finally, the gene
expression profiles of all the cells in all the batches are corrected
according to these cell-specific batch-effect correction vectors.
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Compared to the alternative methods for bulk RNA-seq which
assume identical cell composition in different batches,MNNonly
requires at least one cell population is shared across batches, and
MNN has demonstrated superior performance over standard
methods developed for bulk RNA-seq data, such as limma and

Combat.[34,54] However, MNN makes a rather strong assump-
tion that true biological differences are orthogonal to those due to
batch effect. At the minimum, this assumption requires that the
variation from batch effect is much smaller than that from
biological effect. However, the orthogonality assumption might

Figure 1. Framework of batch effect correction. (A) Separate analyses of multiple batches. (B) Joint analysis of simply concatenated matrix. (C) Joint analysis of
batch corrected expression matrix. t-SNE= t-distributed stochastic neighbor embedding.
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not hold in real data, particularly given that different batches
may differ in many aspects, including samples used, single-cell
capture method, or library preparation approach. Under non-
orthogonal scenarios, MNN will not be optimal using its global
(ignoring cell type information) nearest neighbor search strategy,
leading to undesired correction results.[66]

Another popular batch effect correction method is
Seurat.[54,55,64] In the latest version (v3), Seurat aligns cells
from the same cell population or state across different
modalities or batches.[37] This approach is conceptually similar
to that adopted byMNN. In contrast toMNN, however, Seurat
v3 first performs cross-batch dimension reduction using
diagonalized canonical correlation analysis, and then detects
“anchors” between datasets in the low dimensional space.
Here, an anchor refers a pair of cells from the same biological
state from different batches (hereafter we use anchor and
anchor pair interchangeably). To ensure the accuracy of anchor
detection, Seurat v3 assigns each anchor pair a score according
to the level of shared mutual neighbors between the two
corresponding cells in the anchor pair. In addition to the anchor
score calculated above, Seurat v3 also computes a cell similarity
score (as the name indicates, this score is specific to each cell) by
quantifying the distance between the cell under study and its
nearest “neighbors” (“neighbors” here refer to cells that form
anchor pairs with the cell under investigation). Correction
vectors are then computed for each cell by averaging across the
anchor-level correction vectors with its nearest neighbors
weighted by anchor score and cell similarity score. The
corrected expression matrix is then inferred by subtracting
the weighted correction vectors from the original expression
profiles. Because of canonical correlation analysis’s advantages
in identifying shared biological markers and conserved gene
correlation patterns,[55,67] this type of batch effect adjustment is
robust across a full spectrum of scales of batch effects with
respect to the true biological effect, particularly under scenarios
with extensive technical variation.[37]

In summary, these batch effect methods allow researchers to
carry out integrative analyses of multiple scRNA-seq datasets,
which can boost statistical power as well as enhance robustness
and validity in downstream analyses that could include defining
cell types and profiling gene regulations across different cellular
conditions and processes.

Real data application

We benchmarked three widely-used batch effect correction
methods, MNN, Seurat v3, and LIGER, on two hematopoietic
scRNA-seq datasets produced using two different sequencing
platforms, MARs-seq and SMART-seq2.[68,69]

The first batch produced byMARS-seq consists of 1920 cells of
six major cell types, and the second batch generated by SMART-
seq2 contains 2730 of 3 cell types. Between the two batches, three
types of cells are shared: common myeloid progenitor cells,
granulocyte-monocyte progenitor cells and megakaryocyte-

erythrocyte progenitor cells. For simplicity, only single cells
belonging to these three shared cell types were extracted for our
benchmarking analyses (Table 2).
Batch effect correction was carried out following the

instruction of the 3 methods. Corrected results of all the 3 cell
types were visualized by t-distributed stochastic neighbor
embedding (Fig. 2A–D).[35,36] To quantify the mixing of single
cells across batches using each of the 3 batch correction methods,
we fitted two-way multivariate analysis of variance (MANOVA)
models in the merged dataset after batch effect correction using
each method. We calculated 2 F statistics from MANOVA: one
for batch; and the other for cell type (here, three different cell
types). These 2 F statistics represent differences between batches
or cell types, respectively. Therefore, for the merged dataset,
smaller batch F values are more desirable, since they indicate
better mixing across batches. Whereas larger cell-type F values
are preferred because they mean more differentiations retained
between cell types. In the mouse hematopoietic datasets, all the
three correction methods can substantially mitigate the discrep-
ancy between the two datasets (Fig. 2E): LIGER outperforms
Seurat v3 andMNN, which perform similarly (the lowest batch F
value from LIGER in Fig. 2E). Moreover, LIGER also seems to
reveal more differentiation between different cell types than the
other two methods (largest cell-type F value from LIGER in
Fig. 2F). Interestingly, MNN correction led to an even smaller
cell-type F value, suggesting that MNN might lose some
biological structures after correction.
In summary, in our real data application, LIGER seems to

outperform the other two methods. However, as different
datasets have varying properties, it may be impossible to find
one batch effect correction that if always preferred for all
datasets. We recommend that researchers take caution when
choosing desired correction method(s) suitable for their data.

Future perspectives

As discussed, proper analysis of scRNA-seq data was very
complex given various levels of biases, uncertainties, as well as
sheer high dimensionality. Myriads of computational methods
have been developed in recent years to facilitate scRNA-seq data
analysis. We have focused in this review on methods for data pre-
processing, specifically on dropout imputation and batch effect
correction. Excellent reviews exist for various downstream
analyses, including cell type clustering,[28] differential expres-
sion,[70] pseudo-time or cell trajectory estimation.[58]

We focus on preprocessing methods because we view them
indispensable to ensure validity and enhance power for any
downstream analysis. With the help of better batch effect
correction and imputation tools, one can impute dropout events
and integrate multiple scRNA-seq datasets more accurately and
robustly. These pre-processing procedures can help researchers
acquire larger, better harmonized datasets with more bona fide
biological patterns recovered or retained, therefore boosting
statistical power in downstream analysis.

Table 2

Major characteristics of the benchmarking mouse hematopoietic datasets.

Batch ID Technical platform CMP MEP GMP # of cells evaluated
∗

# of cells in total Reference

Batch 1 SMART-seq2 328 362 123 813 1920 Paul et al[69]

Batch 2 MARS-seq 481 1095 1154 2730 2730 Nestorowa et al[68]

∗
Number of cells used for the benchmarking analysis in this paper. CMP= common myeloid progenitor, GMP=granulocyte-monocyte progenitor, MEP=megakaryocyte-erythrocyte progenitor.
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Each aforementioned tool, either for dropout imputation or for
batch effect correction, has its strengths and limitations. For
instance, a considerable proportion, if not the majority, of
dropout imputation methods do not provide uncertainty

quantification. This is because such uncertainty estimation incurs
additional computational costs, which can easily become too
prohibitive for scRNA-seq datasets that are getting ever
increasingly large. Furthermore, when performing batch effect

Figure 2. t-SNE visualization of uncorrected and corrected results. (A) t-SNE plots for 2 mouse hematopoietic datasets before correction. Solid and inverted triangle
represent the first and secondbatch, respectively; anddifferent cell typesareshown indifferent colors. (B–D) t-SNEplots after correction byMNN,Seurat v3andLIGER.
(E) Logarithmsof batch F-statistics. (F) Logarithmsof cell-type F-statistics. CMP=commonmyeloid progenitor,GMP=granulocyte-monocyteprogenitor, LIGER= link
inference of genomic experimental relationships, MEP=megakaryocyte-erythrocyte progenitor, t-SNE= t-distributed stochastic neighbor embedding.
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correction across different scRNA-seq datasets, it is distinctly
possible to overcorrect and lose true underlying cell type
structures as a result. The old saying of “there is no free lunch”
applies. Therefore, investigators are recommended to choose
methods based on the nature of their data as well as which
properties are most desired. From an optimistic perspective, we
are hopeful that future methods could integrate more advantages
of those methods in certain unified framework with affordable
computational cost.
Although deep learning methods are often regarded as black

box algorithms, they have demonstrated impressive values in
many fields, and have already contributed to the analysis of
scRNA-seq data. For example, the DCA method[47] was
proposed to better denoise and impute dropout for scRNA-
seq datasets and the single cell variational inference[41] method
was developed to aggregate information across different
batches to achieve higher accuracy for downstream analyses
such as clustering and differential expression. With the
development of transfer learning and other sophisticated neural
networks, we anticipate accurate and efficient dropout
imputation and batch effects correction methods with deep
learning approaches.
With the continuous and rapid advancement of scRNA-seq

technologies, we anticipate having more complete (eg, better
capture rate, full-length transcripts, enrichment of rare cell types),
more accurate (eg, with UMI to mitigate biases introduced by
PCR), and more additional information (eg, cell type, cell
location information), for the analyses of scRNA-seq data. In the
foreseeable future, if these additional pieces of information are
routinely available in scRNA-seq datasets, we expect increasingly
more supervised or semi-supervised methods for dropout
imputation and batch effect correction to be introduced. In
addition, the integration of scRNA-seq data with other omics
data (for instance DNA methylation, open chromatin status
[ATAC-seq], or chromatin interactome [Hi-C]), both at bulk and
single cell resolution, would allow more comprehensive borrow-
ing information from different technologies and/or different
omics assays, and thus hopefully provides a more complete
understanding of the genome and the regulatory landscape.
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