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INTRODUCTION: The brain is responsible
for cognition, behavior, and much of what
makes us uniquely human. The development
of the brain is a highly complex process, and
this process is reliant on precise regulation of
molecular and cellular events grounded in the
spatiotemporal regulation of the transcrip-
tome. Disruption of this regulation can lead
to neuropsychiatric disorders.

RATIONALE: The regulatory, epigenomic, and
transcriptomic features of the human brain
have not been comprehensively compiled across
time, regions, or cell types. Understanding the
etiology of neuropsychiatric disorders requires

knowledge not just of endpoint differences be-
tween healthy and diseased brains but also
of the developmental and cellular contexts in
which these differences arise. Moreover, an
emerging body of research indicates that many
aspects of the development and physiology of
the human brain are not well recapitulated in
model organisms, and therefore it is necessary
that neuropsychiatric disorders be understood
in the broader context of the developing and
adult human brain.

RESULTS:Herewe describe the generation and
analysis of a variety of genomic data modalities
at the tissue and single-cell levels, including

transcriptome, DNA methylation, and histone
modifications across multiple brain regions
ranging in age from embryonic development
through adulthood. We observed a widespread
transcriptomic transition beginning during late
fetal development and consisting of sharply
decreased regional differences. This reduction
coincided with increases in the transcriptional
signatures ofmature neurons and the expression
of genes associated with dendrite development,

synapse development, and
neuronal activity, all of
whichwere temporally syn-
chronousacrossneocortical
areas, as well as myelina-
tion and oligodendrocytes,
which were asynchronous.

Moreover, genes including MEF2C, SATB2, and
TCF4, with genetic associations to multiple
brain-related traits and disorders, converged in
a small number of modules exhibiting spatial
or spatiotemporal specificity.

CONCLUSION:We generated and applied our
dataset to document transcriptomic and epige-
netic changes across human development and
then related those changes to major neuro-
psychiatric disorders. These data allowed us to
identify genes, cell types, gene coexpression
modules, and spatiotemporal loci where dis-
ease risk might converge, demonstrating the
utility of the dataset and providing new in-
sights into human development and disease.▪
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Spatiotemporal dynamics of human brain development and neuro-
psychiatric risks. Human brain development begins during embryonic
development and continues through adulthood (top). Integrating data
modalities (bottom left) revealed age- and cell type–specific properties and
global patterns of transcriptional dynamics, including a late fetal transition
(bottommiddle).We related the variation in gene expression (brown, high;

purple, low) to regulatory elements in the fetal and adult brains, cell type–
specific signatures, and genetic loci associated with neuropsychiatric
disorders (bottom right; gray circles indicate enrichment for corresponding
features among module genes). Relationships depicted in this panel do
notcorrespond tospecificobservations.CBC,cerebellarcortex;STR, striatum;
HIP, hippocampus; MD, mediodorsal nucleus of thalamus; AMY, amygdala.
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To broaden our understanding of human neurodevelopment, we profiled transcriptomic
and epigenomic landscapes across brain regions and/or cell types for the entire span of
prenatal and postnatal development. Integrative analysis revealed temporal, regional,
sex, and cell type–specific dynamics. We observed a global transcriptomic cup-shaped
pattern, characterized by a late fetal transition associated with sharply decreased regional
differences and changes in cellular composition and maturation, followed by a reversal
in childhood-adolescence, and accompanied by epigenomic reorganizations. Analysis
of gene coexpression modules revealed relationships with epigenomic regulation and
neurodevelopmental processes. Genes with genetic associations to brain-based traits and
neuropsychiatric disorders (includingMEF2C, SATB2, SOX5, TCF4, and TSHZ3) converged in a
small number of modules and distinct cell types, revealing insights into neurodevelopment
and the genomic basis of neuropsychiatric risks.

T
he development of the human central ner-
vous system is an intricate process that
unfolds over several decades, during which
time numerous distinct cell types are gen-
erated and assembled into functionally

distinct circuits and regions (1–4). These basic
components of the brain are neither born ma-
ture nor static throughout their lifetimes; over

the course of development, they undergo a vari-
ety of molecular and morphological changes. As
a consequence, the characteristics of a given
cell, circuit, or brain region described at a given
time offer only a snapshot of that unit.
The processes guiding the development of the

nervous system are reliant on the diversity and
precise spatiotemporal regulation of the tran-

scriptome (1–4). There is increasingly persuasive
evidence that dysregulation of the transcrip-
tional, regulatory, and epigenetic processes un-
derlying the spatial architecture and temporal
progression of human neurodevelopment can
have dire consequences for brain function or
strongly affect the risk of neuropsychiatric dis-
orders (5–7). Indeed, many of the regulatory and
epigenomic features governing the transcriptome
of the developing human nervous system may be
specific to particular developmental contexts in
humans or closely related primate species. As such,
it is difficult to identify or fully study human func-
tional genomic elements using most common
model organisms or cell culture systems (8). Assay-
ing human cells and postmortem tissues solves
some of these problems, but challenges, including
the availability and quality of developmental tis-
sue, limit the scale of such analyses. Consequent-
ly, despite ongoing efforts, our understanding of
different facets of the transcriptional, regulatory,
and epigenetic architecture of the human ner-
vous system, particularly during early develop-
mental periods, remains highly incomplete (8–21).
To begin rectifying this deficiency, the Na-

tional Institutes of Health–funded PsychENCODE
(http://psychencode.org) and BrainSpan Consortia
(www.brainspan.org) sought to generate and
analyze multidimensional genomics data from
the developing and adult human brain in healthy
and disease states.

Study design and data generation

Here we describe the generation and integrated
analysis of multiple genomic data modalities,
including transcriptomic profile, DNA methyla-
tion status, histone modifications, CTCF binding
sites, and genotype generated from bulk tissue
(1230 samples from 48 brains) or at the single-
cell or single-nucleus level (18,288 cells or nuclei
from 12 brains) from 60 de-identified postmor-
tem brains obtained from clinically and histo-
pathologically unremarkable donors of both
sexes and multiple ancestries. Subject ages ranged
from 5 postconceptional weeks (PCW) to 64
postnatal years (PY) (Fig. 1 and tables S1 to S6).
Genotyping of DNA extracted from brain with a
HumanOmni2.5-8 BeadChip confirmed subject
ancestry and revealed no obvious genomic ab-
normalities (22).
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For transcriptome analysis, tissue-level mRNA
sequencing (mRNA-seq) was performed on a
total of 607 histologically verified, high-quality
tissue samples from 16 anatomical brain regions
[11 areas of the neocortex (NCX), hippocampus
(HIP), amygdala (AMY), striatum (STR), medio-
dorsal nucleus of thalamus (MD), and cerebellar
cortex (CBC)] involved in higher-order cognition
and behavior [Fig. 2A, (22)]. These regions were
systematically dissected from 41 brains ranging
in age from 8 PCW to 40 PY [18 females and
23 males; postmortem interval (PMI) = 12.9 ±
10.4 hours; tissue pH = 6.5 ± 0.3; RNA integrity
number = 8.8 ± 1] (Fig. 1 and table S1). Because
of the limited amounts of prenatal samples, small-
RNA sequencing (smRNA-seq) was performed on
16 regions of 22 postnatal brains, with 278 sam-
ples passing quality control measures (Fig. 1 and
table S2). These tissue-level RNA-seq analyses
were complemented by single-cell RNA sequenc-
ing (scRNA-seq) data generated from 1195 cells
collected from embryonic fronto-parietal neo-
cortical wall and mid-fetal fronto-parietal neo-
cortical plate and adjacent subplate zone of an
independent set of nine brains ranging in age
from 5 to 20 PCW (Fig. 1 and table S3) and
single-nuclei RNA sequencing data (snRNA-seq)
generated from 17,093 nuclei from the dorso-
lateral prefrontal cortex (DFC, also termed DLPFC)
of three adult brains (Fig. 1 and table S4). For epi-
genome analyses, DNA cytosine methylation was
profiled with the Infinium HumanMethylation450
BeadChip in 269 postnatal samples covering
the same 16 brain regions analyzed by RNA-seq
(Fig. 1 and table S5). Additional epigenomic data
was generated with chromatin immunoprecipi-
tation sequencing (ChIP-seq) for histone marks
H3K4me3 (trimethylated histone H3 lysine 4),
H3K27me3 (trimethylated histone H3 lysine 27),

and H3K27ac (acetylated histone H3 lysine 27)
and the epigenetic regulatory protein CTCF,
which together identify a large fraction of pro-
moters, repressors, active enhancers, and insu-
lators. These data were generated from DFC
and CBC of a subset of samples from mid-fetal,
infant, and adult brains (Fig. 1 and table S6).
Stringent quality control measures (figs. S1 to S8)
were applied to all datasets before in-depth an-
alyses. We also validated some results by applying
independent approaches (figs. S9, S10, and S18).
Finally, to enable more powerful comparisons, we
grouped specimens into nine time windows (W1 to
W9) on the basis of major neurodevelopmental
milestones and unsupervised transcriptome-
based temporal arrangement of constituent spec-
imens (Fig. 1A and tables S1 to S6).

Global spatiotemporal dynamics

We found that most protein-coding genes were
temporally (67.8%) or spatially (54.5%) differ-
entially expressed (22) between at least two time
windows or regions, respectively, with the ma-
jority of spatially differentially expressed genes
(95.8%) also temporally differentially expressed.
To gain a broad understanding of this tran-
scriptomic variation, we analyzed the level of
similarity between individual samples in the
mRNA-seq dataset using multidimensional scal-
ing applied to both gene and isoform transcript-
level analyses (Fig. 2B and figs. S11 and S12). In
both analyses, we found a clear divide between
samples from embryonic through late mid-fetal
development (W1 to W4) and samples from late
infancy through adulthood (W6 to W9), with
samples from the late fetal period through early
infancy (W5) generally spanning this divide. To
determine the relationship between these three
groups, we performed unsupervised hierarchical

clustering analysis and found that all samples
from W5, including the late fetal samples, were
more similar to early postnatal samples than to
latemid-fetal samples (fig. S13). Analysis of large-
scale, intraregional changes in the transcriptome
across time also suggest a major transition that
begins before birth. The transcriptomes of major
brain regions and neocortical areas correlated
well across both embryonic and early to mid-
fetal (W1 to W4) and later postnatal (W6 to W9)
development but displayed a sharp decrease in
correlation across late fetal development and
early infancy (W5) (Fig. 2C and fig. S14). This
transition was also apparent at the inter-
regional level. Pairwise comparisons of gene
expression across all 16 brain regions found a
reduction in the number of genes showing
differential regional expression during W5
relative to all other windows (fig. S15). Taken
together, our observation of high variation
during embryonic and early to mid-fetal ages
followed by a decrease across late fetal ages
and the subsequent resumption of higher levels
of inter- and intraregional variation during late
childhood and adolescence revealed a cup-shaped,
or hourglass-like, pattern of transcriptomic devel-
opment (Fig. 2D).
To further explore how regional transcriptomic

profiles change with age, we applied the adjust-
ment for confounding principal components anal-
ysis algorithm (AC-PCA) (23), which adjusts for
interindividual variations. Within any given de-
velopmental window, AC-PCA exhibited a clear
separation of brain regions, but the average dis-
similarity between transcription profiles of brain
regions declined from W1 to W5 and then in-
creased with age after W5 (Fig. 2, E and F, and fig.
S16). Implying a relationship between transcrip-
tional signatures and developmental origin, we
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Fig. 1. Overview of the data generated in this study. (A) The
developmental time span of the human brain, from embryonic ages
(≤8 PCW) through fetal development, infancy, childhood, adolescence,
and adulthood, with PCW and PY indicated. Below is the distribution
of samples in this study across broad developmental phases (embryonic

to adulthood), age [5 PCW to 64 PY (19)], and developmental windows
(W1 to W9). Each circle represents a brain, and color indicates
the sex [red circles (female) and blue circles (male)]. (B) Postmortem
human brains sampled for different data modalities in this study
are indicated.
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found that dorsal pallium–derived structures
of the cerebrum (i.e., NCX, HIP, and AMY) as
well as STR became increasingly similar across
prenatal development, whereas CBC and MD
remained most distinct across all time windows.
To confirm these observations and to evaluate
the contribution of each brain region to the re-
gional variation described by AC-PCA, we quanti-
fied the mean distance in the first two principal
components across brain regions, excluding from
the AC-PCA one region at a time. Because of the

relative transcriptomic uniqueness of the CBC, its
exclusion unmasked a qualitatively distinct and
pronounced cup-shaped pattern with a transition
beginning before birth and spanning the late
fetal period and early infancy (Fig. 2F). CBC was
again the most distinct region of the brain after
multidimensional scaling analysis for expressed
mature microRNAs (miRNAs), a small RNA spe-
cies enriched within our smRNA-seq dataset, and
the dominant contributor to miRNA expression
variance (fig. S17).

The global late fetal transition and overall cup-
shaped developmental dynamics we observed
were also apparent when this analysis was re-
peated for the 11 neocortical areas included in
this study (Fig. 3A and fig. S16). We observed
greater dissimilarity across areas at early fetal
ages (Fig. 3A), with prefrontal areas [medial pre-
frontal cortex (MFC), orbital prefrontal cortex
(OFC), DFC, and ventrolateral prefrontal cortex
(VFC)] being the most distinct. In addition, re-
flecting the spatial and functional topography of
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Fig. 2. Global transcriptomic architecture of the developing human
brain. (A) mRNA-seq dataset includes 11 neocortical areas (NCX) and five
additional regions of the brain. IPC, posterior inferior parietal cortex;
A1C, primary auditory (A1) cortex; STC, superior temporal cortex; ITC,
inferior temporal cortex; V1C, primary visual (V1) cortex. (B) The first two
multidimensional scaling components from gene expression showed
samples from late fetal ages and early infancy (W5, gray) clustered
between samples from exclusively prenatal windows (W1 to W4, blue) and
exclusively postnatal windows (W6 to W9, red). (C) Intraregional Pearson’s
correlation analysis found that samples within exclusively prenatal
(W1 to W4) or postnatal (W6 to W9) windows correlated within, but not
across, those ages. (D) Interregional transcriptomic differences revealed a

developmental cup-shaped pattern in brain development. The interregional
difference was measured as the upper quartile of the average absolute
difference in gene expression of each area compared to all other areas.
(E) AC-PCA for samples from all brain regions at late mid-fetal ages (W4),
late fetal ages and early infancy (W5), and early adulthood (W9) showed
that interregional differences were generally greater during W4 and W9
but reduced across W5. (F) Pairwise distance across samples using the first
two principal components for all regions (left) or excluding one region at
a time (right) demonstrated that the reduction of variation we observed is
common across multiple brain regions, once the most differentiated
transcriptomic profile (the cerebellum) is excluded. The shaded bands are
95% confidence intervals of the fitted lines.
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the NCX, both rostro-caudal and dorsal-ventral
axes were evident in the transcriptome during
fetal development. Areal differences were also
seen at later ages, with functional considera-
tions likely taking precedence over topograph-
ical arrangements. For example, VFC clustered
closely with primary motor (M1C) and somato-
sensory (S1C) cortex, likely reflecting functional
relationships with orofacial regions of the motor
and somatosensory perisylvian cortex (fig. S16).
Across the entirety of human brain development,
transcriptomic variation between cortical regions
also showed a pronounced decrease centered on
the late fetal and early infancy samples of W5 (i.e.,
perinatal window), again reminiscent of a cup-
shaped pattern (Fig. 3, A and B, and fig. S16).
Similar to gene expression, globalmeasures of

alternative splicing, such as the ratio between
reads including or excluding exons [i.e., the per-
cent spliced in index (PSI)], were higher during
prenatal than postnatal ages (fig. S18 and table
S7). So too was the gene expression of 68 RNA-
binding proteins selected because of their in-
volvement in RNA splicing and their analysis in
adulthood by the Genotype-Tissue Expression
(GTEx) project (24). Hierarchical clustering of
expression data for these proteins also revealed
a late fetal transition (fig. S19). Coincident with

these observations, we found that genes exhibit-
ing the highest interregional variation in expres-
sion in any given window [see (22)] exhibited a
higher PSI during that window than iteratively
chosen control groups of genes (fig. S18). Taken
together, these analyses suggest that broad
phenomena in the developing human brain,
including a late fetal transition in intra- and
interregional transcriptomic variation, may
be amplified by alternative splicing.

Cellular heterogeneity and
developmental dynamics

The high interareal variation observed during
embryonic and early to mid-fetal development
(Fig. 3B) coincides with a crucial period in neu-
ral development and the suspected etiology of
psychiatric diseases (4). To help understand the
temporal dynamics underlying this variation
in gene expression, we analyzed our scRNA-seq
data from embryonic fronto-parietal neocortical
wall and mid-fetal fronto-parietal neocortical
plate and adjacent subplate zone alongside our
snRNA-seq data from adult human NCX and
other independent datasets from overlapping
developmental time points (12, 25, 26). To do
so, we first applied a clustering and classifica-
tion algorithm (27, 28) to the prenatal scRNA-

seq data after an initial division of the dataset
on the basis of the age of the donor brain (i.e.,
embryonic or fetal), obtaining 24 transcriptomi-
cally distinct cell clusters (fig. S20). Reflecting the
rapid developmental change occurring across
embryonic and fetal development and the rela-
tive homogeneity of cell-type composition as
compared to adult ages, as well as the specific
distribution of samples in our dataset, a num-
ber of these clusters were comprised of cells from
only a single donor brain, and vice versa. Sug-
gesting that this resulted from spatiotemporal
changes across brain development rather than
artifactual changes related to data processing,
we confirmed broad classifications of individ-
ual cells and general relationships between cell
clusters and donor brains using an alternative
clustering algorithm (fig. S21). Differential ex-
pression analysis andmeasurements of expression
specificity recovered well-known gene markers
of distinct types of neuronal and non-neuronal
progenitor and postmitotic cell types (figs. S20
and S22 and table S8), as well as closely related
groups of cell types (i.e., markers enriched in all
prenatal excitatory neuron clusters) (fig. S22).
We complemented these data with snRNA-seq

from adult human DFC (fig. S20), from which
we identified 29 transcriptomically distinct cell
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Fig. 3. Dynamics of cellular heterogeneity in the human neocortex.
(A) AC-PCA conducted on 11 neocortical areas showed decreased interareal
variation across W5, similar to our observations of interregional variation in
major brain regions. (B) Pairwise distance across samples using the first
two principal components identified a late fetal transition in all of the
neocortical areas we assessed, similar to what we observed across other brain
regions. (C) Deconvolution of tissue-level data using cell type–enriched
markers identified through single-cell sequencing of primary cells from 5 to
20 PCW postmortem human brains as well as from single-nuclei sequencing of

adult human brains (27). (D) Maximum interareal variance across cell
types for each window. (E) Neocortical areal variation in the transcriptomic
signatures of each major cell type assayed in each developmental
window. Because of dissection protocols and rapid brain growth across
early fetal development, progenitor cell proportions are nonreliable
estimates after W2 [red dashed line in (C)].The shaded bands are 95% (B)
and 50% (C) confidence intervals of the fitted lines. NPC, neural
progenitor cells; ExN, excitatory neurons; InN, interneurons; Astro,
astroglial lineage; Oligo, oligodendrocytes; Endo, endothelial cells.
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clusters representing various populations of
glutamatergic excitatory projection neurons,
GABAergic interneurons, oligodendrocyte pro-
genitor cells, oligodendrocytes, astrocytes, mi-
croglia, endothelial cells, and mural cells (i.e.,
pericytes and vascular smooth muscle cells)
(fig. S21). Alignment of our prenatal data with
adult snRNA-seq data revealed hierarchical rela-
tionships and similarities between major cell
classes, reflecting their developmental origins
and functional properties (fig. S23). Notably,
putative embryonic and fetal excitatory neurons
clustered near, but did not wholly overlap with,
their adult counterparts. We also observed tran-
sient transcriptomic entities, such as fetal cells
in the oligodendrocyte lineage that clustered
separately from their adult counterparts. Sim-
ilarly, nascent excitatory neurons generally did
not cluster with progenitor cells nor with fetal
or adult excitatory neurons, indicating their
maturationally distinct status. Confirming the
validity of our prenatal scRNA-seq and adult
snRNA-seq data, alignment of our prenatal data
with cells from a previously published dataset
(9) consisting of mid-fetal and adult human
neocortical cells yielded similar relationships
between prenatal and adult cell types (fig. S23).
Comparison of neuronal transcriptomes from
our prenatal single cells with both our adult
single-nucleus data and independently gener-
ated adult single-nucleus data (27) also confirmed
key differences between embryonic, mid-fetal,
and adult populations. We observed limited tran-
scriptional diversity in embryonic and mid-fetal
excitatory and inhibitory neuron populations in
the NCX as compared to the adult counterparts.
The clusters identified in our prenatal dataset
did not express specific combinations of marker
genes described for the adult excitatory (fig. S24)
and inhibitory (fig. S25) neurons. For example,
the embryonic and mid-fetal neocortical excit-
atory neurons expressed combinations of genes
known to be selectively enriched in different
layers in adult human or mouse NCX (29–31),
as previously shown in the prenatal human and
mouse NCX (12, 31). Notably, genes enriched in
adult excitatory projection neuron subtypes lo-
cated in layer (L) 5 and L6, such as BCL11B
(CTIP2) and FEZF2 (FEZL, ZFP312, or ZNF312),
were coexpressed with L2 to L4 intracerebral
excitatory projection neuron markers, such as
CUX2, in certain embryonic and mid-fetal ex-
citatory cell types (figs. S24 and S26). We also
observed temporal changes in the coexpression
patterns of cell type–specific marker genes in
other cell types. For example, single-cell data
from mid-fetal NCX revealed frequent coexpres-
sion of RELN, a marker for L1 Cajal-Retzius neu-
rons (32), and PCP4 [75.9% of 133 PCP4 -expressing
cells; reads per kilobase of exon model per mil-
lion mapped reads (RPKM) ≥ 1], a marker pre-
viously shown to be expressed by deep-layer
excitatory neurons (33). By contrast, analysis
of snRNA-seq data suggested only sporadic co-
expression of these genes [10.8% of 6084 PCP4-
expressing cells; unique molecular identifier
(UMI) ≥ 1] in the adult human DFC. Subsequent

immunohistochemistry on independent speci-
mens confirmed the robust coexpression of these
genes in L1 of the prenatal cortex, but not in L1
or in other cortical layers of the adult cortex
(fig. S26). These data imply that the molecular
identities of many neuronal cell types are not
fully resolved before the end of mid-fetal de-
velopment and are likely malleable during early
postmitotic differentiation.
Next, we utilized our single-cell and single-

nucleus datasets to deconvolve bulk tissue mRNA-
seq samples and estimate temporal changes in
the relative proportions of major cell types in
the NCX. The combined analysis revealed the
cellular architecture of distinct neocortical areas
and their variations across development. We
observed temporal changes in cellular compo-
sition and maturational states, including the
most dramatic changes during a late fetal tran-
sition (Fig. 3, C to E). For example, transcriptomic
signatures for fetal excitatory neurons and fetal
interneurons were generally inversely correlated
with progenitor cell signatures during embryonic
and early fetal development, but fetal neuron
signatures nonetheless decreased across mid-
fetal to late fetal development despite a concom-
itant reduction in the progenitor cell signature,
an observation that was likely affected by our
dissection strategy [Fig. 3C, (22)]. Similarly, sig-
natures for adult excitatory neurons increased
rapidly across the late fetal period and early
infancy, coincident with the decrease in signa-
tures of fetal excitatory neurons and interneurons
(Fig. 3C). As expected, the molecular signatures
for early born, deep-layer excitatory neurons pre-
ceded those for late born, upper-layer excitatory
neurons (fig. S27). Transcriptomic signatures for
prenatal oligodendrocytes and prenatal astro-
cytes also began to emerge during mid-fetal pe-
riods and increased rapidly across the late fetal
transition and early infancy (Fig. 3C). Demon-
strating the robustness of these observations,
independent deconvolution using two alternate
fetal single-cell datasets (12, 26) yielded similar
results (figs. S27 and S30).
Given the increase in adult cell-type signatures

during W5, we next reasoned that the observed
decrease in interregional transcriptomic diver-
gence during late fetal periods and infancy may
reflect a synchronized transition from fetal to
more mature features of neural cells. Conse-
quently, we analyzed the variance in cell type–
specific signatures across neocortical areas, which
varies in accordance with their relative pro-
portion, and found that the maximum cell type
interareal variation through time recapitulated
the developmental cup-shaped pattern (Fig. 3D),
with large variation in the proportion of neural
progenitor cells and fetal excitatory neurons
(figs. S28 and S29). Beginning during early post-
natal periods, we observed increased proportions
and variance in the signatures of astrocytes and,
by adulthood, mature excitatory neurons (Fig.
3E). These observed temporal differences in the
magnitudes and variances of the relative pro-
portions of certain cell types and the global het-
erogeneity of the cell type composition at each

window at least partially explain the observed
pattern of interareal differences across develop-
ment. Gene Ontology (GO) enrichment analysis
using the top variant genes in each window, with
all genes expressed in eachwindowas background,
provided further support for these changes in cell
composition across areas and time. Commensurate
with the changes we observed in discrete cell
populations, biological processes—including
neurogenesis in early developmental windows
(W1 to W4), myelination in the perinatal window
(W5), and sensory and ion activity calcium-related
biological processes in later postnatal windows
(W7 toW9), among others—exhibited regional
variation in the global brain transcriptome (fig.
S31 and table S9). Similar patterns of inter-
regional variation involving discrete cell types
were also observed in the macaque neocorti-
cal transcriptome (34), indicating that these are
conserved and consistent features of prenatal
primate NCX.
Other lines of evidence also suggested pro-

nounced and qualitatively distinct regional dif-
ferences in myelination, synaptic function, and
neuronal activity. For example, although we
observed differences in the expression of genes
associated with these processes (10) across the
NCX (fig. S31 and table S9), TempShift, a Gaussian-
based model that allows the quantification of
temporal shifts in the trajectories of groups of
genes represented by their first principal compo-
nents (34), indicated that of these processes, only
genes associated with myelination displayed such
a shift (Fig. 4A). Conversely, perhaps reflecting
functional or areal diversity in cell subtypes, we
observed no similar temporal shift in the ex-
pression of genes associated with synaptogenesis
or neuronal activity, confirming these results
through reference to published posttranslational
analyses of myelinated fiber density (35) and
synaptic density (36) conducted across multiple
neocortical areas (Fig. 4B). Crucially, although
genes associated with these processes were ex-
pressed across the late fetal transition (Fig. 4C),
of the processes analyzed, only myelination con-
tributed to the increased interareal differences
we observed during this period (Fig. 4D). Sug-
gesting that these differences are a conserved fea-
ture of primate development, we also observed
similar areal differences in the transcriptional sig-
natures of oligodendrocytes in the macaque NCX.
Overall, these observations indicate that higher

levels of divergence during early prenatal and
later postnatal development reflect regional var-
iations in cell type composition, likely arising from
topographical variation in progenitor popula-
tions and neuron development during prenatal
ages and cell type and functional diversification
during later postnatal ages.

Spatiotemporal and multimodal integration

We next sought to assess temporal variation in
epigenetic signatures and their relationships to
gene expression, development, and biological
processes. Global DNA methylation profiling
revealed that most CpG loci were either hyper-
methylated [37.5%; beta value (b) ≥ 0.8] or
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hypomethylated (31.8%; b ≤ 0.2) in at least one
sample (fig. S32), but only about 10% of the
testedmethylation sites were progressively hyper-
or hypomethylated through prenatal windows,
postnatal windows, or both. Similarly, most
methylation sites also exhibited regional varia-

tion, with 64% of tested sites differentially meth-
ylated between at least two brain regions at
postnatal ages. Additionally, 16% of tested sites
were differentially methylated between at least
two neocortical areas. Conversely, most putative
promoters (66%) and a substantial proportion of

putative enhancers (43%) were not differentially
enriched between DFC and CBC at either fetal
or adult ages. However, a greater proportion of
putative enhancers [H3K27ac-enriched regions
not overlapping H3K4me3-enriched regions or
proximal to a transcription start site (TSS)]
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Fig. 4. Timing and temporal variation of gene expression associated
with key neurodevelopmental processes. (A) Temporal variation, as
determined by the TempShift algorithm (34), in the expression of genes
associated with myelination showed a broad gradient across the NCX and
other brain regions, whereas synaptogenesis showed only a shift between
brain regions (but not neocortical areas) and neuronal activity indicated
the distinct nature of the cerebellum. (B and C) Application of the
TempShift algorithm to previously published posttranslational analyses of

myelinated fiber density (35) (B) and synaptic density (36) (C) in multiple
neocortical areas yielded relationships between areas similar to those
observed in the transcriptome. (D) Expression of genes associated with
assorted biological processes highlights pronounced change during the
late fetal period and W5. (E) Variation in myelination-associated genes
peaks during W5, as evidenced by the standard deviation of the fitted
regional mean, driving interregional variation during this and neighboring
(W4 and W6) windows.
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were regionally (15%), temporally (17%), or spatio-
temporally (24%) enriched than putative pro-
moters (8, 14, and 12%, respectively). These
differences, which suggest a greater role for
enhancers relative to promoters in contributing
to differential spatiotemporal gene expression,

were selectively validated using quantitative
droplet digital polymerase chain reaction (ddPCR)
(fig. S10). We next explored correlations between
methylation, histone modifications, and gene
expression (figs. S32 to S34). In the adult, we
found that TSSs that were more highly meth-

ylated were associated with genes that were
expressed at low levels at the corresponding
age, and vice versa. These relationships were not
strongly indicated for methylation at other lo-
cations in the gene body (fig. S32). The presence
of CBC-enrichedH3K4me3 andH3K27acmarks in
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Fig. 5. Integration of gene expression and epigenetic regulation with
cell types and biological processes. (A) Fetal-active enhancers (top left)
were generally enriched for sites where methylation progressively increased
across postnatal ages and associated with genes whose expression was
higher during fetal development than adulthood and whose expression was
enriched in neurons as compared to glia. Conversely, adult-active enhancers
were enriched for sites exhibiting progressively lower methylation across
postnatal ages and depleted for associations with higher fetal gene
expression and expression in neurons. These enhancers were also enriched
for gene ontology terms generally involving neurons and glia, respectively. OR,
odds ratio. (B) Sites where methylation progressively increased across
postnatal ages and where methylation progressively decreased across
postnatal ages were generally enriched for fetal enhancers and genes whose
expression was enriched in neurons, or adult enhancers and genes whose
expression was enriched in glia, respectively, as well as related gene

ontology terms. (C) Modules identified through WGCNA were segregated
by regulation across brain regions, prenatal and postnatal gene expression
in the NCX, both, or neither. Spatiotemporal modules (right) were
enriched for modules that are themselves enriched for genes associated
with enhancers active in the fetal DFC, associated with sites under-
methylated in NeuN-positive (neuronal) cells, and/or enriched in neurons
(N-type associations). Temporal, nonspatial modules (second from left)
were enriched for modules that are themselves enriched for genes
associated with enhancers active in the adult DFC, associated with sites
undermethylated in non-NeuN-positive (non-neuronal) cells, and/or genes
enriched in glia (G-type associations). Modules exhibiting no spatial or
temporal specificity (left) were enriched for genes exhibiting sex-biased
gene expression across neocortical development. Full circles (gray)
indicate the proportion of modules in each category of modules exhibiting
their greatest rate of change in W1 through W9.
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the adult human brain also correlated strongly
with increased gene expression in CBC relative to
DFC (fig. S33), and vice versa. Similarly, putative
fetal-active and adult-active enhancers were as-
sociated with higher fetal or adult gene ex-
pression, respectively.
In addition to epigenetic effects on gene ex-

pression, we observed discrete relationships
between specific enhancers, methylation sites,
and cell type–specific signatures. For example,
enhancers identified during the fetal period
were enriched for methylation sites that were
progressively more methylated across postnatal
ages (post-up), whereas adult-active enhancers
were enriched for methylation sites that were
progressively less methylated across postnatal
ages (post-down) (P < 0.05, Fisher’s exact test)
[Fig. 5A and fig. S35, (22)]. Both post-up and
post-down sites were themselves depleted at
TSSs and enriched for sites undermethylated
in neurons [neuron undermethylated (NUM)
sites] and undermethylated in non-neurons (non-
NUM sites) (fig. S35). They were also enriched
for fetal and adult enhancers, respectively (Fig.
5B). Post-up sites were also enriched in both
neuron- and glia-enriched-genes, whereas post-
down sites were enriched only in glial genes
(Fig. 5B) (P < 0.05, Fisher’s exact test). Further
suggesting a relationship between enhancer ac-
tivity, methylation, and cell type, genes associated
with fetal-active enhancers, as well as those as-
sociated with differentially methylated regions
(DMRs) composed of post-up sites (22), were en-
riched for GO terms related to early events in
neural development—such as neurogenesis, cell
differentiation, and synaptic transmission—but
generally not for processes occurring later in
development (Fig. 5B and fig. S35). By contrast,
genes near adult-active enhancers and post-
down DMRs exhibited enrichment for postnatal
or adult processes including myelination and
axon ensheathment (P < 0.01, Fisher’s exact test)

(Fig. 5B and fig. S35). Taken together, these data
demonstrate relationships between gene ex-
pression and epigenetic modifications, includ-
ing methylation status and putative regulatory
elements, as well as signatures of specific cell
types and developmental programs.
We next sought further evidence that cellu-

lar dynamics contributed to the late fetal tran-
sition through the analysis of cell type– and
spatiotemporal-specific patterns of gene ex-
pression and epigenetic regulation. We curated
73 gene coexpression modules resulting from
weighted gene correlation network analysis
(WGCNA) according to spatial relationships be-
tween brain regions and the temporal relation-
ships of gene expression in the NCX across the
late fetal transition (fig. S36 and tables S10
and S11). We found 44 modules that showed
expression differences among regions in the
brain (spatial), 40 modules that showed expres-
sion differences between prenatal and postnatal
neocortical areas (temporal), 16 modules that
were neither spatially nor temporally dynamic,
and 27 modules that exhibited both spatial and
temporal differences (Fig. 5C). A significantly
greater than expected number of these spatio-
temporally dynamic modules (including modules
2, 10, 32, and 37) exhibited their greatest change
in neocortical expression from W2 through
W5 (P < 0.0118, hypergeometric test) (Fig. 5C,
fig. S37, and table S12). Genes whose expression
was enriched in excitatory neurons, genes asso-
ciated with putative fetal-active enhancers, and/or
genes associated with NUM sites—a selection
of characteristics we refer to collectively as neu-
ronal (N)–type associations—were also enriched
in spatiotemporal dynamic modules (P < 0.0029,
hypergeometric test) (Fig. 5C, fig. S37, and table
S12). Conversely, genes associated with adult-
active enhancers, methylation sites hypomethyl-
ated in non-NUM sites, and glial genes [glial
(G)–type modules or associations in Fig. 5C,

fig. S37 and table S12] were enriched among
the 13 modules where temporal (P < 0.0002,
hypergeometric test), but not spatial, specific-
ity was observed. These observations indicate
increased spatial diversity of neuronal cell types
relative to glial cell populations.
Analyses by sex revealed that modules en-

riched for the 783 genes exhibiting sex-differential
expression (sex-DEX) in at least two consecu-
tive windows in at least one brain region were
enriched amongmodules with no spatial or tem-
poral differential expression in the NCX (P <
0.0029, hypergeometric test) and depleted among
spatiotemporal modules (P < 0.0021, hypergeo-
metric test) (Fig. 5C and fig. S37). There were
four modules exhibiting temporal expression
differences in the NCX that were also enriched
for sex-biased genes, as well as glial and other
cell type–enriched markers, but these did not
represent a significant enrichment in sex-DEX
enriched modules among strictly temporal mod-
ules (P < 0.132, hypergeometric test). In addi-
tion, no module comprised of autosomal genes
exhibited persistent male or female dimorphism
across both prenatal development and later post-
natal ages such as adolescence or adulthood
(figs. S38 and S39); in cases in which an auto-
somal module was sex-DEX throughout devel-
opment, the sex exhibiting higher expression
reversed between early and late postnatal de-
velopment (fig. S39). This observation was up-
held when multiple thresholds were used for the
identification of sexual dimorphism (fig. S40).
Similarly, we identified no autosomal genes that
exhibited sexual dimorphism throughout devel-
opment in all brain regions or neocortical areas
(figs. S38 and S39).

Cellular and temporal convergence
of neuropsychiatric disease risks

Loci implicated in several neuropsychiatric dis-
orders have been identified through genome-wide

Li et al., Science 362, eaat7615 (2018) 14 December 2018 8 of 13

Enrichment

2

4

6

H
3K

27
ac

 p
ea

ks Adult

Infant

Fetal

D
F

C
-s

pe
ci

fic
C

B
C

-s
pe

ci
fic

Adult

Infant

Fetal

Depleted
Enriched

Corrected
Nominal
Non−significant

ASD ADHD SCZ MDD BD AD PD IQ Neurot HGT HBA1C

Fig. 6. Enrichment analysis for GWAS loci among putative regulatory
elements. Putative promoters and enhancers (H3K27ac peaks) specific
for DFC or CBC in the fetal, infant, or adult were enriched for SNP
heritability identified through partitioned LD score regression analysis from
GWASs for autism spectrum disorder [ASD, (40)], attention-deficit
hyperactive disorder [ADHD, (41)], schizophrenia [SCZ, (37)], major

depressive disorder [MDD, (42)], bipolar disorder [BD, (43)], Alzheimer’s
disease [AD, (38)], Parkinson’s disease [PD, (39)], IQ, (44), or neuroticism
[Neurot, (45)] but not for non-neural disorders or traits such as height
[HGT, (46)] or diabetes [HBA1C, (49)]. Solid color indicates significance
for Bonferroni adjusted P value, and faint color indicates nominal
significance at LD score regression P < 0.05.
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association studies (GWAS) and are enriched in
putative noncoding regulatory elements (29–31).
We sought to determine whether the propor-
tion of phenotypic variance explained by com-
mon single-nucleotide polymorphisms (SNPs)
in large neuropsychiatric GWAS (i.e., SNP heri-
tability) was enriched in the cis-regulatory ele-
ments we identified at W1, W4, W5, and W9 in
DFC and CBC. Toward this end, we collected
GWAS data concerning neuropsychiatric dis-
orders or personality traits including schizo-
phrenia (SCZ) from CLOZUK (37), Alzheimer’s
disease (AD) from IGAP (38), Parkinson’s dis-
ease (PD) (39), autism spectrum disorder (ASD)
(40), attention deficit hyperactivity disorder
(ADHD) from iPSYCH (41), major depressive
disorder (MDD) (42), bipolar disorder (BD) (43),
intelligence quotient (IQ) (44), and neuroticism
(45), as well as non-neural traits such as height
from GIANT (46), inflammatory bowel disease
(IBD) (47), total cholesterol levels (48), and an
endophenotype associated with diabetes (HBA1C)
(49). Using partitioned linkage disequilibrium
(LD) score regression analysis, we found that
SNP heritability in SCZ, IQ, and neuroticism
were exclusively enriched in DFC-specific, but
not CBC-specific, regulatory elements as iden-
tified by peak regions of H3K27ac activity. By
contrast, SNP heritability in AD or PD rendered
no significant associations, and the analysis on
ASD, ADHD, BD, andMDDwas only nominally
enriched or not enriched in putative region-
specific fetal enhancers [Fig. 6 and fig. S41, (22)].
Non-neural traits (such as height and HBA1C)
were also not enriched in either DFC- or CBC-
specific regulatory elements but were instead
enriched in regulatory elements active in the
two brain regions (fig. S41), indicating a gen-
eral enrichment of many of our tested GWASs
in H3K27ac regions when considering a set of
more ubiquitous regulatory regions.
After aggregating GWAS SNPs and identify-

ing candidate associated regions on the basis
of their P values and LD patterns in individuals
of northwest European ancestry (50), we next
leveraged partially overlapping Hi-C datasets,
derived from mid-fetal and adult NCX and
processed by two independent research groups
(51–53), as well as H3K27ac activity in the brain,
to develop two lists of genes putatively associated
with those GWAS-associated regions. To do
so, we initially populated both lists of disease-
associated genes by identifying TSSs overlapping
H3K27ac peaks that themselves overlapped a
GWAS significant region, as well as genes direct-
ly affected by GWAS significant variants within
the LD region, as predicted by EnsemblV78. We
next expanded these lists of disease-associated
genes by identifying TSSs that interact with
H3K27ac peaks overlapping GWAS significant
regions, excluding interactions that did not over-
lap with at least one H3K27ac peak at each end
or where peak-to-peak interactions were not
concordant in time and brain region. In the first,
less stringent list (list 1), a single interaction from
either of the two Hi-C datasets was sufficient to
associate a gene to a GWAS locus (table S13). For

the second, more stringent list (list 2), we ex-
cluded those genes whose only association to a
GWAS locus was via Hi-C interactions identified
in only one of the two Hi-C datasets (table S14).
We next sought to determine the cell types en-

riched for the expression of the high-stringency
genes implicated in neuropsychiatric disorders
or brain-based traits, using our prenatal scRNA-
seq and adult snRNA-seq datasets and match-
ing prenatal and adult datasets generated from
the macaque (34). We found numerous cell types
enriched for disease-associated loci in both
human and macaque (fig. S42). For example,
neocortical excitatory neurons were enriched
for the expression of genes we associated with
IQ in both the fetal and adult human as well as
the fetal and adultmacaque. However, we found
no other excitatory neuron populations in the
macaque AMY, STR, HIP, or thalamus enriched
for genes associated with IQ. Similarly, neural
progenitors in the prenatal macaque AMY,
but not progenitors in the prenatal macaque
HIP, thalamus, NCX, or STR, were enriched
for the expression of genes associated with
MDD, a finding especially intriguing given the
variable or potentially increased size of some
amygdalar nuclei in MDD patients (54, 55).
Similarly confirmatory was the enrichment of
SCZ risk genes in cortical excitatory neurons
(56), with enrichment also observed in embry-
onic and/or fetal progenitor cells and adult
cortical interneurons.
Analysis of gene coexpression modules found

that genes in the more-stringent early-onset
disease (ADHD, SCZ, and MDD) risk lists con-
verged on 7 of 73 coexpressionmodules, where-
as adult-onset disease (AD and PD) risk-gene
lists converged on five partially overlapping
modules (fig. S37 and table S12). Eight of these
10 total disease-associated modules (Fig. 7A)
exhibited spatiotemporal or temporal specific-
ity, and all modules exhibited their greatest
spatiotemporal change during eitherW2 orW5
(fig. S37). A significant number of modules asso-
ciated with adult-onset disorders were enriched
for signatures of glial gene expression (P < 0.0266,
hypergeometric test, table S12), and of particular
interest were modules ME3 and ME7, which, in
addition to glial signatures, were enriched for
non-NUM sites, adult-active enhancers, sex-DEX
genes, and AD-associated risk genes (Fig. 7A).
Another module of interest was ME37, a mod-

ule of 145 genes enriched for NUM sites and fetal
enhancers and whose expression was enriched
specifically in neurons as opposed to neural pro-
genitors or glia. ME37was also exceptional for its
disease association, as it was enriched for genes
associated with SCZ, IQ, and neuroticism but
not for non-neurological characteristics such
as height or a HBA1C-related trait (Fig. 7A). Com-
plementary module-based association analysis
with Multi-marker Analysis of GenoMic Annota-
tion (MAGMA), which tested for an enrichment
in association to disease specifically around genes
in any given module, confirmed enrichment for
SCZ, IQ, and neuroticism in ME37 [MAGMA P
values < 0.01; the false discovery rate (FDR) for

all traits and modules was <0.3] (table S11). At
the gene level, multiple genes in ME37 identi-
fied using our less stringent criteria for interac-
tion were associated with up to four or more
different traits and disorders, including MEF2C,
ZNF184, TCF4, and SATB2, all genes critical for
neurodevelopment and/or implicated in neuro-
developmental disorders (57–65) (Fig. 7, B and
C). We also found that ME37 was specifically
enriched in clusters of excitatory neurons in
the fetal and adult NCX (Fig. 7D), and further
analysis of adult excitatory neuron populations
identified in this study and an independent data-
base of adult single nucleus data (27) suggested
that this enrichment was selective for deep-layer
neocortical neurons (fig. S43).
As the ASD GWAS resulted in only 13 signif-

icant genes, eight of which were non-protein
coding, and because de novo germline muta-
tions are known to contribute to ASD risk (66),
we next developed two nonoverlapping lists of
neurodevelopmental disorders (NDDs) [ASD,
intellectual disability (ID), and developmental
delay (DD)]. The first list was comprised of 65
high-confidence ASD risk genes (hcASD) asso-
ciated with de novo mutations (66). The second
list included all ASD genes documented in the
SFARI database (http://gene.sfari.org) under cat-
egories “syndromic” or with scores from 1 to 4, as
well as an independent list of genes associated
with DD (67), with genes overlapping the hcASD
list removed. We found that these genes were
also significantly enriched in ME37 (FDR <
0.0001, Fisher’s exact test), and, commensurate
with the cell-type enrichment found in ME37,
the expression of genes in both of these lists
was also enriched in several clusters of fetal
and adult excitatory neurons identified in our
single-cell dataset (Fig. 7D). Medium spiny neu-
rons in the STR, a population that has also been
previously linked to ASD (68), were also enriched
for the expression of ASD risk genes in the pre-
natal macaque (Fig. 7D).
We finally studied the overlap betweenWGCNA

modules and modules significantly enriched in
differentially expressed genes in postmortem
brains from patients of SCZ, BD, and ASD (69).
Interestingly, we found little overlap between
modules enriched in genes exhibiting postmor-
tem differences in expression between SCZ, BD,
or ASD, as compared with neurotypical controls,
and modules enriched in GWAS risk genes for
these same disorders (P > 0.05, hypergeometric
test) (fig. S37). Emphasizing the necessity of study-
ing neurotypical brain development, these ob-
servations may suggest a decoupling between
the primary genetic causes of some neurological
or psychiatric disorders and second-order effects
manifesting as changes in gene expressionmonths
or years after disease onset.

Discussion

In this study, we have presented a comprehensive
dataset and a multiplatform functional genomic
analysis of the developing and adult humanbrain.
The presence of these multiple data modalities in
a unified resource, and largely from the same
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Fig. 7. Convergence
of risk for brain-
based traits and dis-
orders on discrete
coexpression mod-
ules and cell types.
(A) Genes associated
with disease risk
(right; light yellow
indicates neuro-
psychiatric disorder or
brain-based trait, and
dark yellow indicates
adult-onset disorder)
were identified by
integrating GWAS,
Hi-C, and H3K27ac
data and converged
on 10 WGCNA mod-
ules. Many of these
modules exhibited
dynamic expression
across time; the bold
rectangles in the left
panel indicate the
windows with greatest
rate of change. Many
were also enriched for
gene expression asso-
ciated with distinct
cell types (orange),
putative active
enhancers (green),
and/or sites under-
methylated in NeuN-
positive (NUM) or
NeuN-negative cells
(blue, non-NUM).
(B) Schematic high-
lighting genes in ME37
that were implicated by
our study in multiple
neuropsychiatric
disorders (ADHD, SCZ,
MDD, or BD) and neu-
rological traits (IQ or
Neurot) (list 1, light
blue; list 2, dark blue),
as well as neurodevel-
opmental disorder
(NDD) risk genes,
including two inde-
pendent lists of high-
confidence risk genes
associated with ASD
through de novo mu-
tations or copy number variants [dark blue, (66)] as well as ASD risk genes identified from the SFARI dataset (light blue, http://gene.sfari.org) or for developmental
delay (67). Genes implicated in only a single disorder or trait are not shown in this panel. (C) Network representation of ME37 showing connectivity between
genes based on Pearson correlation. Genes linked to NDDs or neurological characteristics in our study are indicated using either dark blue–shaded or light
blue–shaded hexagons, as in (B). The size of a given hexagon (or circle, indicating no association in this study) is proportional to the degree of each
gene under a minimum correlation value of 0.7. (D) Enrichment for genes in ME37 or two lists of ASD risk genes among the fetal and adult cell types
we identified from human NCX and multiple regions of the macaque (34) brain. For graphical representation, log10 P values are capped at 25. *Adult
macaque cells were classified into human adult clusters using Random Forest. NEP/RGC, neural epithelial progenitor/radial glial lineage; MSN, medium spiny
neurons; NasN, nascent neurons; GraN, granule neurons; PurkN, Purkinje neurons; IPC, intermediate progenitor cells; OPC, oligodendrocyte progenitor cells.
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tissue samples, allows the integration of infor-
mation spanning prenatal and postnatal human
brain development. Resource description and ac-
cess are available at development.psychencode.org
and www.brainspan.org.
Although transcriptomic differences between

distinct brain regions remain across time, they
are developmentally specified and exhibit an
overall cup-shaped pattern centered on a late
fetal transition after a period of high intra- and
interregional variation during embryonic and
early or mid-fetal development. Multiple analy-
ses of distinct transcriptomic features all con-
firm this transition begins well before birth. Our
complementary transcriptomic study of the de-
veloping rhesus macaque brain (34) also re-
vealed a similar global developmental pattern,
with a first transition beginning before birth,
indicating that this is a conserved feature of
catarrhine primate neurodevelopment and not
due to an artifact resulting from difficulties
acquiring samples from late fetal and early post-
natal development. Such a phenomenon is con-
sistent with previously observed differences in
transcriptomic and methylomic profiles of mid-
fetal and postnatal human NCX (17–20) and
coincident with processes involved in region-
specific cell type generation, differentiation, and
maturation (2). Crucially, this transition is nota-
bly distinct from previously reported phyloge-
netic hourglass-like patterns that occur during
the embryonic organogenetic period in several
invertebrate and vertebrate species (70, 71). More-
over, the developmental (ontogenetic) cup-shaped
pattern we observe coincides with an “evolution-
ary” (phylogenetic) cup-shaped pattern, in which
developmental periods exhibiting high levels
of interregional differences (for example, early
to mid-fetal periods) also exhibit less conser-
vation in gene expression patterns between hu-
man and macaque (34).
Among the processes that become prominent

during the late fetal period are astrogliogenesis,
synaptogenesis, dendritogenesis, and neuronal
activity. In contrast to a previous report of robust
areal differences in the progression of synapto-
genesis during the same time period in humans
(36), this and an accompanying study (34) found
that genes associated with these processes ex-
hibit largely synchronous expression trajectories
across the developing NCX in both humans and
macaque. However, myelination—which sharply
increases during late fetal development, peaks
after birth, and extends through childhood and
adolescence (72)—is temporally asynchronous.
This asynchronicity in oligodendrocyte develop-
ment and myelination is not apparent at the
level of oligodendrocyte progenitor cells (OPCs),
which suggests that the maturation of OPCs into
myelinating oligodendrocytes is a process with
a variable onset and pace across areas. Similar
observations were made in macaque (34), in-
dicating that this may be another conserved
catarrhine feature.
Transcriptomic variation may reflect sev-

eral distinct cellular and maturational reorgani-
zational events. For example, as first described

by Brodmann (73), an ontogenetic six-layered
Grundtypus foreshadows the adult NCX and
transiently transforms the entirety of the neo-
cortical plate beginning in the late fetal period,
or in our W5. Furthermore, consistent with the
extensive changes we observed in the cerebel-
lar transcriptome during late fetal development
and early postnatal ages, cerebellar granule cells,
a cell type that represents about two-thirds of all
neurons in the brain, are also generated pre-
dominately during this period (74). The late fetal
transition may therefore follow an inflection
point after which developmental and spatiotem-
poral transcriptomic variations are transiently
consolidated in advance of the emergence of
cellular and functional differences between adult
brain regions.
The mid-fetal period of high intra- and in-

terregional divergence that immediately pre-
cedes the late fetal transition also coincides with
a key developmental period previously associated
with the etiology of ASD and SCZ (63, 65, 75).
Consequently, understanding the developmental
and evolutionary history of this period may be
essential for understanding neuropsychiatric
disease. Integrating our multiple data modal-
ities with gene coexpression modules allowed us
to organize and characterize the whole-brain
developmental transcriptome and identify mod-
ules with dynamic spatiotemporal trajectories,
many of them showing a sharp late fetal tran-
sition, and enrichment in specific cell types, epi-
genetic activity, and disease-associated genes. Of
particular interest is ME37, a module displaying
the greatest rate of change in the NCXwithin the
late fetal transition and in which putative risk
genes for ASD, NDD, SCZ, IQ, and neuroticism
converged. Several of the genes in ME37 were
implicated by our study in multiple disorders
and traits and have been linked previously to
neurodevelopment and human disease. For ex-
ample,MEF2C controls activity-dependent expres-
sion of neuronal genes, including those linked
to synapse function and ASD (61, 63), andMef2c-
mutant mice display numerous behaviors remi-
niscent of ASD, ID, and SCZ (58). Similarly, TCF4
regulates key neurodevelopmental processes,
such as neurogenesis and synaptic plasticity,
DNA methylation, and memory function pro-
cesses (62, 64). Moreover, mutations in both
MEF2C and TCF4 result in intellectual disability
in humans (57, 59, 60). Numerous other genes in
this module are similarly involved in neurode-
velopment, have been implicated in human brain
disease, and are highly plausible disease-risk
genes and potentially therapeutic candidates.
For example, NR4A2, a gene encoding another
transcription factor in ME37 that we linked to
neuroticism and IQ, has been linked to ASD
and SCZ, among other disorders. Our study also
links the gene for the transcription factor TSHZ3
to neuroticism and IQ, and previous efforts have
linked murine Tshz3 to ASD and the fetal devel-
opment of cortical excitatory projection neurons
(76), a cell type and developmental period also
implicated in ASD (63, 65). Other genes in ME37,
such as SATB2, FEZF2, SOX5, and TBR1, play

critical roles in the development of cortical ex-
citatory projection neurons and are mutated in
NDDs (29–31, 65, 77, 78). Similarly, the popula-
tion of genes included in ME37, as well as genes
linked to ASD and NDD, also exhibit regional
and cell type–specific convergence in neocortical
excitatory neurons.Moreover, the identification of
ME37 and the overlap of genes in this module
with those implicated in ASD andNDD illustrates
how disease-association signals from common
variants unveiled by GWAS for any given neuro-
psychiatric disorder can identify genes that have
also been associated with the etiology of a differ-
ent disease through the study of de novo muta-
tions in patient populations (76). Although not
every gene in ME37 is likely to contribute to
neuropsychiatric disease etiology, the coinci-
dent enrichment within this module of genes
associated with multiple disorders or neurolog-
ical traits, along with the multitude of genes in
this module that are associated directly, suggests
that neuropsychiatric disease might be consid-
ered through a broader lens encompassing ad-
ditional aspects of brain dysfunction.
Interestingly, there is little overlap between

the risk gene–associatedmodules we identified
and modules enriched in genes that are differ-
entially expressed in postmortem brains of SCZ,
ASD, and BD, as compared to controls (69). This
comparison may help discriminate gene net-
works that are primary causes from those that
are secondary or reactive in these neuropsychi-
atric disorders while emphasizing the importance
of studying disease in the context of neurotypical
development.
Taken together, these observations demon-

strate the utility of this resource to perform
integrated analysis for the understanding of
brain development and function and for the rapid
interpretation of findings from neuropsychiatric
genomics.

Materials and methods summary

A full description of thematerials andmethods is
available in the supplementary materials. Brief-
ly, we precisely dissected multiple brain regions
(HIP, STR, AMY, cerebellum, thalamus, and 11
neocortical areas) in more than 60 postmortem
humanbrains ranging in age from5PCWto 64PY.
We then applied bulk tissue RNA-seq, scRNA-seq
and snRNA-seq, smRNA-seq, DNAmethylation
assay, or ChIP-seq to generate multimodal data-
sets, often from the same brain. After applying
stringent quality control checks and indepen-
dent analysis of each dataset, we performed in-
tegrated analyses to gain insights into human
brain development, function, and disease.
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