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Summary
Chromatin spatial organization (interactome) plays a critical role in genome function. Deep understanding of chromatin interactome

can shed insights into transcriptional regulation mechanisms and human disease pathology. One essential task in the analysis of chro-

matin interactomic data is to identify long-range chromatin interactions. Existing approaches, such as HiCCUPS, FitHiC/FitHiC2, and

FastHiC, are all designed for analyzing individual cell types or samples. None of them accounts for unbalanced sequencing depths and

heterogeneity among multiple cell types or samples in a unified statistical framework. To fill in the gap, we have developed a novel sta-

tistical framework MUNIn (multiple-sample unifying long-range chromatin-interaction detector) for identifying long-range chromatin

interactions from multiple samples. MUNIn adopts a hierarchical hidden Markov random field (H-HMRF) model, in which the status

(peak or background) of each interacting chromatin loci pair depends not only on the status of loci pairs in its neighborhood region

but also on the status of the same loci pair in other samples. To benchmark the performance of MUNIn, we performed comprehensive

simulation studies and real data analysis and showed that MUNIn can achieve much lower false-positive rates for detecting sample-spe-

cific interactions (33.1%–36.2%), and much enhanced statistical power for detecting shared peaks (up to 74.3%), compared to uni-sam-

ple analysis. Our data demonstrated that MUNIn is a useful tool for the integrative analysis of interactomic data frommultiple samples.
Introduction

Chromatin spatial organization plays a critical role in

genome function associated with many important biolog-

ical processes, including transcription, DNA replication,

and development.1,2 Recently, the ENCODE and the

NIH Roadmap Epigenomics projects have identified mil-

lions of cis-regulatory elements (CREs; e.g., enhancers, si-

lencers, and insulators) in mammalian genomes. Notably,

the majority of genes are not regulated by CREs in one-

dimensional (1D) close vicinity. Instead, by forming

three-dimensional (3D) long-range chromatin interac-

tions, CREs are able to regulate the expression of genes

hundreds of kilobases away. Deep understanding of chro-

matin interactome can shed light on gene regulation

mechanisms and reveal functionally causal genes underly-

ing human complex diseases and traits. Comprehensive

characterization of chromatin interactome has become

an active research area since the development of Hi-C

technology in 2009.3 Since then, Hi-C and other chro-

matin conformation capture (3C)-derived technologies

(e.g., capture Hi-C, ChIA-PET, PLAC-Seq, and HiChIP)

have been widely used, and great strides have been
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made to link chromatin interactome to mechanisms of

transcriptional regulation and complex human diseases,

including autoimmune diseases, neuropsychiatric disor-

ders, and cancers.4–7

Recent studies have shown that interactomes are highly

dynamic across tissues, cell types, cell lines, experimental

conditions, environmental triggers, and/or biological sam-

ples.8,9 Better characterization of such interactomic dy-

namicswill substantiallyadvanceourunderstandingof tran-

scription regulation across these conditions. To achieve this

goal, one could use methods developed for single samples

(for brevity, we use samples to denote multiple datasets

across tissues, cell types, cell lines, experimental conditions,

etc.). However, such uni-sample analysis would fail to

borrow information across samples, thus losing information

for shared features as well as resulting in false positives for

sample-specific features. Presumably, as shown inexpression

quantitative trait loci (eQTL) analysis, shared (amongat least

two cell types) features typically contribute to a considerable

proportion and increase with the number of cell types

measured.10 For delineating shared and sample-specific fea-

tures, Bayesian modeling has been shown repeatedly to

boast the advantage of adaptively borrowing information,
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Figure 1. Statistical schematics of MUNIn
InMUNIn, the chromatin interaction status (illustrated with ques-
tion marks) of each loci pair (i, j) in a sample depends on not only
the status of loci pairs in its neighborhood region (red blocks) but
also the status of the same loci pair in other samples. Specifically,
we model sample dependency by a, where the status of the (i, j)th
pair in sample k, zijk depends on the status of the same (i, j)th pair
in the other K � 1 samples, given by the formula shown in the
figure. Dependency on neighboring loci pairs is captured by the
hierarchical Ising prior. See Material and methods and Supple-
mental section 1 for details.
such that little power loss incurs for sample-specific features,

while power todetect shared features increases substantially,

as demonstrated in many genomic applications, including

gene expression, genome-wide association studies (GWASs),

chromatin immunoprecipitation sequencing (ChIP-seq),

population genetics, and microbiome.11–15

In this paper, we focus on the identification of statisti-

cally significant long-range chromatin interactions

(‘‘peaks’’ for short) from Hi-C data generated from multi-

ple samples. The primary goal is the detection of both

shared (i.e., shared by more than one sample) and sam-

ple-specific peaks. Existing Hi-C peak calling methods,

such as HiCCUPS,16 FitHiC/FitHiC2,17,18 and FastHiC,19

are all designed for calling peaks from single sample.

None of them is able to account for unbalanced

sequencing depths and heterogeneity among multiple

samples in a unified statistical framework. To fill in the

methodological gap, we propose MUNIn (multiple-sample

unifying long-range chromatin interaction detector) for

multiple-sample Hi-C peak calling analysis. MUNIn

adopts a hierarchical hidden Markov random field

(H-HMRF) model, an extension of our previous HMRF

peak caller.20 Specifically, in MUNIn, the status of each

interacting chromatin loci pair (peak or background) de-

pends not only on the status of loci pairs in its neighbor-

hood region but also on the status of the same loci pair in

other closely related samples (Figure 1). Compared to uni-

sample analysis, the H-HMRF approach adopted by

MUNIn has the following three key advantages: (1)

MUNIn can achieve lower false-positive rates for the

detection of sample-specific peaks, (2) MUNIn can achieve

high power for the detection of shared peaks, and (3)
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MUNIn can borrow information across all samples pro-

portional to the corresponding sequencing depths. We

have conducted comprehensive simulation studies and

real data analysis to showcase the advantages of MUNIn

over other Hi-C peak calling approaches.
Material and methods

Overview of statistical modeling of MUNIn
Let xijk and eijk represent the observed and expected chromatin

contact frequency spanning between bin i and bin j in sample

ð1%i < j%N; 1%k%KÞ, respectively, where N is the total num-

ber of bins and K is the total number of samples. eijk is pre-calcu-

lated by FitHiC.17 Briefly, FitHiC used a non-parametric approach

to estimate the empirical null distribution of contact frequency

(detailed in Supplemental section 1). We assume that xijk follows

a negative binomial (NB) distribution with mean mijk and over-

dispersion fk:

log
�
mijk

�¼ log
�
eijk

�þ I
�
zijk ¼1

�
qk (1)

Here zijk˛f�1;1g is the peak indicator for bin pair ði; jÞ, where

zijk ¼ 1 indicates ði; jÞ is a peak in sample k, and zijk ¼ �1 otherwise.

qk is the signal-to-noise ratio in sample k. In other words, if ði; jÞ is a
peak in sample k, xijk follows the NB distribution NBðeijk �expfqkg;
fkÞ. If ði; jÞ is a background (i.e., non-peak) in sample k, xijk follows

the NB distribution NBðeijk;fkÞ.
Then, we use a full Bayesian approach for statistical inference

and assign priors for all parameters ðzijk; qk; fkÞ. Specifically, we

adopt a hierarchical Ising prior to simultaneously modeling spatial

dependency among zijks within the same sample (i.e., for zijk,

borrowing information from zi0 j0k : f
��i0 � i

��þ��j0 � j
�� ¼ 1g) and the

dependency across samples for the same pair (i.e., borrowing infor-

mation from zijk0 with k0˛f1;.; k � 1; kþ1;.;Kg). First of all, to
model spatial dependency of peak indicator within sample k, we

assume that:

p
��

zijk
�
1%i< j%N

���jk;gk

�
¼Cðgk;jkÞ

� exp
8<
:gk

X
1%i< j%N

I
�
zijk ¼1

�þjk

X
i0�ijþjj0�jj¼1

zijk � zi0 j0k

9=
;; (2)

where jk > 0 is the inverse temperature parameter modeling the

level of the spatial dependency in sample k, gk models the peak

proportion in sample k, and Cðgk;jkÞ is the normalization con-

stant. In addition, we model the heterogeneity of peak status for

a given bin pair ði; jÞ among multiple samples, where the

vector zij$bðzij1; zij2;.; zijKÞ can take 2K possible configurations.

We model them using a multinomial distribution Multð1; aÞ
bMultð1; af�1;�1;.;�1g; af1;�1;.;�1g;.; af1;1;.;1gÞ. Here af�1;�1;.;�1g
is the probability that the ði; jÞ pair is background in all K samples,

af1;�1;.;�1g is the probability that the ði; jÞ pair is a peak in the first

sample but background in all the other K � 1 samples, and simi-

larly af1;1;.;1g is the probability that the ði; jÞ pair is a peak in all

K samples. Let nzij$ represent the frequency of a specific configura-

tion azij$. The joint distribution is as follows:

p
��

zij$

�
1%i< j%N

���a�¼
Y

zij$˛f�1;1gK
a
nzij$
zij$ : (3)



In this prior distribution, the peak probability of the ði; jÞ pair in
sample k ðzijkÞ depends on the status of the same ði; jÞ pair in the

other K � 1 samples:

p
�
zijk

��zij;�k;a
�¼ afZij1 ;.;Zijk ;.;ZijKg

afZij1 ;.;Zijk ;.;ZijKg þ afZij1 ;.�Zijk ;.;ZijKg
: (4)

From the Bayes formulation, we have the joint posterior distribu-

tion as follows:

P
�
zijk; qk;fk;jk;gkjxijk; eijk

�
fP

�
xijk

��eijk; zijk; qk;fk

� � P�zijk��jk;gk;a
�

� PriorðqkÞ � PriorðfkÞ � PriorðjkÞ � PriorðgkÞ:
(5)

We used uniform prior distributions for qk; fk;jk;gk, which were

initialized from estimates from uni-sample analysis in our imple-

mentation (Supplemental sections 2 and 3). One key computa-

tional challenge is that in the proposed hierarchical Ising prior,

the normalization constant involving jk, gk, and a is computa-

tionally prohibitive, since evaluating such a normalization con-

stant requires evaluating all 2K�NðN�1Þ=2 possible configurations

of the peak indicator fzijkg. To address this challenge, we adopt

a pseudo-likelihood approach using the product of marginal like-

lihood to approximate the full joint likelihood. We have shown

that such approximation leads to gains in both statistical and

computational efficiency.19 Let fz�i;�j;kg denote the set

fzi0 j0k
���i0 si; j0 sjg and fzij;�kg denote the set fzijk0

��� k0 skg; the pos-

terior probability can be approximated by:

p
��

zijk
���jk;gk;a

�
f

YK
k¼1

Y
1%i< j%N

p
�
zijk

���z�i;�j;k

�
;jk;gk

� � p�zijk��
��

zij;�k

�
;a

�
: (6)

We use the Gibbs sampling algorithm to iteratively update each

parameter. Details of statistical inference can be found in Supple-

mental section 2.

Simulation framework
To benchmark the performance of MUNIn, we first performed

simulation studies with three samples, where each sample repre-

sents a cell type, considering two scenarios: (1) all three samples

had the same sequencing depth, and (2) the sequencing depth in

sample 3 was half of that in sample 1 and sample 2. Each simu-

lated sample consisted of a 100 3 100 contact matrix. To ensure

the three samples were symmetric, we first simulated the peak

status for one ‘‘hidden’’ sample using the Ising prior, where the

parameter jk was set to 0.2 and gk was set to {0, �0.02, �0.05,

�0.2, �0.4}, respectively. 10,000 Gibbs sampling steps were car-

ried out to update peak status. Let p0 ¼ Pðzijk ¼ 0
��zijk0 ¼ 0Þ and

p1 ¼ Pðzijk ¼ 1
��zijk0 ¼ 1Þ denote the level of dependence across

samples. The peak status of the three testing samples was simu-

lated from the hidden sample following three different sample-

dependence levels, p0 ¼ p1 ¼ 0:5; 0:8; or 0:9, where p0 ¼ p1 ¼
0:5 indicates the peak status of three samples are independent,

while p0 ¼ p1 ¼ 0:8 or 0:9 indicates the peak status of three sam-

ples is of median and high correlation. To simulate Hi-C data

with equal sequencing depth, we specified expected contact fre-

quency for the bin pair ði; jÞ to be inversely proportional to the

genomic distance between two interacting anchor bins,

following the same formula in each sample k (note the formula

does not depend on k):
H

eijk ¼ 40

j� i
ð1 < i < j < 100Þ

To simulate Hi-C data with different sequencing depths, we

defined the expected count for bin pair ði; jÞ in sample 3 as:

eij3 ¼ 20

j� i
ð1 < i < j < 100Þ

Next, we simulated the observed count from a negative binomial

distribution:

NB

	
eijk exp



qk
�
Zijk þ 1

�
2

�
;fk

�

Here, the signal-to-noise ratio parameter qk and the over-disper-

sion parameter fk were set to be 1.5 and 10.0, respectively.

Simulations under each scenario were performed 100 times with

different random seeds. We then applied both MUNIn and uni-

sample analysis using a single-sample HMRF model (detailed in

Supplemental section 3) on simulated data of each scenario. The

peak status was identified from the simulated data using both

MUNIn and uni-sample methods and compared to the ground

truth. Receiver operating characteristic (ROC) curve was computed

using the pROC package.21 Furthermore, the performance of MU-

NIn was also evaluated according to the overall percentage of error

in peak status zijk and the power and type I error for four types of

peak status (i.e., shared, sample1-specific, sample2-specific, and

sample3-specific peaks), respectively.
Performance evaluation
To evaluate the performance of MUNIn in real data, we first

compared MUNIn to uni-sample analysis to two biological repli-

cates of Hi-C data from human embryonic stem cells at 10 kb res-

olution22 (Table S1), where the peak status is expected to be highly

similar. For each biological replicate, both methods were imple-

mented for peak calling within each topologically associating

domain (TAD) of chromosome 1, where TADs were directly ob-

tained from the original paper defined by the insulation score.22

To measure the consistency between these two replicates, we

computed adjusted Rand index (ARI)23 for the peak status within

each TAD.

Additionally, we also analyzed Hi-C data from two different cell

lines, GM12878 and IMR90, at 10 kb resolution16 (Table S1), again

using both MUNIn and uni-sample analysis. Analyses were per-

formed with each TAD in all chromosomes. Since some TAD

boundaries are different between GM12878 and IMR90, we first

defined the overlapped TAD regions as the shared TADs between

two samples and only retained the shared TADs spanning at least

200 kb for the downstream analysis. Sample dependency was in-

ferred for each TAD based on the results of uni-sample analysis.

Since there is no ground truth for peaks, we selected significant

chromatin interactions (p value < 0.01 and raw interaction fre-

quency > 5) identified by promoter-capture Hi-C (PC-HiC)9 in

GM12878 and IMR90 cells as the working truth (Table S1). Since

significant interactions identified from PC-HiC data are enriched

of promoters, we filtered our significant peaks to only remaining

bin pairs where at least one of two bins overlaps with a promoter.

The detailed evaluation framework is in Supplemental section 4.

We did additional performance evaluation by running MUNIn

by a sliding window approach instead of shared TADs, and we

also performed peak calling on samples under different conditions

from mouse embryonic stem cells for both wild-type (without
uman Genetics and Genomics Advances 2, 100036, July 8, 2021 3



A

C D

B Figure 2. Performance comparison be-
tween MUNIn and uni-sample analysis in
the simulation data where all three sam-
ples have equal sequencing depth
(A) The overall error rate (denoted as ‘‘%
error’’) in peak identification in each sam-
ple using MUNIn and uni-sample analysis.
On each box, the line in the middle is the
median across simulations, the lower edge
of the box is the 25th percentile, the upper
edge of the box is the 75th percentile, the
whiskers extend to the smallest and largest
values that are not considered outliers, and
the outliers are plotted as dots.
(B) ROC curves for shared peaks identified
by MUNIn and uni-sample analysis.
(C) Power for the shared peaks identified
using MUNIn and uni-sample analysis.
(D) False-positive rate for the shared peaks
identified by MUNIn and uni-sample
analysis.
CTCF depletion) and after CTCF deletion resolution24 (Table S1;

Supplemental section 5).
Results

Simulation results

To evaluate the performance of MUNIn, we first conducted

simulation studies with three samples, considering two

scenarios: (1) all three samples have equal sequencing

depth, and (2) the sequencing depth in sample 3 is half

of that in sample 1 and 2. In both scenarios, MUNIn out-

performs uni-sample analysis (Figures 2 and 3; Figures

S1–S4). In the first scenario, when all three samples are in-

dependent ðp0 ¼ p1 ¼ 0:5Þ, MUNIn achieves comparable

results to uni-sample analysis, where the medians of the

overall error rate (denoted as ‘‘% error’’) in peak identifica-

tion of MUNIn range from 16.3%–16.4% and those of uni-

sample analysis are 17.2%–17.3% (Figure 2A). With

increased sample dependency, MUNIn achieves lower %

error than uni-sample analysis. When the sample depen-

dency becomes high, MUNIn reduces % error by approxi-

mately 30.3% on top of uni-sample results (11.9%–12.0%

for MUNIn and 17.0%–17.2% for uni-sample analysis)

(Figure 2A). We then assessed the power and type I error

for detecting shared and sample-specific peaks by MUNIn

and uni-sample analysis. When three samples are highly

correlated, MUNIn achieves substantial power gain in

shared peaks across samples compared with uni-sample

analysis (85.9% versus 54.1%; Figure 2C), at the cost of a
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slight increase in error rate (20.6%

versus 9.1%; Figure 2D). In addition,

MUNIn reduces the type I error in call-

ing sample-specific peaks by 33.1%–

34.3% on the top of uni-sample re-

sults (45.5%–46.3% versus 69.3%–

69.5%; Figure S1A), at the cost of po-
wer loss (36.4%–37.1% versus 57.3%–58.5%; Figure S1B).

The ROC curves showed that MUNIn better detects shared

peaks than uni-sample analysis (Figure 2B), and these two

methods performed comparably in sample-specific peaks

(Figure S2).

Furthermore, when three samples are with different

sequencing depths, we observe consistent patterns that

MUNIn outperforms uni-sample analysis, especially for

sample 3 with shallower sequencing depth (Figure 3; Fig-

ures S3 and S4). Similar to scenario 1, the ROC curves

show that MUNIn exhibits better calling in shared peaks

(Figure 3B). Consistently, MUNIn substantially improves

the power in calling shared peaks than uni-sample anal-

ysis (84.0% versus 48.2% byMUNIn and uni-sample anal-

ysis, respectively) with a slight increase of type I error

(22.7% versus 11.4%) (Figures 3C and 3D). More impor-

tantly, MUNIn achieves 36.2% reduction of % error for

sample 3 with shallower sequencing depth on the top of

uni-sample analysis results with high sample dependence

(15.7% versus 24.6%; Figure 3A). MUNIn also attains

lower type I error in calling sample-3-specific peaks

(51.1% versus 74.4%) with a loss in power (26.7% versus

48.1%) (Figures S3A and S3B). These results indicate that

MUNIn can accurately identify peaks in the shallowly

sequenced sample by adaptively borrowing information

from deeply sequenced samples. We further evaluated

the robustness and scalability of MUNIn using simulation

data where we evaluated results with non-zero gks and

increased sample size (Supplemental section 5; Figures

S5 and S6).



A

C D

B Figure 3. Performance comparison be-
tween MUNIn and uni-sample analysis in
the simulation data where the sequencing
depth in sample 3 is half of that in sample 1
and 2
(A) The overall error rate (denoted as ‘‘% er-
ror’’) in peak identification in each sample
using MUNIn and uni-sample analysis. On
each box, the line in the middle is the me-
dian across simulations, the lower edge of
the box is the 25th percentile, the upper
edge of the box is the 75th percentile, the
whiskers extend to the smallest and largest
values that are not considered outliers, and
the outliers are plotted as dots.
(B) ROC curves for shared peaks identified
by MUNIn and uni-sample analysis.
(C) Power for the shared peaks identified us-
ing MUNIn and uni-sample analysis.
(D) False-positive rate for the shared peaks
identified by MUNIn and uni-sample
analysis.
Real data analysis

To assess the performance of MUNIn in real data, we

compared the consistency of peak status between two

replicates of human embryonic stem cells betweenMUNIn

and uni-sample analysis. Comparatively, the ARI values of

MUNIn are significantly higher than those of uni-sample
Figure 4. Adjusted Rand index (ARI) showing the consistency of
peak calling by MUNIn and uni-sample analysis between the two
replicates of human embryonic stem cells
Each triangle represents a TAD. The x and y axes show ARI of uni-
sample analysis and MUNIn, respectively.

Human Genetics and Ge
analysis (Wilcoxon test, p value <

2.2e�16; Figure 4; Figure S7). Specif-

ically, the median value of ARI in MU-

NIn is 0.993, which shows 48.9%

improvement over that of uni-sample
analysis (Figure S7). Our results suggest improved consis-

tency between two replicates by MUNIn, compared to

uni-sample analysis.

We further compared the accuracy of peak calling in

GM12878 and IMR90 cell lines between MUNIn and uni-

sample analysis. In total, 439,412 and 432,394 shared peaks

were detected by MUNIn and uni-sample analysis, respec-

tively, 376,658 of which were shared by both methods

(85.7% and 87.1% of the shared peaks identified byMUNIn

and uni-sample analysis, respectively) (Figure S8A). 217,400

and 82,614 GM12878- and IMR90-specific peaks were iden-

tifiedbyMUNIn,while 315,849 and141,708GM12878- and

IMR90-specific peaks were detected by uni-sample analysis.

Among them, 77.5% and 75.7% of GM12878- and IMR90-

specfic peaks called by MUNIn were also identified by uni-

sample analysis (Figures S8B and S8C). The ROC curves

show that MUNIn obtains more accurate results for both

GM12878- and IMR90-specific peaks (Figures 5A and 5D),

while its performance in shared peaks is comparable to uni-

sample analysis (Figure S9). The area under the curve

(AUC) forGM12878- and IMR90-specificpeaksofMUNIn in-

creases by 3.0%and 4.5%, respectively, on top of uni-sample

analysis (Figures 5A and 5D). One example of a GM12878-

specific peak exclusively identified by MUNIn is shown in

Figure 5B (Figure S10). One bin of this pair is overlapped

with the promoter of ZNF827 (transcription start site [TSS]

5 500 bp), while the other is overlapped with a known

typical enhancer in GM12878 cells (Figure S11).26 In addi-

tion, ZNF827 showed higher gene expression in GM12878

cells than in IMR90 cells (Figure 5C; GTEx Portal), which

further suggests the potential role of this GM12878-specific
nomics Advances 2, 100036, July 8, 2021 5
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Figure 5. Performance comparison between MUNIn and uni-sample analysis in the Hi-C data of GM12878 and IMR90 cell lines
(A) ROC for GM12878-specfic peaks identified by MUNIn and uni-sample analysis.
(B) Heatmap showing one example of the GM12878-specific peaks in GM12878 (left) and IMR90 (right) Hi-C data. One bin of this pair
(highlighted in black) is overlapped with the promoter of ZNF827 (transcription start site [TSS]5 500 bp), while the other is overlapped
with a known typical enhancer (chr4:146,975,287–146,985,319) in GM12878 cells. Gene model is obtained from WashU epigenome
browser.25

(C) Gene expression profiles of ZNF827 in GM12878 and IMR90 cells (GTEx Portal).
(D) ROC for IMR90-specfic peaks identified by MUNIn and uni-sample analysis.
(E) Heatmap showing one example of the IMR90-specific peaks in GM12878 (left) and IMR90 (right) Hi-C data. One bin of this pair
(highlighted in black) is overlapped with the promoter of F3, while the other is overlapped with a known typical enhancer
(chr1:227,980,777–227,982,835) in IMR90 cells. Gene model is obtained from WashU epigenome browser.
(F) Gene expression profiles of F3 in GM12878 and IMR90 cell lines (GTEx Portal).
peak in cell-type-specific transcriptional regulation genes.

Similarly, the MUNIn exclusively identified peak between

bins chr4:95,000,000–95,010,000 and chr4:95,170,000–

95,180,000 is specific to IMR90, which is involved in the

regulation of F3 (Figure 5E; Figure S12). F3 encodes the

tissue factor coagulation factor III, and it is usually expressed

in the fibroblasts surrounding blood vessels. Consistently,

we observed a higher expression level of F3 in IMR90 cells

than in GM12878 cells (Figure 5F). Additional real data

evaluation also showed the value of borrowing information

across samples where we compared MUNIn to uni-sample

analysis and FitHiC (Supplemental section 5; Figures

S13–S17).
Discussion

In this study, we present MUNIn, a statistical framework to

identify long-range chromatin interactions for Hi-C data
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from multiple tissues, cell lines, or cell types. MUNIn is

built on our previously developed methods, HMRF peak

caller and FastHiC.19,20 On top of HMRF, MUNIn jointly

models multiple samples and explicitly accounts for the

dependency across samples. It simultaneously accounts

for both spatial dependency within each sample and de-

pendency across samples. By adaptively borrowing infor-

mation in both aspects, MUNIn can enhance the power

of detecting shared peaks and reduce type I error of detect-

ing sample-specific peaks.

MUNIn exhibits substantial advantages in calling peaks

shared across samples compared to uni-sample analysis

(Figure 2B), which are more pronounced with the

increased level of across-sample dependency. In addition,

with imbalanced sequencing depth among different sam-

ples, uni-sample analysis may mis-classify shared peaks as

sample-specific due to differential power across samples.

Comparatively, MUNIn can more accurately identify

shared peaks (Figure 3B). Noticeably, MUNIn resulted in



reduced false positives when calling sample-specific peaks

for the sample with shallower depth (Figure S3A). This is

because MUNIn can borrow information from samples

with higher sequencing depth based on the level of depen-

dency across samples, which is also learned from the data.

In our real data evaluations, MUNIn also outperformed

uni-sample analysis. Specifically, for Hi-C data from hu-

man embryonic stem cells, MUNIn exhibited significantly

higher consistency between the two biological replicates

than the uni-sample analysis (Figure 4; Figure S7). For

Hi-C data from GM12878 and IMR90 cell lines, MUNIn

more accurately identified cell-line-specific peaks, in terms

of both sensitivity and specificity (Figures 5A and 5D). In

addition, GM12878- and IMR90-specific peaks exclusively

identified by MUNIn shown in Figure 5 may play a poten-

tial role in regulating ZNF827 and F3, respectively, which

are differentially expressed between these two cell lines

in the expected direction (Figures 5C and 5F). In our real

data analysis, we ran MUNIn in shared TADs across sam-

ples instead of the whole chromosomes. We realized that

regions outside of TADs or TADs that are not shared across

samples may contain sample-specific peaks; therefore, we

re-ran the analysis including those regions by a sliding

window approach (Figure S13; Supplemental section 5).

Our results suggested that including those regions did

not have a significant impact on the performance of MU-

NIn (Figure S13). Additionally, we assessed MUNIn’s per-

formance on the Hi-C datasets from mouse embryonic

stem cells for both wild-type (without CTCF depletion)

and after CTCF deletion at 10 kb resolution24 (Table S1).

The results showed that MUNIn better captured the wild-

type-specific pattern in mESC Hi-C data than uni-sample

analysis and FitHiC (Figures S14 and S15; Supplemental

section 5), demonstrating the power of MUNIn to reveal

peaks more powerfully and accurately by borrowing infor-

mation from another sample.

Taking the advantages of jointly modeling multiple sam-

ples, MUNIn can easily accommodate many more samples

simultaneously. MUNIn shows a high computational effi-

ciency, in that MUNIn takes �36 minutes to perform peak

calling in a 2 MB TAD of 10 kb resolution (Figures S16

and S17; Supplemental section 5). Moreover, MUNIn is

also able to handle multiple samples with differential levels

of dependency, for example, when samples form clusters

where samples within a cluster are more correlated than

those across clusters. The MUNIn framework can be further

extended to accommodate time series chromatin conforma-

tion data, which will be explored in our future work.

AlthoughMUNIn simultaneouslymodelsmultiple samples,

we note that the goal is to detect chromatin interactions of

various peak status configurations across samples, rather

than differential interactions. Theoretically, while the pos-

terior probabilities of the peak status configurations can

inform differential interactions, it is not our objective

here and can be a direction for further exploration.

Taken together, our results show the advantages of

MUNIn over the uni-sample approach when analyzing
H

data from multiple samples. By adaptively borrowing in-

formation both within and across samples, MUNIn can

achieve much-improved power in detecting shared peaks

andmuch-reduced type I error in detecting sample-specific

peaks. MUNIn’s ability to reduce false-positive sample-spe-

cific peak calls due to imbalanced sequencing depths across

samples is also appealing. Finally, MUNIn can more effec-

tively identify biologically relevant chromatin interactions

with better sensitivity than the uni-sample strategy. We

anticipate that MUNIn will become a convenient and

essential tool in the analysis of multi-sample chromatin

spatial organization data.
Data and code availability

MUNIn is compiled as a Cþþ program and is freely available at

https://github.com/yycunc/MUNIn and https://yunliweb.its.

unc.edu/MUNIn/. All datasets used in this study are publicly avail-

able. Accessation numbers are included in Table S1.
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