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Abstract
Genotype imputation is now routinely performed in genomic analysis. Reference panel size, that is, the number of haplotypes 
in the reference panel, has been well established to be one major driving factor of imputation accuracy. For that reason, 
huge efforts have been made worldwide to provide large reference panels, with the Haplotype Reference Consortium (HRC) 
being currently the largest available in the public domain. The imputation performance of HRC, whose major samples are 
Europeans, has been mainly evaluated in Europeans. We conducted whole-genome genotype imputation on two independ-
ent genome-wide genotyping datasets, one with 1000 European samples and the other with 1000 Han Chinese samples. We 
compared the results obtained using HRC with those using Phase III of the 1000 Genomes Project (1000G) reference panel. 
For the European dataset, using HRC improved imputation quality, especially for rare variants with minor allele-frequency 
(MAF) < 0.1%. However, 1000G demonstrates better performance in the Han Chinese dataset, in both imputation quality and 
number of well-imputed variants. We validated the performance of 1000G reference panel in a second, independent cohort 
of Han Chinese (N = 2402). Our study showcases the limitations of HRC for Han Chinese populations, strongly suggesting 
the necessity of building population-specific reference panels.

Introduction

Genotype imputation has now been routinely performed in 
genome-wide association studies (GWASs) to increase sta-
tistical power (Guan and Stephens 2008; Li et al. 2010a; 
Marchini et al. 2007), facilitate fine-mapping efforts (Liu 
et al. 2010) and enable meta-analysis of studies using dif-
ferent genotyping platforms (De Bakker et al. 2008). Con-
ceptually, genotype imputation methods work by identify-
ing haplotype segments shared between the study cohorts, 
typically genotyped on a commercial array that directly 
examines  105–106 single nucleotide polymorphisms (SNPs), 
and a reference panel such as those from the International 
HapMap Project (Frazer et al. 2007), the 1000 Genomes 
Project (Auton et al. 2015), Consortium on Asthma among 
African-ancestry Populations in the Americas (CAAPA) 
(Vergara et al. 2018), and the Haplotype Reference Consor-
tium (HRC) (McCarthy et al. 2016). Based on the inference 
regarding shared haplotype segments, imputation methods 
can estimate genotypes or genotype probabilities at  106–108 
untyped markers.

Previous studies have shown that genotype imputation 
accuracy increases with the size of the reference panel (Auer 
et al. 2012; Duan et al. 2013; Li et al. 2009; Marchini and 
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Howie 2010). The large numbers of SNPs and increased 
haplotype diversity would allow researchers to impute SNPs 
with higher confidence, especially SNPs with low minor 
allele frequencies (MAFs), which will later enhance statis-
tical power in subsequent association analysis. Therefore, 
large reference panels comprised of haplotypes from single 
or multiple populations have been built through international 
collaborations, including the HapMap Project (Frazer et al. 
2007), the 1000 Genomes Project (Auton et al. 2015), the 
Genome of the Netherlands Consortium (GoNL) (Genome 
of the Netherlands Consortium 2014), and Singapore 
Genome Variation Project (SGVP) (Teo et al. 2009), Finn-
ish (Fuchsberger et al. 2016), Icelandic (Gudbjartsson et al. 
2015), Sardinian (Sidore et al. 2015), and African (Vergara 
et al. 2018) population-specific panels. Some argue that ref-
erence panel size could be more important than ancestry/
ethnicity match between the reference panel and the study 
cohort for improving imputation accuracy (Marchini and 
Howie 2010a). Such argument has led to combining avail-
able datasets (mostly low-pass whole-genome sequencing 
data) from diverse ancestral sources. In 2015, the UK10K 
cohort project reported that the reference panel they built 
with 3,781 British samples produced higher quality than the 
commonly used 1000G reference panel, with greater gains at 
low-frequency variants (Huang et al. 2015). In addition, by 
combining the 1000G and the UK10K reference panels, the 
proportion of well-imputed variants with MAF 0.1%-0.5% 
in a North Chinese sample was further increased from 49.8 
to 61.8% (Chou et al. 2016).

The recently released HRC (http://www.haplo type-refer 
ence-conso rtium .org/) reference panel (HRC v1.1) contains 
a set of variants collected from 20 different studies. HRC 
contains 64,976 haplotypes at 39,235,157 SNPs with minor 
allele counts (MAC) ≥ 5 (McCarthy et al. 2016). Although 
HRC v1.1 has clearly demonstrated its advantages over 
the 1000G reference panel for imputation in individuals of 
European ancestry (McCarthy et al. 2016), it has been rarely 
evaluated for non-European populations. In this study, we 
evaluated the performance of HRC v1.1 in the Han Chinese 
population, with an emphasis on imputation quality. We 
imputed two real Han Chinese datasets using HRC v1.1. 
For comparisons, we also imputed a European dataset using 
HRC and all three datasets using the 1000G Phase III refer-
ence panel.

Materials and methods

Three real data sets

The first data set (referred to as Anhui) consists of 1132 
subjects of Han Chinese ancestry. These subjects are 
healthy controls recruited in multiple hospitals in China and 

genotyped with the Illumina Human 610-Quad BeadChips, 
as previously described (Zhang et al. 2009). The second data 
set (referred to as 58 BC) is the 1958 British Birth Cohort of 
3000 subjects genotyped by the Wellcome Trust Case–Con-
trol Consortium (WTCCC2) using the Illumina 1.2M array 
(Craddock et al. 2010). A third data set (referred to as Bei-
jing), used to validate our findings in the Anhui cohort, 
contains 2042 healthy participants from Beijing genotyped 
using the Affymetrix GeneChip Human Mapping 6.0 (Wu 
et al. 2011).

All data sets applied stringent quality controls (QC) on 
variants and samples. Only autosomal bi-allelic SNPs that 
have genotype call rate per sample and per variant > 95%, 
MAF > 1%, and no significant deviation from Hardy–Wein-
berg equilibrium (HWE) (P > 10−6) were retained. From 
each of the Anhui and 58 BC data sets, we randomly selected 
1000 unrelated samples with a pairwise genetic relationship 
coefficient less than 0.025. The genetic correlation matrix 
for each data set was estimated by GCTA v1.45 (Yang et al. 
2011) using common variants with MAF > 10%. Imputation 
was performed using the 324,162 QC + genotyped variants 
with consistent allele coding in the 58 BC data set and in the 
Anhui data set; in the validation study, imputation was car-
ried out using the 459,686 QC + genotyped variants shared 
between the 58 BC data set and the Beijing data set. Allele 
strand, position, and allele coding were all aligned and con-
sistent with the HRC and 1000G reference panels through 
using HRC or 1000G imputation preparation and checking 
tools (http://www.well.ox.ac.uk/~wrayn er/tools /).

Pre‑phasing and Haplotype‑based imputation

There are two publicly available imputation servers: Michi-
gan (https ://imput ation serve r.sph.umich .edu/) and Sanger 
(https ://imput ation .sange r.ac.uk/). All imputation in this 
study was conducted on the Sanger Imputation Server 
because it uses Positional Burrows-Wheeler Transform 
(PBWT) which supports efficient compression of large num-
bers of haplotypes (Durbin 2014). The Sanger Imputation 
Server provides both the HRC v1.1 and the 1000G reference 
panels. We used two pre-phasing methods, EAGLE v2 (Loh 
et al. 2016) and SHAPEIT v2 (Delaneau et al. 2013). The 
imputation performance was measured by mean imputation 
INFO r2 value (Li et al. 2010b; Marchini and Howie 2010). 
Statistical significance in mean differences was evaluated 
using paired t test.

Results

The HRC panel consists of 32,470 subjects with predomi-
nantly European ancestry and also includes all 2504 sub-
jects from the 1000 Genomes Project. The allele-frequency 

http://www.haplotype-reference-consortium.org/
http://www.haplotype-reference-consortium.org/
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differences of 30,556,873 bi-allelic SNPs shared by the HRC 
and the 1000G panels are relatively small in the European 
samples of both panels (Fig. S1). For the Anhui (Han Chi-
nese) and the 58 BC (European) data sets, using the HRC 
and 1000G reference panels resulted in 39,284,340 and 
82,303,958 imputed variants, respectively (Table 1 and S1). 
There were 48–58% of them well-imputed (INFO r2 ≥ 0.8) 
(Table 1 and S1). Regarding the 30,099,640 variants shared 
by both data sets, the imputation quality of the 58 BC data-
set of European samples was considerably higher using the 
HRC reference panel than using the 1000G reference panel 
(Fig. 1a), and the mean imputation r2 had a statistically 
significant increase from 0.60 to 0.71 (P = 2.2 × 10−6). The 

improvement was more profound for low-frequency (0.5% 
< MAF < 1%) and rare variants (MAF < 0.5%) than for com-
mon variants (MAF > 5%) (Fig. 1a and Table S2). When 
applying the two reference panels on the Anhui data set, 
however, the 1000G reference panel significantly outper-
formed the HRC reference panel (P = 2.2 × 10−6) regarding 
the mean imputation quality r2 of imputed variants shared 
between the HRC and 1000G panels (Fig. 1b).

The superior performance of the 1000G reference panel 
in the Anhui dataset remained when we changed the pre-
phasing methods from SHAPEIT v2 to EAGLE v2 (Fig. S2). 
We ran the same imputation pipeline on a second independ-
ent Chinese data set (Beijing) and achieved similar results 

Table 1  Summary statistics of imputed variants in the 58 BC and Anhui  populationsa

a The statistics in this table comes from the imputation using the pre-phasing approach of SHAPEIT v2
b Panel: reference panel
c N: total number of imputed variants
d N of variants within INFO Bin: number of imputed variant within the bin of imputation INFO  r2; the proportion is shown in parentheses
e Shared Variant: the shared imputed variants between outputs with the HRC and 1000G reference panels
f Mean INFO: mean imputation INFO r2 value; SD: standard deviation

Study Panelb Nc Number of variants within INFO Bin (%)d Shared  variantse

[0.3–0.5) [0.5–0.8) [0.8–1] N Mean INFO (SD)f

58 BC HRC 39,284,340 1,723,432 (4.4%) 4,553,934 (11.6%) 22,742,918 (57.9%) 30,099,640 0.71 (0.36)
1000G 82,303,958 5,233,553 (6.4%) 9,593,139 (11.7%) 39,593,513 (48.1%) 30,099,640 0.60 (0.36)

Anhui HRC 39,284,340 3,405,925 (9.7%) 5,225,074 (13.3%) 16,307,450 (41.5%) 30,099,640 0.55 (0.37)
1000G 82,303,958 6,563,591 (8.0%) 10,273,479 (12.5%) 36,233,411 (44.0%) 30,099,640 0.58 (0.36)

Fig. 1  Imputation performance of three reference panels in the 
58  BC and the Anhui cohorts (pre-phased by SHAPEIT v2). (a) In 
the 58 BC cohort of Europeans. b In the Anhui cohort of Han Chi-
nese samples. MAF minor allele  frequency, HRC the Haplotype 
Reference Consortium reference panel (release 1.1), 1000G the 

1000 Genomes Projects Phase III reference panel; UK10K + 1000G 
UK10K plus 1000 Genomes Project Phase III reference panel. This 
figure was plotted based on the imputation qualities for the over-
lapped 30,099,640 genetic variants in the imputation results of three 
reference panels. The y-axis indicates the mean imputation quality r2
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(Fig. 2). Lastly, we randomly masked the genotypes of 
100,000 common SNPs in both Anhui and Beijing data sets, 
one at a time, and imputed the masked genotypes using our 
imputation pipeline. We computed the Pearson r2 between 
the true and the imputed genotypes as a measure of imputa-
tion accuracy. Again, we observed the same pattern (Fig. 
S3).

Not only did the 1000G reference panel result in higher 
imputation qualities in the Han Chinese datasets, it also pro-
duced more and more well-imputed variants for both the 
Han Chinese population and the European population. The 
1000G reference panel contains much more SNPs than the 
HRC panel, 81,706,022 vs. 38,913,048 to be more specific. 
In particular, there are 10,053,291 East Asian population-
specific variants available in the 1000G panel, but absent 
in the HRC panel (Table S3). Thus, using the 1000G refer-
ence panel resulted in 2,217,856 and 2,929,358 variants with 
MAF ≥ 0.1% being additionally imputed in the 58 BC and 
the Anhui data sets, respectively; of these variants, 1,283,315 
and 1,127,653 were well-imputed with INFO r2 ≥ 0.8 (Fig. 3 
and Fig. S4). Admittedly, the HRC panel contains exclusive 
genetic sites too, but the number of exclusive variants is 
relatively small (only 8,373,325) and most of them (99.2%, 
8,305,075/8,373,325) are rare variants (MAF < 0.5%) (Fig. 
S5). The 1000G reference uniquely imputed variants contain 
1439 or 16.5% of the total 8,741 putative functional causal 
variants for autoimmune diseases (Farh et al. 2015), while 
only 11 or 0.13% of these variants were uniquely imputed 
using the HRC panel. The variants that were not imputed 
would be missed for downstream association analysis.

Discussion

The present study provides evidence for the utilities of the 
HRC and the 1000G reference panels in current genotype 
imputation practices but also raises cautions about the 

Fig. 2  Imputation performance of three reference panels in the Bei-
jing cohort (pre-phased by SHAPEIT v2). This figure was plot-
ted based on the imputation qualities for the overlapped 30,099,640 
genetic variants in the imputation results of three reference panels. 
The y-axis indicates the mean imputation quality r2

Fig. 3  Distribution of additional imputed variants in the 1000 
Genomes Project reference panel. a In the 58  BC cohort of Euro-
peans; b In the Anhui cohort of Han Chinese samples. MAF minor 

allele  frequency, r2  imputation INFO r2 value. The SHAPEIT v2 
was used to pre-phase the haplotype before genomic imputation. The 
study-specific MAF was used to group genetic variants in this figure
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application of the HRC panel in the Han Chinese popula-
tion. Genotype imputation as a statistical technique has been 
routinely adopted in GWASs. The choice of reference panel 
is crucial for imputation accuracy, as well as the number and 
the spectrum of imputed variants, which subsequently influ-
ence downstream analysis. Some study claims that reference 
panel size could be more important than ancestry similar-
ity between the study samples and the reference samples 
for improving imputation accuracy (Howie et al. 2011). For 
that reason, many recent efforts have been made to increase 
the size of reference panels by merging existing data sets 
regardless of the samples’ ancestries. As the most recent 
and the largest reference panel, HRC v1.1 resulted in more 
accurate imputation for European samples than panels such 
as 1000G, with greater accuracy at low-frequency variants 
(McCarthy et al. 2016).

Our independent imputation study on the 58 BC cohort 
of European samples confirmed the above findings. When 
we added UK10K samples to the 1000G reference panel or 
used the HRC reference panel that has much more Euro-
pean samples than the 1000G panel, the imputation qualities 
of variants across a wide span of MAFs were remarkably 
improved. However, for the Chinese samples, we found the 
1000G reference panel performed significantly better than 
the HRC reference panel, in terms of both imputation quality 
and the number of well-imputed variants, and such outper-
formance was consistent across the two Chinese cohorts we 
attempted. Although the underlying reasons are yet to be 
elucidated and beyond the scope of this paper, we speculate 
the phenomenon might be caused by the haplotype phasing 
biased against Chinese samples due to the predominance of 
Europeans in the HRC panel or the relatively low variant 
density of the HRC panel compared to the 1000G panel. If 
inaccurate phasing was the sole problem, HRC would out-
perform 1000G on all counts in imputing the 58 BC cohort, 
as it contains much more European samples and probably 
more European-specific haplotypes. However, our study 
showed that imputation with the 1000G reference panel 
produces more well-imputed variants not only for the two 
Chinese cohorts, but also for the European cohort. Since 
the HRC panel only kept variants with minor allele counts 
great than 5, a large number of rare genetic variants, par-
ticularly non-European population-specific SNPs, could be 
underrepresented in or excluded from the HRC panel, but 
well represented in the 1000G panel. We demonstrated that 
a lot more functional causal variants for autoimmune dis-
eases would be missed in genotype imputation using the 
HRC reference panel than using the 1000G panel. During 
the comparison, we used the SNPs shared by the 58 BC and 
the Anhui datasets as backbone for genotype imputation to 
avoid introducing bias through the SNP density difference of 
the datasets being imputed (Nelson et al. 2013). It is worth 
mentioning that both HRC and 1000G did a less satisfactory 

job on imputing Chinese samples than they did on imputing 
European samples. As shown in Fig. 1, the best imputation 
qualifies achieved for variants with MAF ≥ 5% in the Chi-
nese cohort was onefold lower than in the European cohort.

Based on these results, we have a few suggestions for 
future genotype imputation practices. First, when imputing 
samples with European ancestry, we would recommend the 
HRC panel for higher imputation quality, and the 1000G 
reference panel for a larger number of imputed variants. Sec-
ond, for imputation of Chinese samples, we would recom-
mend using the 1000G Phase III  reference panel over HRC 
v1.1. Using the much larger HRC panel would incur substan-
tially more computational costs without noticeable gains. An 
on-going effort of Phase 2 of HRC will contain a large scale 
of whole-genome sequencing data for Chinese population 
(Cai et al. 2017). Improved imputation accuracy would be 
expected in genotype imputation for Chinese cohorts using 
the new phase of HRC reference panel. In addition, we also 
call for collaborations among government, academia, and 
industry to build a large-scale Chinese population-specific 
reference panel. The benefits of a population-specific ref-
erence panel have been suggested in genotype imputation 
despite the availability of HRC reference panel (Zhou et al. 
2017). This is feasible as more and more whole-genome 
sequencing data of Chinese samples have been generated 
and made available (Cai et al. 2017). A large Chinese spe-
cific reference panel would not only improve the overall 
imputation accuracy, but also provide good estimation for 
population-specific variants.
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