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SUMMARY

Genome-wide mapping of chromatin interactions at high resolution remains experimentally and computa-
tionally challenging. Here we used a low-input ‘‘easy Hi-C’’ protocol to map the 3D genome architecture in
human neurogenesis and brain tissues and also demonstrated that a rigorous Hi-C bias-correction pipeline
(HiCorr) can significantly improve the sensitivity and robustness of Hi-C loop identification at sub-TAD level,
especially the enhancer-promoter (E-P) interactions.We usedHiCorr to compare the high-resolutionmaps of
chromatin interactions from 10 tissue or cell types with a focus on neurogenesis and brain tissues. We found
that dynamic chromatin loops are better hallmarks for cellular differentiation than compartment switching.
HiCorr allowed direct observation of cell-type- and differentiation-specific E-P aggregates spanning large
neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during development. Interest-
ingly, we concluded that Hi-C loop outperforms eQTL in explaining neurological GWAS results, revealing a
unique value of high-resolution 3D genome maps in elucidating the disease etiology.

INTRODUCTION

Chromosome conformation capture (3C) coupled with

sequencing (Hi-C) has transformed our understanding of

mammalian genome organization (Denker and de Laat, 2016;

Lieberman-Aiden et al., 2009). In the past decade, with

increasing sequencing depth, a hierarchy of 3D genome struc-

tures, such as compartment A/B (Lieberman-Aiden et al.,

2009), topological domains, or topological associated domains

(TADs) (Dixon et al., 2012; Nora et al., 2012), were revealed.
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More recently, kilobase-resolution Hi-C analysis was achieved

with sequencing depth at billion-read scale (Jin et al., 2013;

Rao et al., 2014). At this resolution, it is possible to discern spe-

cific chromatin loops between cis-regulatory elements. The in-

formation inherent in the 3D genome, especially chromatin

loops, is critical for understanding the genetics of complex dis-

eases (deWit et al., 2013; Jin et al., 2013; Kagey et al., 2010; Phil-

lips-Cremins et al., 2013), such as the genome-wide association

study (GWAS) of cognitive traits and psychiatric disorders (Won

et al., 2016; Wray et al., 2018).

However, kilobase-resolution Hi-C analysis is challenging

both experimentally and computationally, especially when the

amount of starting material is small. Experimentally, it is impor-

tant to develop low-input Hi-C protocols that can deliver high-

quality libraries for ultra-deep sequencing. Computationally,

mapping chromatin interactions with Hi-C at high resolution suf-

fers from the difficulty of correcting the data biases, which leads

to the low reproducibility or coverage in loop calling (Forcato

et al., 2017). For example, the commonly used genome-wide

loop caller HICCUPS yields �104 CCCTC-binding factor

(CTCF) loops (Rao et al., 2014) that only explain a small number

of GWAS hits; several recent Hi-C studies called single nucleo-

tide polymorphism (SNP)-gene interactions with locus-focused

algorithms (Rajarajan et al., 2018; Wang et al., 2018; Won

et al., 2016), but those algorithms are not suitable for unbiased

genome-wide loop calling and usually have strong biases toward

selected loci and a high false positive rate. Alternatively, other

studies using targeted capture Hi-C, ChIA-PET (Chromatin Inter-

action Analysis by Paired-End Tag sequencing), HiChIP, etc.

(Fang et al., 2016; Javierre et al., 2016; Mifsud et al., 2015; Mum-

bach et al., 2017; Schoenfelder et al., 2015a; Zhang et al., 2013)

reported many more E-P interactions, even though those

methods are incomprehensive, biased due to target selection,

and sometimes require even more biomaterials than Hi-C.

Currently, there is not a consensus on whether Hi-C is a viable

option to map E-P loops at sub-TAD level for transcription regu-

lation and human disease studies.

To address these challenges, we developed a new genome-

wide Hi-C bias-correction pipeline that substantially improved

the mapping of sub-TAD chromatin loops at fragment resolution.

We also developed a genome-wide all-to-all version of choromo-

some conformation capture-on-chip (4C) (Simonis et al., 2006)

protocol named ‘‘easy Hi-C’’ (eHi-C), which yields high

complexity Hi-C libraries with 50–100k cells as the starting ma-

terial. With these new toolsets, we mapped chromatin loops in

10 (e)Hi-C datasets and revealed new insights into the transcrip-

tional regulation and the genetics of human diseases.

RESULTS

Design and Performance of eHi-C
In Hi-C, 50 overhangs are created after restrictive DNA digestion

(e.g., with HindIII) so that ligation junctions can be labeled with

biotinylated nucleotides and eventually enriched in a pull-down

step with streptavidin beads. However, this biotin-dependent

strategy has intrinsic limitations that prevent the use of Hi-C if

only low cell inputs are possible because the efficiency of biotin

incorporation is low (Belton et al., 2012) and the recovery rate of

biotin-labeled DNA from the pull-down procedure can be

variable.

We therefore developed eHi-C to circumvent the limitations of

Hi-C by using a biotin-free strategy to enrich ligation products

(Figure 1A). The eHi-C protocol is essentially a genome-wide

‘‘all-to-all’’ version of 4C (Simonis et al., 2006) and only involves

a series of enzymatic reactions. eHi-C is also closely similar to

enrichment of ligation products (ELP), another biotin-free

genome-wide method developed several years ago for fission

yeast 3D genome analysis (Tanizawa et al., 2010). However,

ELP does not remove contamination from several species of

non-junction DNA, and <4% of ELP reads represent proximity

ligation events (Tanizawa et al., 2010). Our eHi-C protocol has

several key improvements, which allow the generation of high-

yield libraries from small amount of input tissues (Figures S1A–

S1J, more discussion in STAR Methods). We tested low-input

eHi-C with 0.1 million IMR90 cells and found that the resulting

DNA libraries had an equivalent complexity as published con-

ventional Hi-C libraries generated with 10 million IMR90 cells;

the yield of cis-contacts from eHi-C libraries is also better than

most of the published HindIII-based Hi-C libraries (Table S1

and Figures S1G and S1H). At low resolution, the contact heat-

maps from Hi-C and eHi-C data are nearly identical, showing

the same compartment A/B (Lieberman-Aiden et al., 2009) and

TAD (Dixon et al., 2012; Nora et al., 2012) structures (Figures

1B and 1C). The eHi-C method also demonstrated near-perfect

reproducibility with different sequencing depth and between bio-

logical replicates in the compartment and TAD analyses (Figures

S1I and S1J). Finally, since eHi-C has a distinct error source and

bias structure from conventional Hi-C due to protocol differ-

ences (STARMethods and Figures S1K–S1P), we have adjusted

our data filtering and normalization method to unify the high-res-

olution analysis of both Hi-C and eHi-C data (see more discus-

sion below).

Billion-Read Scale 3D Genome Datasets in 10 Cell or
Tissue Types
Theoretically, the best Hi-C analysis resolution is determined by

the restrictive endonuclease used (�2 kb for 6-base cutters and

�200 bp for 4-base cutters). However, due to the lack of

sequencing depth, high-resolution analysis at kilobase scale is

only achievable within 1–2Mb.We estimated that for 6-base cut-

ters, �200 million mid-range (within 2 Mb) cis- contacts are

required for fragment-level analysis (5–10 kb resolution); usually

this translates into �1–2 billion total non-redundant read pairs

(STAR Methods).

We have successfully performed eHi-C in multiple cell and

tissue types. Five of our eHi-C datasets meet this sequencing

depth requirement, including human induced pluripotent stem

cells (hiPSCs), derived human neural progenitor cells (hNPCs),

human neurons (hNeurons), and two postmortem brain tissues

(fetal cerebrum and adult anterior temporal cortex) (Table S1).

The hNPCs and hNeurons were derived from hiPSCs using a

previous established forebrain-neuron-specific differentiation

protocol (Chiang et al., 2011; Wen et al., 2014) (Figures

S2A–S2E). We also generated or obtained billion-read-scale

conventional Hi-C data for the H1 human embryonic stem

cell (hESC), IMR90 (skin fibroblast) (Jin et al., 2013),

ll
Article

2 Molecular Cell 79, 1–14, August 6, 2020

Please cite this article in press as: Lu et al., Robust Hi-C Maps of Enhancer-Promoter Interactions Reveal the Function of Non-coding Genome in
Neural Development and Diseases, Molecular Cell (2020), https://doi.org/10.1016/j.molcel.2020.06.007



GM12878 (B-Lymphocyte line) (Rao et al., 2014; Selvaraj

et al., 2013), and two developing human cerebral cortex sam-

ples (cortical plate, fetal CP; and germinal zone, fetal GZ)

(Won et al., 2016) (Tables S1 and S2). Altogether, we have suf-

ficient sequencing depth for fragment-resolution analysis in 10

tissue or cell types.

Genome compartmentalization is known to associate with

cell identity and gene regulation (Bickmore and van Steensel,

2013; Dekker and Mirny, 2016; Dixon et al., 2015; Lieberman-

Aiden et al., 2009). We therefore performed compartment anal-

ysis to examine the overall cell specificity of the Hi-C and eHi-C

libraries. The analysis defines compartment A/B with the first

principal component values (PC1) (Lieberman-Aiden et al.,

2009), which represents the euchromatin/heterochromatin

neighborhoods (Figure S2F). As expected, hiPSCs and hESCs

have very similar correlation matrices despite the difference in

the Hi-C protocol; neural differentiation causes significant

changes of genome compartments, consistent with previous

reports (Beagan et al., 2016; Krijger et al., 2016) (Figure S2F).

Clustering analysis further showed a highly tissue- or cell-

type-specific genome compartmentalization (Figure 1D).

Notably, all brain or neuron-related samples clustered together,

and the three fetal brain samples (two Hi-C and one eHi-C)

formed the tightest sub-cluster (Figure 1D). These results

demonstrate the consistency between eHi-C and Hi-C at the

low resolution.

HiCorr Improves the Rigor of Hi-C Bias-Correction at
High Resolution
Identifying chromatin loops, especially the E-P interactions at the

sub-TAD level, remains a major bioinformatic challenge in Hi-C

analysis, as it is increasingly difficult to correct biases when

the resolution increases to single fragment level (Forcato et al.,

2017). We previously developed a method to explicitly correct

fragment size, distance, guanine-cytosine (GC) content, and

mappability biases and to estimate the expected frequency be-

tween any two fragments (Jin et al., 2013; Yaffe and Tanay,

2011). Using joint function, this method can correct the interac-

tion effects between parameters (e.g., the interaction between

fragment size and distance). However, this explicit method

does not correct biases from unknown sources. Alternative stra-

tegies, such as Vanilla-Coverage (VC) normalization (Lieberman-

Aiden et al., 2009), Iterative Correction and Eigenvector decom-

position (ICE) (Imakaev et al., 2012) and Knight-Ruiz (KR) matrix-

balancing algorithms (Rao et al., 2014), correct both known and

unknown biases by normalizing a ‘‘visibility’’ factor (usually the

total read counts) for each locus, with or without iterations. How-

ever, these implicit methods assume all biases are hidden in the

visibility factor and the visibility biases are ‘‘factorizable’’ (i.e., the

visibility between different loci are independent). These assump-

tions are questionable at high resolution within short- to mid-

ranges (more discussion in STAR Methods). For example, im-

plicit methods do not correct the biases from distance or from

A B D

C

Figure 1. Mapping 3D Genome with eHi-C

(A) The scheme of eHi-C.

(B) Heatmaps show the contact matrices (Chr17) fromHi-C and eHi-C at 250 kb resolution. The eigenvectors fromHi-C and eHi-Cwere very similar, leading to the

same compartment A/B assignment. The comparison of eigenvectors between Hi-C and eHi-C in two other chromosomes are shown in the right panel. His-

togram listed the r2 values of all chromosomes when comparing eigenvectors between eHi-C and Hi-C data.

(C) Heatmaps of contact matrices from Hi-C and eHi-C at 40 kb resolution. The top track is drawn using a published IMR90 Hi-C dataset with ~3 billion reads. A

track of TAD structures is plotted in green. On the right is a scatterplot comparing the directionality indexes (DIs). The ± sign of DI is used to determine TAD

boundary. Very few bins change their signs of DI, indicating consistent TAD boundaries between Hi-C and eHi-C.

(D) Heatmap showing the similarity between 5 Hi-C and 7 eHi-C datasets (including a low-depth IMR90 eHi-C dataset) at compartment level. The correlation

coefficient is computed by comparing the correlation matrices from different samples.
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Figure 2. HiCorr Improves the Rigor of Hi-C Bias-Correction

(A) Chromatin loops contribute to cis but not trans Hi-C reads, leading to an elevated cis/trans visibility ratio.

(B) Scatterplot of all fragments in GM12878 Hi-C data showing a skew toward higher cis- than trans- visibility.

(legend continued on next page)
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the size selection of ligation products during Hi-C or eHi-C library

preparation (Figure S1O).

We developed a new strategy named HiCorr that corrects the

implicit ‘‘visibility’’ factor after normalizing all aforementioned

known biases that consequently has the advantages of both

explicit and implicit methods. HiCorr estimates expected values

for every fragment pair and uses observed-to-expected ratios to

determine chromatin interactions (Figure S3A; STAR Methods).

Importantly, we computed the ‘‘visibility’’ only using the trans-

reads. This is because normalizing cis- visibility has the risk of

over-correction, since many cis- reads come from chromatin

loops (Figure 2A): we found that cis- visibility is higher at his-

tone-marked loci and repetitive elements. The latter is possibly

due to the widespread contribution of transposable elements

to the transcriptional regulatory sequences in the mammalian

genome (Sundaram et al., 2014) (Figures 2B–2D). From the

HiCorr-corrected ratio heatmaps, we can directly observe

discrete chromatin loops without the interference from local

DNA packaging signal along the diagonal. Compared to other

normalization methods, HiCorr significantly improves the sharp-

ness of Hi-C heatmaps, highlights the sub-TAD chromatin inter-

actions, and does not have the over-correction problem at the

short range (Figure 2E, compare the last column with other

columns; more examples in Figure S3C). Notably, the implicit

‘‘visibility’’ correction step in HiCorr allows proper normalization

of large copy number variants, which is difficult for explicit bias-

correction strategy to correct, as exemplified by Hi-C data in the

22q11.2 heterozygous deletion cells (Zhang et al., 2018)

(Figure S3B).

HiCorr Reveals Sub-TAD E-P Interactions and
Aggregates Robustly
Since HiCorr outputs ratio matrices representing the fold enrich-

ment of Hi-C signal, we can conveniently call red pixels from the

HiCorr-corrected heatmaps as chromatin interactions. In this

study, we use a simple method calling pixels with ratio greater

than 2 and p value better than 0.001 as chromatin interactions

after excluding low-coverage pixels (STAR Methods). This intui-

tive pixel-level method does not make prior assumptions about

the distance, shape, size, or density of chromatin loops. We

found that with sequencing depth at 150�200 million mid-range

contacts, our method called 60�150k loop pixels with a high

reproducibility at 40%�60% between biological replicates,

which is a significant improvement compared to the metrics of

existing methods according to Forcato et al., 2017 (Figure S4;

more discussion in STAR Methods). Inadequate sequencing

depth appears to be themajor reason for non-reproduced loops,

and most non-reproduced pixels can be recovered with lower

threshold (Figures S4A–S4D). We therefore always preferred

to call loop pixels after pooling multiple biological replicates to

obtain highest possible read depth (Figure S4). In order to esti-

mate the sensitivity of our approach, we compared our loop

pixels in GM12878 cells (conventional HindIII-based Hi-C) to

an independent set of Hi-C loops identified by HICCUPS in the

same cell line (MboI-based in situ Hi-C) (Rao et al., 2014). Our

method recovered 65% of HICCUPS loops and also identifies

a lot more pixels on enhancers and promoters (Figures S4G–

S4I; more detail in STAR Methods). Overall, CTCF-mediated

loops are stronger than H3K27Ac-mediated loops (Figure S4J).

We next used an independent promoter capture Hi-C (pcHi-C)

dataset in GM12878 cells as reference (Jung et al., 2019) and

directly compared the performance ofHiCorr and ICE/KR-based

bias-correction in recovering the promoter-centered loops. In

this analysis, the ICE/KR-normalized heatmaps were further cor-

rected by distance in order to be comparable to HiCorr heat-

maps; pixels from the ICE/KR-distance-corrected heatmaps

were ranked and compared to the pixels called from HiCorr

heatmaps. The pcHi-C loops can be classified into promoter-

promoter interactions (PP; the fragments of both ends were

captured with promoter-targeting probes) and promoter-other

interactions (PO; only one end of the interaction is promoter).

We found that when the same number of pixels were called,

HiCorr always recovered more pcHi-C interactions than ICE/

KR-distance correction, especially at short range (<100kb) and

for PO interactions (Figure 2F). These results are consistent

with our impression from the heatmaps thatHiCorr better reveals

sub-TAD E-P interactions at short range (Figures 2E and S3C).

For example, Figure 3A shows an example of aGM12878-spe-

cific E-P aggregate, revealing discrete loop peaks with various

shapes and sizes in the ratio heatmap. Four major enhancers

or promoters (size ranging from 10 kb to 30 kb) appear to

mediate these chromatin interactions, since the same CTCF

binding sites in H1 and IMR90 are not sufficient to create these

interactions (Figure 3A). This example is reminiscent of a ‘‘phase

separation’’ model in which individual enhancers in a super-

enhancer interact with each other via the condensation of tran-

scription factors and cofactors (Hnisz et al., 2017). However,

this enhancer aggregate encompasses >150 kilobase, well

beyond the size of a super-enhancer. When any of the four en-

hancers/promoters were repressed by dCas9-mediated

enhancer silencing (Pulecio et al., 2017), we observed the loss

of enhancer mark on all enhancers (Figure 3C) and the downre-

gulation of two GM12878-specific genes (LINC00158 and

MIR155HG) in this enhancer aggregate (Figures 3B and 3D), sug-

gesting that all clustered enhancers/promoters in this example

function in a coordinated fashion. Interestingly, the expression

of two nearby genes (MRPL39 and JAM2) are also GM12878-

specific and dependent on the enhancer aggregate, possibly

(C and D) Epigenetically marked regions (C) and repeat elements (D) have a higher cis/trans visibility ratio.

(E) Comparing the results of different visibility correction methods. The number in the lower left corner indicates color scale. For example, the color box of ‘‘2’’ in

the ratio heatmaps indicates that any contact with O/E > 2 will be shown in dark red; contacts with 1 < O/E < 2 will be in light red; white pixels in the heatmaps are

O/E < 1.

(F) Comparison betweenHiCorr and ICE in capturing promoter-centered interactions from pcHi-C data in GM12878 cells. Note that for ICE curves, we performed

ICE normalization followed by distance-correction. The promoter-center interactions from pcHi-C are divided into four groups based on distance (short- or long-

range) and the type of interactions (promoter-promoter or promoter-other). The plots show the number of recovered pcHi-C interactions when the same number

of total loop pixels were called from HiCorr- or ICE-corrected contact heatmaps. Up to 500k total loop pixels were tested in these plots.
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through mechanisms that do not require direct chromatin inter-

actions (Bulger and Groudine, 2011).

With the removal of the local DNA packaging signal, we can

also distinguish chromatin compaction events as red pixel

domains. The best example is the Polycomb group (PcG)-asso-

ciated chromatin domain at HOXA gene family (Narendra et al.,

2015; Noordermeer et al., 2011; Schoenfelder et al., 2015b).

The normalization dimmed the up- and downstream TAD signal

and allowed direct observation of the ESC-specific repressive

chromatin domain at HOXA genes, which splits or dissolves

when it loses some or all the H3K27me3 mark in IMR90 and

GM12878 cells (Figures 3E and 3F).

Chromatin Loops, but Not Compartments, Mark Neural
Cell Fate and Functions
We are particularly interested in identifying enhancer aggre-

gates associated with neural differentiation, since they may

represent a 3D genome signature for the neuronal lineage. To

do this, we first identified 323,700 loop pixels in total from

hiPSC, hNPC, and hNeuron cells, each with �140k pixels (Fig-

ure 4A). The overlap between hNeurons and hNPCs is greater

than their overlap with hiPSCs (Figure 4A). The loop sizes in

the three cell types are comparable (Figure 4B). Insulators

(with CTCF), promoters (with H3K4me3), and enhancers (with

H3K27ac) are clearly top contributors to chromatin loops (Fig-

ure 4C). Interestingly, the numbers of enhancer or promoter in-

teractions increased in hNPCs and hNeurons more than in

hiPSCs (Figure 4C). The genes involved in hNPC and hNeuron

chromatin loops are strongly associated with neuronal differen-

tiation functions (Figure 4D). We also collected GWAS SNPs re-

ported for a number of neuronal or psychiatric phenotypes

(including intelligence, autism, schizophrenia, Alzheimer’s dis-

ease, etc.) and found that they are enriched in the hNPC or

hNeuron, but not the hiPSC, chromatin loop regions; such

enrichment is not observable for diabetes or obesity GWAS

SNPs (Figure 4E).

Figure 3. Cell-Type-Specific Chromatin Loops or Enhancer Aggregates

(A and B) The bias-corrected Hi-C heatmaps at a GM12878-specific enhancer aggregate (A) and the transcription levels of the six genes in this region (B).

(C) Left: Browser tracks showing the GM12878 ChIP-seq data and the locations of guide RNAs for the enhancer inhibition with sgRNAs-CARGO (STARMethods).

Right: ChIP-qPCR results showing the loss of H3K27ac occupancy after inhibiting each of enhancers.

(D) The expression levels of every gene when the four enhancers indicated in (A) and (C) are repressed using CRISPRi; data are representative from >3 inde-

pendent experiments. Error bar: SD of 3 PCR replicates; *p < 0.05, **p < 0.01 in t test.

(E) Architecture of HoxA gene cluster in H1, IMR90, and GM12878 cells.

(F) Expression of HoxA genes in these three cell types.

A C D F

B E

Figure 4. Chromatin Loops are Hallmarks of Neural Differentiation and Neural Functions

(A) Venn diagram showing the overlap between chromatin interactions from hiPSCs, hNPCs, and hNeurons.

(B) Distance distribution of chromatin loops in three cell types.

(C) Bar graph showing the percentage of chromatin interactions with various histone marks.

(D) Gene ontology terms for genes involved in top 3,000 chromatin loop pixels in each cell type ranked by ratio.

(E) Enrichment of neuron- or diabetes/obesity-relevant GWAS SNPs at chromatin loops. ***p < 0.001, binomial test.

(F) Compartment switching status of the hNPC- (upper) or hNeuron-specific (lower) loops. The four quadrants indicate the compartment-switching status after

differentiation. Red dots: bins containing neural loops. All bins in the genome were plotted in the background as blue cloud. Number of red bins, total bins, and

percentages are shown in each quadrant.
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Because genome compartmentalization is also a good indica-

tor for cell identity, we performed a compartment-level analysis

of neuron differentiation at 250 kb resolution. We identified 877

bins that switched their compartment in either hNPCs or hNeur-

ons (Figures S5A and S5B and Table S3). Presumably, these

dynamically compartmentalized regions (DCRs) are relevant to

neurogenesis. However, although we observed a consistent cor-

relation between H3K27ac occupancy, PC1 values, and overall

gene expression (Figures S5C–S5E), gene ontology analysis

failed to identify neuron-related terms in these DCRs (Fig-

ure S5F). One plausible explanation is that low-resolution anal-

ysis lacks the precision to pinpoint neural genes. We therefore

further tested the relationship between dynamic chromatin loops

and compartment switching. The anchors of the strongest 3,000

hNPC-specific or hNeuron-specific (compared to hiPSC) chro-

matin loops involve more than 2,000 genomic bins in the

compartment analysis (�20% genome, Figure 4F). Interestingly,

a majority of neural loops, hence their anchored genes, are pre-

sent in the unchanged compartments; there were no obvious

enrichment of neural loops within the compartment-switching

regions (Figure 4F). Furthermore, the genes anchored at neural

loops are still enriched with neural terms in gene ontology anal-

ysis even after removing those within the compartment switch

regions (Figures S5G and S5H). These results indicate that

neuronal gene activation frequently occurs without the switching

of compartments A and B; dynamic chromatin loops better mark

neuronal differentiation than compartment switching.

E-P Loops and Aggregates Mark Neural Differentiation
but Not Gene Activation
We next constructed a network of 6,067 promoters and 11,453

enhancers using the aforementioned chromatin loops. The

network includes 1,939 connected components (i.e., connected

subnetworks); nearly one-third (603) of them are candidate E-P

aggregates (multi-node clusters with at least five edges; Fig-

ure S6A). We used the ratio of each loop pixel to measure the

loop strength semiquantitatively and identified 174 neural E-P

aggregates in which the chromatin loops are strengthened in

hNeurons compared to hiPSCs (STAR Methods and Table S4).

As expected, the neural enhancer aggregates contain key neural

genes, includingFOXG1,POU3F3,SOX11, andTCF4 (Figure 5A).

Independent Hi-C data from hESCs and primary brain tissues

also supported our observation that the E-P loops at these loci

were gained during neural differentiation (Figure 5B; more exam-

ples in Data S1 I). Interestingly, many of these enhancer aggre-

gates are substantially strengthened in the primary brain tissues,

sometimes form striking grid-like patterns (Figure 5B), suggest-

ing that hNPCs and hNeurons are in a transition phase of

genome rewiring; enhancers and promoters continue to aggre-

gate and stabilize during neuronal maturation.

It is however surprising that the neural E-P aggregates do not

correlate with gene activation (Figure 5C). Our RNA-seq data re-

vealed that the 174 neural E-P aggregates contain both up- and

downregulated genes during neurogenesis (Data S1 I and Table

S4), although they clearly gain higher overall H3K27ac occu-

pancy in hNPC or hNeuron than in hiPSCs (Figures 5D and 5E).

In fact, when we examined the loop pixels associated with dy-

namic genes in hNPC and hNeurons, both upregulated and

downregulated genes showed stronger loop intensity compared

to hiPSC (Figure 5F), consistent with the global trend that cells

gain chromatin interactions at promoters and enhancers during

differentiation (Figure 4C). We could not observe consistent

loop strength difference between up- and downregulated genes

(Figure 5F). Furthermore, we also observed continuous E-P ag-

gregation at several gene-dense regions in which genes are

already active in hESCs and hiPSCs (marked by H3K4me3 and

H3K27ac); these genes can be either up- or downregulated in

hNPCs and hNeurons in a coordinated fashion (Data S1 II and

Table S4). All these results indicated that E-P aggregation during

neurogenesis does not necessarily result in gene activation (see

more discussion below).

The Improved E-P Interaction Maps Outperform eQTL in
Identifying GWAS Target Genes
Finally, we explored our dataset to investigate the genetics of

brain disorders. We collected 6,556 lead GWAS SNPs reported

for a number of cognitive traits or brain-related disorders

(including intelligence, autism, schizophrenia, Alzheimer’s dis-

ease, etc.) (MacArthur et al., 2017) and defined their linkage

disequilibrium (LD) using the latest TOPMed data (STAR

Methods). We next called 14,943 distal GWAS SNP-promoter

pairs (i.e., the predicted promoter is outside of the GWAS LD) us-

ing chromatin loop data (Table S5). We defined tier 1 neural loop

predictions as the SNP-promoter pairs supported by loops from

R2 of the six neural (e)Hi-C datasets. There are 4,421 tier 1 pairs

involving 2,173 SNPs and 1,439 genes (Figure 6A). Similarly, we

also defined tier 2 and tier 3 loop predictions, which are sup-

ported by only one or zero neural (e)Hi-C datasets. Additionally,

we also predicted distal GWAS target genes (outside of LD) using

the GTEx cis-eQTL data from 48 human tissues (Battle et al.,

2017), including 14 neural tissues (13 brain tissues and nerve

tibial) (Table S5). The overlap between loop and eQTL predic-

tions is modest: 10.4%, 7.8%, and 7.5% of tier 1–3 neural loop

predictions are supported by neural eQTLs. However, non-neu-

ral eQTL data also have a similar trend (18.4%, 14.7%, and

15.4% for tier 1–3 loop predictions; Figure 6A), suggesting a

lack of tissue specificity.

We therefore systematically compared the performance of

chromatin loop and eQTL data in explaining GWAS results. We

focused on tier 1 loop predictions only within 1 Mb, since Geno-

type-Tissue Expression (GTEx) only called cis-eQTLs in this win-

dow (Figure 6B). First, we set up a test comparing Hi-C and eQTL

as two independent approaches predicting the target genes of

distal GWAS SNPs. The test assumes that if we make predic-

tions for brain GWAS SNPs, most target genes should be ex-

pressed in brain. (Similarly, if we made prediction for liver

GWAS SNPs, most target genes should be expressed in liver.)

According to this logic, when we analyze brain GWAS SNPs, if

method A finds more brain-expressing genes than method B,

we can say method A is better than B; as a result, genes pre-

dicted by method A should have higher average expression in

brain than genes predicted by method B.

We predicted 1,096 target genes using neural chromatin

loops (loop target genes). Using eQTL data from each of the

48 GTeX tissues, we also predicted 48 different sets of genes

(eQTL target genes) for the same collection of GWAS SNPs
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(Figure 6C). In 12 of the 13 brain tissues, but less frequently in

non-brain tissue (4 of 35), the expression levels of the 1,096

loop target genes are significantly higher than eQTL target

genes (Figure 6C); such brain-specific difference (between

loop and eQTL predictions) cannot be observed with randomly

chosen GWAS SNPs (Data S1 III). These results indicate that

the chromatin loops perform better than eQTLs in predicting

brain GWAS targets.

We further focused on the 216 GWAS SNPs for which chro-

matin loops and brain eQTLs made conflicting prediction of

target genes (Table S5). Figure 6D shows two such examples:

one locus (rs10153620) associated with attention deficit hyper-

activity disorder (ADHD) (Ebejer et al., 2013), and the other locus

(rs10457592) associated with major depression (Hyde et al.,

2016). In both examples, chromatin loop predicted key neuronal

genes (NRP2 and POU3F2), while brain eQTLs predicted genes

with unclear brain functions (PARD3B and FBXL4). Most impor-

tantly, we found an overall trend that chromatin loops outperform

eQTLs in identifying genes with known brain functions. For all of

the 216 GWAS SNPs, Hi-C predicted 176 target genes, which

enriched dozens of Gene Ontology (GO) terms related to neural

functions and transcription regulation (Figure 6E and Table S5).

In contrast, the eQTL target genes only enriched two relevant

GO terms at a p < 0.01 level, highlighting the value of chromatin

loop data in explaining disease genetics (Figure 6E; see

Discussion).

A C E

D
F

B

Figure 5. Identifying E-P Aggregates Associated with Neurogenesis

(A) An exemplary enhancer-promoter network with ~800 chromatin loops during neurogenesis. Neuron-specific network components can be identified as

candidate neuronal enhancer aggregates. Genes in a few neural enhancer aggregates are listed on the right: red, upregulated in neural differentiation; green,

downregulated.

(B) Formation of enhancer aggregate at the FOXG1 locus during neural differentiation.

(C) Summary of gene expression in neural enhancer aggregates.

(D) Classification of neural enhancer aggregates based on their dynamic gene expression during differentiation.

(E) H3K27ac occupancy at different categories of neural enhancer aggregates.

(F) Compare the strength (ratio) of loop pixels at the differentially expressed genes (DEGs). Top 500 DEGswere picked by comparing hNPC (left) or hNeuron (right)

to hiPSC. ***p < 0.001; **p < 0.01 Wilcoxon rank-sum test.
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A

C

E

D

F

G H

B

Figure 6. Chromatin Loop Outperforms eQTLs in Explaining GWAS Results

(A) Heatmap showing the chromatin loop predicted GWAS target genes and their overlap with GTEx eQTL data. Highlighted: Tier 1 neural predictions supported

by at least two neural Hi-C datasets.

(B) Distance distribution of predicted GWAS SNP-TSS (transcription start site) pairs based on whether they are supported by loop, eQTL, or both.

(legend continued on next page)
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Interestingly, although we frequently observed neural loops at

known brain GWAS loci, such as MEF2C, CTNND1, TRIO, and

DRD2 (Data S1 IV), some loci lose chromatin loops during neural

differentiation. The best example of this is the GWAS locus

located in the third intron ofCACNA1C, which is one of the stron-

gest and best-replicated associations for schizophrenia (SCZ)

and bipolar disorder (BD) (Moon et al., 2018). Past studies on

this locus in neurons or brain tissues suggested a transcription

regulatory role, but the causative variants are still unknown (Ar-

nold et al., 2013; Eckart et al., 2016; Roussos et al., 2014; Song

et al., 2018). Unexpectedly, we found a strong CTCF loop con-

necting the GWAS locus to the CACNA1C promoter only in

hiPSC; the loop weakens when the gene is upregulated during

neurogenesis and in brain tissues, possibly due to transcription

elongation (Heinz et al., 2018) (Figures 6F and 6G). CACNA1C

has a low (compared to hNPCs and hNeurons) but detectable

expression in hESCs. To test if the CTCF loop is functional, we

deleted the three corresponding CTCF binding sites and found

thatCACNA1C is downregulated only in hESCs but not in hNPCs

(Figures 6H, S6B, and S6C). Therefore, our results indicated that

the distal GWAS locus can be recruited to the CACNA1C pro-

moter and regulate the gene expression.

It should be noted that our data did not suggest which variants

in this locus regulateCACNA1C transcription; we found no com-

mon SNPs affecting CTCF sites in this GWAS locus. Our working

model is that when the CTCF loop brings the GWAS locus to

CACNA1Cpromoter, this locus gains a gene regulatory potential.

Asa result, genetic variants in the risk locusmayaffectCACNA1C

expression. Since we only observed strong looping in hESCs,

and this CTCF loop progressively weakened during neurogene-

sis, we speculate that the GWAS locus may affect gene expres-

sion and disease during early development instead of in mature

neurons, which is consistent with a recent mouse study showing

that CACNA1C affects psychological disorders during embry-

onic development instead of adult neurons (Dedic et al., 2018).

It is necessary to point out that the expression level ofCACNA1C

is low in hESCs. More studies are necessary to determine (1) the

function of CACNA1C in ESCs or early development and (2) the

possibility that the loop might be present in certain brain cell

types. Nevertheless, this example highlighted the importance of

examining looping dynamics and cautions against only using

brain or neuron data to investigate disease genetics.

DISCUSSION

In this study we developed a low input ‘‘easy Hi-C’’ protocol for

3D genome mapping from 50–100k cells. We also developed a

new analysis pipeline named HiCorr to improve the rigor of

Hi-C or eHi-C bias-correction at high resolution. We showed

that HiCorr-correction significantly improved the sharpness of

Hi-C heatmaps and allowed direct recognition of E-P loops at

sub-TAD level with little interference from the local DNA pack-

aging events. These results highlighted the importance of

rigorous bias-correction in high-resolution Hi-C data analysis;

we demonstrated that with HiCorr, robust Hi-C map of E-P inter-

actions is achievable with a moderate read depth (�200 million

mid-range cis-contacts). In many examples, the promiscuous

TAD blocks in raw heatmaps become discrete E-P loops or

aggregates after correction, indicating that promoters and en-

hancers form stable CTCF-independent interactions and are

dominant contributors to intra-TAD signal.

Our Hi-C analysis revealed striking enhancer aggregation

events during neurogenesis and in mature brain tissues. Many

of these enhancer aggregates are near key neural genes. How-

ever, it is unexpected that differentiation-gained enhancer ag-

gregates do not correlate with gene activation, since the

enhancer ‘‘phase separation’’ model was initially proposed as

a mechanism for trans-activation (Hnisz et al., 2017). It appeared

that both up- and downregulated genes gained enhancer inter-

actions during neurogenesis (Figures 5C–5F). Since recent

studies have revealed multiple phase separation mechanisms

that organize both euchromatin and heterochromatin (Erdel

and Rippe, 2018), we speculate that even at enhancers, different

trans- factors (protein or RNA) may create chromatin contacts

during cellular differentiation, which do not necessarily cause

gene activation. More studies are required on a case-by-case

basis to tease out the underlying mechanisms and to investigate

whether the newly gained DNA contacts have gene regulatory

functions.

Chromatin loops and eQTLs are two independent methods to

identify long-range cis-regulatory relationships. When studying

the functionof non-coding variants, it is becoming commonprac-

tice to look for evidence fromboth chromatin loopandeQTLdata.

However, our study showed a limited consistency between the

twomethods in predicting GWAS target genes: only a small frac-

tion of looped GWAS loci are also supported by eQTLs. One

possible explanation for this discrepancy is the lack of statistical

power in eQTL detection, i.e., many cis-regulatory variants may

not pass statistical significance due to (1) limited population

size and (2) lowminor allele frequency (MAF). However, the sensi-

tivity issue cannot explain why loop appears to bemore accurate

than eQTL when the two methods make conflicting predictions

(Figures 6D and 6E). Furthermore, a recent large blood eQTL

study reported that after increasing the sample size to >30,000

(C)We used neural loops to predict 1,096 target genes for brain GWAS SNPs and compared their expression to eQTL predicted genes in 48 GTeX tissues. Tissue

with red stars: neural-loop-predicted genes have higher expression levels than eQTL-predicted genes. *p < 1e�2, **p < 1e�3, ***p < 1e�4, ****p < 1e�5 Wilcoxon

rank sum test. Highlighted in yellow: 13 brain tissues. Numbers in parenthesis: the number of genes predicted with eQTL data in each tissue.

(D) Two GWAS loci examples for which neural loop and eQTL make conflicting predictions.

(E) GO terms enriched in loop or eQTL predicted target genes when the two methods make conflicting predictions.

(F) The CACNA1C GWAS locus is associated with an hiPSC-specific CTCF loop. Highlighted are the three CTCF occupied regions and the CTCF motif direc-

tionality.

(G) Expression of CACNA1C during neurogenesis using RNA-seq data.

(H) CTCF deletion downregulatesCACNA1C in hESC but not NPC. Data are representative from >3 independent experiments. Error bar: SD of three independent

experiments; *p < 0.05, **p < 0.01 in t test.
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donors, although many more cis-eQTLs could be identified, they

were mostly short-range eQTLs near promoters and had a

different genetic architecture from GWAS SNPs (Võsa et al.,

2018). The limited success of eQTLs in GWAS study highlighted

another potential possibility that eQTLsobtained fromhealthy tis-

suesmaynot reflect thegene regulatory landscape frompatients.

For example, aSNPmayonly have subtle effects on looped target

gene in healthy donors, but plays amore prominent role when the

locus gains a disease-specific enhancer in patients; in this sce-

nario, chromatin loop can identify the correct target genes, but

eQTL from normal tissues cannot. Therefore, our results indi-

cated that high-quality Hi-C loops have a unique value in the

study of disease genetics: we should treat loops and eQTLs as

two distinct lines of biological evidence in explaining GWAS re-

sults, rather than two mutually confirmatory datasets.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-H3K4me3 Abcam Cat#ab8580; RRID:AB_306649

Rabbit polyclonal anti-H3K27ac Abcam Cat#ab4729; RRID:AB_2118291

Rabbit polyclonal anti-H3K27me3 Millipore Cat#07-449; RRID:AB_310624

Rabbit polyclonal anti-H3K36me3 Abcam Cat#ab9050; RRID:AB_306966

Rabbit polyclonal anti-CTCF Abcam Cat#ab70303; RRID:AB_1209546

Biological Samples

Adult anterior temporal cortex Dr Craig Stockmeier, University

of Mississippi Medical Center

This study

Fetal cerebra NIH NeuroBiobank This study

Chemicals, Peptides, and Recombinant Proteins

Collagenase GIBCO Cat#17104-019

Dorsomorphin Tocris Cat#3093

A83-01 Tocris Cat#2939

Cyclopamine Cellagen Technology Cat#C2925-10

BDNF Peprotech Cat#450-02

GDNF Peprotech Cat#450-02

Deposited Data

Data of eHi-C protocol optimization

on IMR90

This study GEO: GSE89324

Raw and analyzed data of H1 and

neuron differentiation

This study GEO: GSE115407

Raw and analyzed data of brain tissues This study GEO: GSE116825

Fetal CP and GZ HiC Chromosome conformation

elucidates regulatory relationships

in developing human brain

GSM2054564, GSM2054565,

GSM2054566, GSM2054567,

GSM2054568, GSM2054569

GM12878 HiC A 3D Map of the Human Genome

at Kilobase Resolution Reveals

Principles of Chromatin Looping

GSM1551583, GSM1551584,

GSM1551586

GM12878 HiC Whole-genome haplotype

reconstruction using proximity-

ligation and shotgun sequencing

GSM1181867, GSM1181868

IMR90 Hi-C A high-resolution map of the

three-dimensional chromatin

interactome in human cells

GSM1055800, GSM1055801,

GSM1154021, GSM1154022,

GSM1154023, GSM1154024,

GSM1055802, GSM1055803,

GSM1154025, GSM1154026,

GSM1154027, GSM1154028

H1 Hi-C Chromatin architecture reorganization

during stem cell differentiation

GSM1267196. GSM1267197

H1 ChIP-seq: input, H3K4me1,

H3K4me3, H3K27ac, H3K27me3,

H3K36me3

Roadmap Epigenomics Project GSE16256

H1 ChIP-seq: CTCF ENCODE Project Consortium GSM733672

IMR90 input A high-resolution map of the

three-dimensional chromatin interactome

in human cells

GSM1055808
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

IMR90 CTCF A high-resolution map of the three-

dimensional chromatin interactome in

human cells

GSM1055825

IMR90 H3K4me1 A high-resolution map of the three-

dimensional chromatin interactome in

human cells

GSM1055814

IMR90 H3K4me3 A high-resolution map of the three-

dimensional chromatin interactome in

human cells

GSM1055816

IMR90 H3K27ac A high-resolution map of the three-

dimensional chromatin interactome in

human cells

GSM1055818

IMR90 H3K27me3 Roadmap Epigenomics Project GSE16256

IMR90 H3K36me3 A high-resolution map of the three-

dimensional chromatin interactome

in human cells

GSM1055820

GM12878 input ENCODE Project Consortium GSM733742

GM12878 CTCF ENCODE Project Consortium GSM733752

GM12878 H3K4me1 ENCODE Project Consortium GSM733772

GM12878 H3K4me3 ENCODE Project Consortium GSM733708

GM12878 H3K27ac ENCODE Project Consortium GSM733771

GM12878 H3K27me3 ENCODE Project Consortium GSM733758

GM12878 H3K36me3 ENCODE Project Consortium GSM733679

Source gel image This study https://doi.org/10.17632/tpvjrcg454.2

Experimental Models: Cell Lines

IMR90 fibroblasts ATCC CCL-186

H1 hESC WiCell WA01

Human skin fibroblast CCD-1079Sk ATCC CRL-2097

hNPC differentiated from hiPSC This study N/A

hNeuron differentiated from hiPSC This study N/A

DI-Cas9-H9 This study N/A

GM12878 Coriell Institute CEPH/UTAH Pedigree 1463

Oligonucleotides

Oligos and primers used in this

study (see Table S2)

This study N/A

Recombinant DNA

Lenti-dCas9-KRAB-blast Addgene Cat#89564

LentiCRISPRv2 Addgene Cat#98654

px332-original plasmid Joanna Wysocka (Gu et al., 2018) N/A

CARGO plasmids Joanna Wysocka (Gu et al., 2018) N/A

Software and Algorithms

HiCorr This study https://github.com/JinLabBioinfo/

HiCorr

Bowtie Langmead, 2009 http://bowtie-bio.sourceforge.net/

index.shtml

Compartment level analysis This study https://github.com/shanshan950/

compartment_analysis

Domain Caller Dixon et al., 2012 http://bioinformatics-renlab.ucsd.edu/

collaborations/sid/domaincall_

software.zip
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Fulai Jin

(fxj45@case.edu).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data and Code Availability
Data for eHi-C protocol optimization (in IMR90 cells) are available at NCBI GEO with accession number GSE89324. Raw and/or pro-

cessed eHi-C and ChIPmentation data in hiPSC, hNPC and hNeuron are available at NCBI GEOwith accession number GSE115407.

Newly generated Hi-C data in hESCs are also included in GSE115407. ChIP-seq and eHi-C from fetal or adult brain cortex are avail-

able at NCBI GEO with accession number GSE116825. This study also re-analyzed published Hi-C data and ChIP-seq data. The

accession numbers of raw data are listed in Table S2 and Key Resources Table.

The source code for HiCorr can be found in https://github.com/JinLabBioinfo/HiCorr.

The original gel images are available at Mendeley Data and can be found in https://doi.org/10.17632/tpvjrcg454.2.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
We used human primary IMR90 fibroblasts (ATCC, #CCL-186) to test eHi-C performance. IMR90 cells were grown as previously

described (Jin et al., 2013). After confluence, the cells were detached with trypsin and collected by spinning down at 900 g for

5 min. Then the cells were fixed in 1% formaldehyde for 15 min at 37�C, followed by 150mM glycine at room temperature for

5 min to quench formaldehyde. The fixed cells were washed in PBS and pelleted before stored in �80�C. We generated additional

conventional Hi-C libraries for H1 hESCs (WiCell, #WA01) because published Hi-C data in H1 hESC are not deep enough to support

the fragment resolution analysis. H1 cells were cultured on the hESC-qualified Matrigel (Corning, #354277) coated plates in mTeSR1

medium (StemCell Technologies, #05850) before harvested for Hi-C analysis. The cell fixation protocol is the same as IMR90 cells.

Neurogenesis samples
The hiPSC line used for neurogenesis has been previously extensively characterized, including expression of pluripotent markers,

karyotyping, lack of transgene integration, demethylation of promoter regions of pluripotent genes, in vitro differentiation into cell

types of three germ layers and teratoma formation (Chiang et al., 2011; Wen et al., 2014). We followed our previously established

protocol for forebrain-specific neuronal differentiation (Wen et al., 2014). Briefly, hiPSC colonies were lifted by 1 mg/mL collagenase

(GIBCO, #17104-019) and cultured in non-treated polystyrene plates with embryoid body (EB) medium consisting of 20% KOSR

(Knockout Serum Replacement, GIBCO, #10828-028), 2 mM dorsomorphin (Tocris, #3093) and 2 mM A83-01 (Tocris, #2939) for

7 days with daily medium changes. The EBs were then attached on matrigel to develop organized rosette-like structure and

maintained in neural induction medium (hNPC medium) with an equal mixture of DMEM/F12 (GIBCO, #11330-032) and Neural basal

medium (GIBCO, #21103-049), N2 supplement (GIBCO, #17502-048), B27 supplement (GIBCO, #17504-044), NEAA (MEM

Non-Essential Amino Acids Solution, GIBCO, #11140-050) and 2 mM cyclopamine (Cellagen Technology, #C2925-10) for 16 days

with medium change every other day. The neural rosettes were harvested mechanically and transferred to low attachment plates

(Corning, #3473) in hNPC medium to form neural spheres for 3 days. hiNPCs were expanded as monolayer in hNPC medium after

dissociation of neural spheres by Accutase (GIBCO, #A1110501). For neuronal differentiation, monolayer hiNPCs were switched to

Neurobasal medium with 10 ng/mL BDNF (Peprotech, #450-02), 10 ng/mL GDNF (Peprotech, #450-02), GlutaMaxTM (GIBCO,

#35050061) and B27 supplement. Immunostaining was done as previously described (Wen et al., 2014). Quantification of different

cellularmarkers was performed by analyzing aminimumof 500 cells from at least 4 randomly chosen fields of fluorescent imageswith

ImageJ software. The cell fixation protocol is the same as IMR90 cells.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ImageJ Schneider, 2012 https://imagej.nih.gov/ij/

MACS Zhang et al., 2008 https://github.com/macs3-project/MACS

NetworkX Hagberg et al., 2008 https://networkx.github.io/

Cytoscape Shannon et al., 2003 https://cytoscape.org/

Gene Ontology DAVID Bioinformatics Resources https://david.ncifcrf.gov/summary.jsp

ll
Article

Molecular Cell 79, 1–14.e1–e15, August 6, 2020 e3

Please cite this article in press as: Lu et al., Robust Hi-C Maps of Enhancer-Promoter Interactions Reveal the Function of Non-coding Genome in
Neural Development and Diseases, Molecular Cell (2020), https://doi.org/10.1016/j.molcel.2020.06.007

mailto:fxj45@case.edu
https://github.com/JinLabBioinfo/HiCorr
https://doi.org/10.17632/tpvjrcg454.2
https://imagej.nih.gov/ij/
https://github.com/macs3-project/MACS
https://networkx.github.io/
https://cytoscape.org/
https://david.ncifcrf.gov/summary.jsp


Brain tissues
For brain tissue analysis, anterior temporal cortex was dissected from postmortem samples from three adults of European ancestry

with no known psychiatric or neurological disorder (Dr Craig Stockmeier, University of Mississippi Medical Center). Cerebra from

three fetal brains were obtained from the NIHNeuroBiobank (gestational age 17-19weeks), and nonewere known to have anatomical

or genomic disease (Table S2). Samples were dry homogenized to a fine powder using a liquid nitrogen-cooled mortar and pestle. All

samples were free from large structural variants (> 100 kb) detectable using Illumina OmniExpress arrays. Genotypic sex matched

phenotypic sex for all samples. For easy Hi-C, Pulverized tissue (�100 mg) was crosslinked with formaldehyde (1% final concentra-

tion) and the reaction was quenched using glycine (150 mM). We lysed samples on ice with brain tissue-specific lysis buffer (10 mM

HEPES; pH 7.5, 10 mM KCl, 0.1 mM EDTA, 1 mM dithiothreitol, 0.5% Nonidet-40 and protease inhibitor cocktail). Samples are

Dounce homogenized before HindIII digestion.

Colon crypt tissues
Crypts were dissected from non-cancer colon mucosa. After removing from the patient, we first cut away non–colon mucosa as

much as possible, such as muscles, blood vessels and fat. The tissue was then treated with Cell dissociation buffer (GIBCO,

#13151-014) to pop out crypts from surroundingmucosa tissue. The suspension was filtered through a 300uM cell strainer to remove

remaining tissue pieces. Pelleted crypts were crosslinked in 1% formaldehyde followed by glycine quenching. The fixed crypts were

used for eHi-C as described below.

METHOD DETAILS

Easy Hi-C
The overview of eHi-C design

In Hi-C, 50 overhangs are created after restrictive DNA digestion (e.g., with HindIII) so that ligation junctions can be labeled with bio-

tinylated nucleotides and eventually enriched in a pull-down step with streptavidin beads. However, this biotin-dependent strategy

has several intrinsic limitations that prevents the application of Hi-C in rare tissue or small cell populations. First, the efficiency of

biotin incorporation into DNA is usually �20%–30%, sometimes as low as 5% (Belton et al., 2012). Therefore, a majority of ligation

junctions cannot be recovered. Second, only a portion of labeled ligation junction products can be pulled-down after several washes,

further lowering the recovery rate. Lastly, extensive washes are required in the biotin-pulldown procedure to effectively remove

contamination of un-ligated DNA products, but this will significantly reduce the library complexity.

We reasoned that we might circumvent the limitations of Hi-C by using a biotin-free strategy to enrich ligation products, thus

improving the assay efficiency. Inspired by the biotin-free strategies used in 4C (Simonis et al., 2006) and ELP (Tanizawa et al.,

2010), we developed eHi-C, which only involves a series of enzymatic reactions to generate DNA libraries for the mapping of genome

architecture (Figure 1A). In this protocol, we begin with the in situ proximity ligation procedure in whichwe performedHindIII digestion

and proximity ligation while keeping nuclei intact (Nagano et al., 2013, 2015; Rao et al., 2014). In eHi-C, HindIII digested chromatins

were ligated without end repair, leading to HindIII-digestible junction products (Figure 1A). After nuclear lysis and reverse crosslink-

ing, the DNA are digested with more frequent 4-base cutter DpnII before self-ligation. DNA with DpnII restrictive overhangs on both

ends, including ligation junction products, will form circles. We used exonuclease to remove DNA that failed to form circles, as well as

contaminations from un-ligated ends and other linear DNA species. At last, we cut the circularized DNA again with HindIII; only re-

linearized junction DNA will be sequenced (Figure 1A).

The eHi-C method is essentially a genome-wide ‘‘all-to-all’’ version of 4C and also closely similar to ELP, another biotin-free

genome-wide method developed several years ago to identify DNA contacts in fission yeast (Tanizawa et al., 2010). However, the

design of ELP was flawed because it cannot remove contaminations from several species of non-junction DNA (Figure S1A). As a

result, less than 4% of ELP reads represent proximity ligation events (Tanizawa et al., 2010). The eHi-C protocol solves this issue

by introducing an exonuclease digestion step. Additionally, because all reads from ELP are next to HindIII sites, it cannot distinguish

PCR duplicates from reproducible ligation events between the same pair of HindIII ends (Figure S1B). Our eHi-C method addresses

this issue with a custom adaptor with random barcode as a uniquemolecule index (UMI) (Figure 1A, Figure S1C). We also used in situ

ligation in eHi-C to improve the library quality (Figure 1A). Taken together, we have significantly optimized the eHi-C strategy to obtain

high quality libraries for ultra-deep sequencing from small-scale bio-samples, which is not feasible with the original ELP method.

Because there is theoretically no DNA loss in its protocol (Figure 1A), eHi-C should have a higher recovery rate of ligation junction

products than conventional Hi-C, which is important for the analyses of small cell populations. The only exception is the exonuclease

digestion step: Ligation junction DNAmay be digested if they fail to self-ligate (Figure 1A). From a control experiment, we determined

that the efficiency of the self-ligation reaction is high (�60%, Figure S1D).

Easy Hi-C protocol

In this study, low-input eHi-C libraries were prepared in two settings. In the first scenario (‘‘aliquot’’ setting), we started with 1 million

IMR90 cells and go through the protocol described below and usually resulted in�250-500ng DNA for library preparation (Figure 1A).

10%or 20%of these DNAwere used to generate library (0.1 or 0.2million cells per library). In the second scenario (‘‘mini’’ setting), we

started the experiments with lysing 0.1 or 0.2 million cells following the same protocol as described below, except that all steps
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before library preparation were performed in 25% volume. Because the cell lysis and HindIII digestion conditions are different from

the published in situ Hi-C protocol. We have made modifications in order to ensure nuclei integrity during ligation.

Cell lysis, HindIII digestion, and in situ ligation. Cell pellet from �1 million cells was lysed in 1ml cell lysis buffer (10mM Tris-Cl,

pH7.5, 10mM NaCl, 0.2% NP-40, 1X proteinase inhibitor cocktail (Roche, #118735800001)) before incubating on ice for 15 min. If

there is cell clump in the tube, we dounce the cells for 10 times every cycle for 3 cycles, with one-minute on ice between each cycle.

After douncing, the nuclei were put on ice for another 5 min and then pelleted by centrifuging (2,500 g for 5 min at 4�C). The pellets

were washed once in 1X Cutsmart buffer (NEB) before resuspended in 360ul 1X Cutsmart buffer. After resuspension, 40ul of 1%SDS

were added (final 0.1%), and the tubes were incubated at 65�C for 10 min. To quench the SDS, 44ul of 10% Triton X-100 (final 1%)

was then added to each tube. For chromatin digestion, 400U HindIII (NEB, #R3104M 100U/ml) were added to each tube followed by

incubation at 37�C for 4 h. To ensure efficient digestion, another 400U of HindIII were added to each tube again for overnight

digestion. On day 2, we digested the nuclei for another 4 h by adding fresh HindIII enzyme (400U). After digestion, the enzyme

was inactivated by adding 40ul of 10% SDS (final 1%) to each tube and incubation at 65�C for 20 min. The digested products

were then transferred to a new 15ml tube and mixed with 3.06ml 1.15X ligation buffer (75.9mM Tris-HCl, ph7.5, 5.75mM DTT,

5.75mM MgCl2 and 1.15mM ATP). 187ul 20% Triton X-100 was added to the mixture and incubated at 37�C for 1 h. For ligation,

the products were then mixed with 30ul of T4 DNA ligase (Invitrogen, #15224-025, 1U/ul) and incubated at 16�C overnight. After

ligation, the tubes were put at room temperature for 30 min and the nuclei were pelleted by centrifuging at 2,500 g for 5 min. The

supernatant was discarded to remove the free DNA and only the nuclei pellets were kept. The nuclei pellet step is skipped in the

‘‘dilute’’ libraries in Table S1. The nuclei pellets were then resuspended in 3.06ml of 1.15X ligation buffer and mixed with 40ul of

10% SDS and 187ul of 20% Triton X-100 for nuclear lysis.

Reverse crosslinking, DpnII digestion and self-ligation. After nuclear lysis, the mixture was then reverse crosslinked at 65�C over-

night after adding 25ul of 20mg/mL proteinase K. DNA were purified with Phenol: Chloroform: Isoamyl Alcohol (25:24:1) (Affymetrix,

#UN2922) following standard protocol. �2-3mg DNA are expected from 1M cells. The DNA was then digested with 50U DpnII (NEB,

#R0543L, 10U/mL) in a total volume of 100uL at 37�C for 2 h. After digestion, the enzyme was heat inactivated at 65�C for 25 min. The

mixture was first incubated with 0.5 volume of PCRClean DX beads (Aline Biosciences) at room temperature for 10 min before har-

vesting the supernatant according to vendor’s protocol. The supernatant was then incubated with 2 volumes of PCRClean DX beads

at room temperature for 10 min. DNA on the beads was then harvested in 300ul nuclease free water. The two-step bead purification

results in DNAwith a size range�100-1,000bp. The DNA products were thenmixed with 200ul of 5X ligation buffer, 5U T4 DNA ligase

(Invitrogen, #15224-025, 1U/ul) and water to a total volume of 1ml. Self-ligation was done by incubating the tubes at 16�C overnight.

Exonuclease digestion and DNA circle re-linearization. The self-ligated DNA were purified again with Phenol: Chloroform: Isoamyl

alcohol and digestedwith 6U of lambda exonuclease (NEB, #M0262S) in 200mL volume at 37�C for 30min. The exonucleasewas then

inactivated by incubating at 65�C for 20min. Resulting DNAwere purifiedwith 2 volumes of PCRClean DX beads as described above.

For DNA circle re-linearization, bead boundDNAwere eluted and digestedwith 20UHindIII again at 37�C for 2 h in 150mL volume. The

HindIII enzyme was inactivated at 65�C for 20 min, and the DNA was purified with 2 volume PCRClean DX beads for another time as

described above. In the end, bead-bound DNA was eluted in 50ul nuclease free water. From 1M cells, we expect 250-500ng DNA in

the end.

Library preparation. We took �10%–20% of re-linearized DNA (�50ng) for library generation following Illumina TruSeq protocol.

Briefly, the DNA was first end repaired using End-it kit (Epicenter, #ER0720). The end-repaired DNA was then A tailed with Klenow

fragment (30–50 exo–; NEB, #M0212L) and purified with PCRClean DX beads. Bead bound DNA were eluted in 20mL water and then

reduced to 4mL using Speedvac at 50�C. The 4ul DNA product was mixed with 5ul of 2X quick ligase buffer, 1ul of 1:10 diluted an-

nealed adaptor (10uM) and 0.5ul of Quick DNA T4 ligase (NEB, #M2200L). The ligation was done by incubating at room temperature

for 15min and the enzymewas then inactivated by incubating at 65�C for 10min. DNAwas then purified with 1.8 volume of DX beads

as described above. Elution was done in 14ul nuclease free water. For checking eHi-C library quality, we only needed to sequence

less than 1 million reads on MiSeq (Illumina). Because the proportion of PCR duplicates from low-depth sequencing is very low, we

used regular TruSeq indexed adapters (Illumina) without UMI barcode. To deep sequence an eHi-C library, we used custom TruSeq

adaptor in which the index is replaced by a 6 base random sequence. The custom adaptor was generated by annealing the following

two oligos:

Universal oligo –

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC*T

UMI oligo–

/5Phos/GATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTCTTCTGCTT*G

PCR amplification of DNA libraries. To amplify the DNA libraries, we mixed 13ul adaptor ligated DNA with 1ul of 20uM oligo C

(AATGATACGGCGACCACCGAGATCTACAC), 1ul of 20uM oligo D (CAAGCAGAAGACGGCATACGAGAT) and 15ul of 2X KAPA

HiFi Hotstart readymix (KapaBiosystems, #KK2602). And the PCR amplificationwas done as follows: denature at 98�C for 45 s, cycle

at 98�C for 15 s, 60�C for 30 s, 72�C for 30 s, andwe did 5 cycles at first for estimating the total cycle number needed, and then further

extension at 72�C for 5 min. The products were then purified using 1.8 volume of PCRClean DX beads (Aline Biosciences, #C-1003-

50) to remove primer contamination as described above. And the DNA was eluted in 20ul nuclease free water. And library
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quantificationwas done following the protocol of Illumina library quantification kit (KAPABiosystems, #KK4824). PCRwas done again

in 50mL volume for a target final concentration �20-40nM (usually �3-4 additional cycles). The generated libraries were then sub-

jected to sequencing.

ChIPmentation
WeusedChIPmentation (Schmidl et al., 2015) tomap histonemodification and/or CTCF in different samples. Briefly, cells and tissues

were fixed in 1% formaldehyde at room temperature for 15 min followed by glycine quenching. To isolate nuclei, we lysed brain tis-

sues with a specific lysis buffer (10 mM HEPES; pH 7.5, 10 mM KCl, 0.1 mM EDTA, 1 mM dithiothreitol (DTT), 0.5% Nonidet-40 and

protease inhibitor cocktail) for 10 min at 4�C. For cell cultures, we used lysis buffer 1 (50 mM HEPES; pH 7.5, 140 mM NaCl, 1 mM

EDTA, 10% glycerol, 0.5% Nonidet-40, 0.25% Triton X-100 and protease inhibitor cocktail) for 10 min at 4�C. The collected nuclei

were then washed with a lysis buffer II (200mM NaCl, 1mM EDTA pH8.0, 0.5mM EGTA pH8.0, 10mM Tris-Cl pH8.0 and protease

inhibitor cocktail) for 20 min at room temperature. The nuclei were pelleted at 1,800 g for 10 min at 4�C and then resuspended in lysis

buffer III (10mM Tris-Cl pH8.0, 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Na-Deoxycholate, 0.5% N-lauroylsarcosine and pro-

tease inhibitor cocktail) for sonication. The chromatin was sheared for 10 cycles (15 s on and 45 s off at constant power 3) on Branson

450 sonifier. 20-50ug of chromatin was used for each H3K4me3 (Abcam, #ab8580)/ H3K27Ac (Abcam, #ab4729)/ H3K27me3 (Milli-

pore, #07-449)/ H3K36me3 (Abcam, #ab9050) pulldown and 100-150ug for each CTCF (Abcam, #ab70303) pulldown. First, 11ul of

Dynabeads M-280 (Life Technologies, Sheep Anti-Rabbit IgG, #11204D) was washed three times with 0.5mg/mL of BSA/PBS on ice

and then incubated with designated antibody for at least 2 h at 4�C. The beads/antibody complexes were then washed with BSA/

PBS. The pulldown was done in binding buffer (1% Trixon-X 100, 0.1% Sodium Deoxycholate and protease inhibitor cocktail in

1X TE) by mixing the beads/antibody complexes and chromatin. After pulling down for overnight, the beads/antibody/chromatin

complexes were washed with RIPA buffer (50mM HEPES pH8.0, 1% NP-40, 0.7% Sodium Deoxycholate, 0.5M LiCl, 1mM EDTA

and protease inhibitor cocktail). The beads complexes were then subjected to ChIPmentation by incubating with homemade Tn5

transposase in tagmentation reaction buffer (10mM Tris-Cl pH8.0 and 5mMMgCl2) for 10 min at 37�C. To remove free DNA, beads

were washed twice with 1x TE on ice. The pulldown DNA was recovered by reversing crosslink for overnight followed by PCRClean

DX beads (Aline Biosciences, #C-1003-50) purification. To generate ChIP-seq libraries, PCR was applied to amplify the pulldown

DNA with illumina nextera primers. Size selection was then done with PCRClean DX beads to choose the fragments ranging from

100bp to 1000bp.

CRISPR experiments
Generating doxycycline inducible Cas9 expressing hESC line (DI-Cas9-H9)

The DI-Cas9-H9 cells were generated as previously described (Ma et al., 2018). Briefly, the pBlue-AAVS1-Puro-Cas9-M2rtTA-AAVS1

HITI donor plasmid was constructed by ligating the HindIII restricted Puro-Cas9-M2rtTA fragment cut out from the Puro-Cas9-

M2rtTA plasmid to the pBlue-AAVS1-AAVS1 vector linearized with HindIII. To construct the Puro-Cas9-M2rtTA plasmid, CAG-

M2rtTA-pA sequence was amplified from Neo-M2rtTA plasmid and subcloned into the Puro-Cas9 plasmid linearized with MfeI

and MluI. To construct the pBlue-AAVS1-AAVS1 plasmid, a pair of oligos for AAVS1 gRNA targeting sequence (g-AAVS1-F:

TCACCAATCCTGTCCCTAGGTTTA; g-AAVS1-R: CTAGGGACAGGATTGGTGACGGTG) were annealed and ligated to the pBlue

vector linearized with XhoI and NotI. H9 cell line was maintained on Matrigel (Corning, #354277) in mTeSR1 (STEMCELL Technolo-

gies, #85850/05850). Cells were cultured at 37�C in a humidified atmosphere with 5% CO2 in air. Cells were passaged with TrypLE

(GIBCO, #12604-021). Transfection was done using electrotransfection (1 pulse, 300 V, 4 ms, BTX). A total of 25mg plasmid (donor:

Cas9: gAAVS1RNA = 3: 3: 2) was used in each electroporation. Around 4�9 million cells were resuspended with 500mL PBS in a

0.4 cm cuvette. Two days later, 0.5mg/mL puromycin was used to treat cells for 3 days. Cells were allowed to grow visible colonies

for about 10 days, and then the colonies were picked into 96-well plate. Colonies were expanded and identified by PCR

and sequencing (5-F: GGTTAATGTGGCTCTGGTT; 5-R: CTTGTACTCGGTCATCTCG; 3-F: TGACGGTTCACTAAACGAG; 3-R:

AGAGGTTCTGGCAAGGAG).

Deleting CTCF sites in ESCs and NPCs with sgRNAs-CARGO

Wemade CARGO (Gu et al., 2018) constructs whenever we need to transfect multiple sgRNAs into the same cell. With CARGO sys-

tem, we could assemble 4-10 sgRNAs simultaneously into one plasmid following the protocol described by Gu et al. (Gu et al., 2018).

The CARGO plasmids are gifts from the laboratory of Joanna Wysocka. All sgRNAs were designed on CCTop-CRISPR/Cas9 target

online predictor (https://crispr.cos.uni-heidelberg.de/) and manually picked. For CARGO, (n+1) pairs of oligos are necessary to

assemble n sgRNAs. The CARGO oligo sequences are listed in Table S2. We deleted three CTCF-containing regions at CACNA1C

locus (C1�C3). Successful deletion was verified with PCR. The primers used for detecting deletion efficiency are as follows: C1

(Product length wt: 616 bp, del: 471-518 bp; fwd: ACAGGATGCTATGGGACACC; rev: AGGGAGGAGGAAGAAATGGA); C2 (Product

length wt: 786 bp, del: 531-603 bp; fwd: CCTGGGGTGTTGAGAGAGAA; rev: ATTCACCCAAAAGGCTTCCT); C3 (Product length wt:

9,358 bp, del: 550-600 bp; fwd: TGAGCCCAAAGGCACTAGAC; rev: TACCCAGAACAGGCACTTCC).

DI-Cas9-H9 cells were maintained in mTeSR1 medium (STEMCELL technologies, #85850) on matrigel. Cells were detached and

suspended to single cells by Accutase (Fisher, #A1110501). CARGO vector transfection was done following the manufacturer’s in-

struction of Amaxa 2b nucleofector, using Kit 1 (Lonza, Human stem cell nucleofector Kit 1, #VPH-5012) and programB-16. After 24 h

recovery, cells were treated with 1mg/mL of Doxycycline to induce Cas9 expression for 48 h before harvesting. The hNPCs were
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differentiated as described above and seeded at 170k cells per cm2. Transfection was done following the manufacturer’s instruction

of Amaxa 4D nucleofector. Briefly, cells were treated with Accutase to make single cell suspension and then pelleted at 110 g for

5min. P3 primary cell 4D-nucleofector X kit L (Lonza, #V4XP-3024) was applied combining programCU-133. After 24 h recovery, cells

were treated with 1mg/mL of Doxycycline to induce Cas9 expression for 48 h before harvesting for DNA and RNA extraction.

Construct dCas9-KRAB-puro for CRISPRi assay

EF1-dcas9-KRAB was PCR amplified from Lenti-dCas9-KRAB-blast (Addgene, #89564) with primers (F: CCTTTTGCTCACATGTG

CTAGCTGCAAAGATGGATAAAG, R: AACTTTGCGTTTCTTTTTCGGAACTGATGATTTGAT); T2A-puro was PCR amplified from

the LentiCRISPRv2 plasmid (Addgene, #98654) using primers (F: AAGAAACGCAAAGTTGGATCCGGCGCAACAAACTTC, R:

CGAGCTCTAGGAATTCTCAGGCACCGGGCTTGCG). The two PCR products were assembled into px332-original plasmid (gifts

from the laboratory of Joanna Wysocka (Gu et al., 2018)) between PciI and EcoRI sites by In-Fusion HD cloning (TAKARA, #639648).

CRISPRi enhancer inhibition in GM12878 cells with sgRNAs-CARGO

We constructed CARGO vectors containing multiple sgRNAs as described above. GM12878 cells (Coriell Institute, #CEPH/UTAH

Pedigree 1463) were maintained in RPMI1640 with 15% FBS. GM12878 cells were seeded in fresh medium at 350k cells per ml

the day before nucleofection. 4 million cells were used for each nucleofection. First, cells were pelleted at 90 g for 5min and then

resuspended in 100ul of nucleofection reagent (SF cell line 4D-Nucleofector X kit, Lonza, #V4XC-2024) together with 5-7ug desig-

nated plasmids. The nucleofection was done on a 4D lonza nucleofector using program CM-137. Puromycin selection was done

at 3mg/mL for 48 h after letting the cell recover for 24 h post transfection. Cells were then harvested for RNA extraction, or fixed

with 1% formaldehyde. We performed H3K27ac ChIP-qPCR using ChIP-mentation protocol described before. 10% of chromatin

was saved as input control. The qPCR and ChIP-qPCR primers used are listed in Table S2.

3C-qPCR
To confirm whether deletion of CTCF at the CACNA1C locus would lead to loss of chromatin loops, we did 3C assay in hESCs. We

followed the protocol as previously described (Miele et al., 2006). First, H9 cells harboring CTCF deletion were generated as above by

nucleofection and fixed for 3C assay. Briefly, Cells were permeabilized in a lysis buffer (10mM Tris-Cl, pH8.0, 10mM NaCl, 0.2%

NP-40 and 1X proteinase inhibitor cocktail), and nuclei were collected by centrifuging at 2500 g for 5min. The nuclei were then

digested with HindIII-HF (NEB, #R3104M), 400U for 5million cells at 37�Covernight. After inactivation of HindIII, the proximity ligation

was done with T4 DNA ligase (Invitrogen, #15224-025) at 16�C for overnight. Chromatins were then reverse-linked by proteinase K

and purified by phenol: chloroform. Two BAC clones (RP11-265G12 and RP11-698B23) cover the studied region were applied as

genomic background control. Equal moles of the DNA from twoBACsweremixed together and used to generate the control template

following the protocol. Primers designed for 3C-qPCR are listed Table S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

The overview of eHi-C performance
We tested eHi-C in low-input setting with �0.1-0.2 million human primary lung fibroblast IMR90 cells and used low- or high-depth

sequencing to evaluate the library quality (Table S1). As expected, averagely 95% of eHi-C reads begin with digested HindIII restric-

tive sequence AGCTT, indicating that nearly all reads are from re-linearized HindIII-digestible DNA circles. When one eHi-C library

from 0.1 million cells is deep-sequenced to 150 million mapped read pairs, the percentage of PCR duplicates is lower than the pub-

lished IMR90 Hi-C libraries prepared with 100 times more (10 million) cells (Jin et al., 2013) (Table S1), indicating a significantly

improved library complexity.

We also compared the sources of errors in Hi-C and eHi-C libraries (Belton et al., 2012; Jin et al., 2013). In conventional Hi-C, read

pairs falling into the sameHindIII fragments are considered invalid, and themajor type of invalid reads are ‘‘dangling reads’’ originated

from non-ligation DNA. In contrast, the only type of invalid pairs from eHi-C are self-circles, all the other types of invalid pairs are

removed by exonuclease treatment (Figure S1E).

While eHi-C avoids several types of common false reads found in Hi-C, it has a drawback of getting false reads from undigested

HindIII sites, which can be computationally filtered as back-to-back read pairs next to the same restrictive sites (Figure S1E-F). After

data filtering, we found that the yield of cis-contacts from eHi-C libraries, especially the ones prepared with in situ ligation procedure,

is better than most of the published HindIII-based Hi-C libraries prepared with �10-25 million cells (Figure S1G-H and Table S1).

Importantly, the contact heatmaps from Hi-C and eHi-C data are identical showing the same component A/B (Lieberman-Aiden

et al., 2009) and TAD (Dixon et al., 2012) structures (Figure 1B-C). All these results demonstrated that eHi-C is a reliable alternative

to Hi-C and can correctly identify 3D genome features from small cell populations.

Easy Hi-C data pre-processing for QC and performance analysis
Note: The data filtering step of deep Hi-C and eHi-C data for fragment level analysis is slightly different from the performance analysis

here. Please refer to ‘‘Hi-C and eHi-C data filtering for fragment level analysis’’ for details.
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Alignment and removing PCR duplications
Published IMR90 Hi-C data are used in this study to compare with eHi-C. The accession numbers of Hi-C data are listed in Table S2.

All the sequencing data are mapped to human reference genome hg19 using Bowtie. For Hi-C, the two ends of paired-end (PE) reads

were mapped independently using the first 36 bases of each read. PCR duplications were defined as PE reads with both ends map-

ped to the same locations. For eHi-C, because nearly all the mappable reads start with HindIII sequence AGCTT, we trimmed the first

5 bases from every read, took the next 36 bases, and added the 6-base sequence AAGCTT to the 50 of every read before mapping

using the whole 42 bases. Some MiSeq runs were performed with reads shorter than 41 bases, and the full-length reads will be used

in those cases. After mapping, we further filtered the reads requiring the positions of both ends to be exactly at the HindIII cutting

sites. The deep sequenced eHi-C libraries were prepared with UMI adaptor, PCR duplications were defined as identical PE reads

also with the same UMI barcode. The eHi-C libraries sequenced on MiSeq were not intended for deep sequencing and therefore

were prepared without UMI barcode. We assume no PCR duplication in MiSeq libraries because the sequencing depth is very low.

Conventional Hi-C data filtering and QC analysis
After removing PCR duplications, we analyzed the library quality by classifying the reads into different categories. In both Hi-C and

eHi-C, the percentage of trans- contacts can be easily calculated by counting the number of reads with two ends on different

chromosomes (listed in Table S1). For cis- reads in Hi-C data, we first discard the reads with both ends mapped to the same HindIII

fragments as invalid pairs. Dangling ends are defined as ‘‘inward’’ pairs among the invalid pairs (Figure S1E) and the percentages are

listed in Table S1. The rest of the invalid pairs are classified into ‘‘other false’’ category.

All rest read pairs represent two different HindIII fragments in cis. Since cut-and-ligation events are expected to generate reads

within 500bp upstream of HindIII cutting sites due to the size selection (‘‘+’’ strand reads should be within 500bp upstream of a HindIII

site, and ‘‘-‘‘ strand reads should be within 500bp downstream a HindIII site), we only keep read pairs with both ends satisfying this

criteria. The other pairs are also classified into ‘‘other false’’ category in Table S1. We next split all the remaining reads into three

classes based on their strand orientations (‘‘same-strand,’’ ‘‘inward,’’ or ‘‘outward’’) (Figure S1E). We have previously shown that

although theoretically ‘‘same-strand’’ reads should be twice as many as ‘‘inward’’ or ‘‘outward’’ reads, in reality more ‘‘inward’’ or

‘‘outward’’ reads can be observed due to incomplete digestion of chromatin (Jin et al., 2013). We therefore estimate the total number

of real cis-contact as twice the number of valid ‘‘same-strand’’ pairs (Table S1).

eHi-C data filtering and QC analysis
For eHi-C library, the only type of invalid cis- pairs are self-circles with two ends within the same HindIII fragment facing each other

(Figure S1E). Similar to Hi-C, we also computed the total number of real cis-contact as twice the number of valid ‘‘same-strand’’ pairs.

Reads from undigested HindIII sites are back-to-back read pairs next to the same HindIII sites facing away from each other

(Figure S1F).

Compare the bias structure of Hi-C and eHi-C
Summary: We analyzed the intrinsic biases that may affect the eHi-C experimental procedure. As expected, both Hi-C and eHi-C

show a decay of contact frequency with increasing distance (Figure S1K). The contact frequencies involving very small HindIII restric-

tion fragments (< 200bp) are low in both Hi-C and eHi-C libraries, because the small fragments are less likely to be sheared or

digested (see STAR Methods), or due to the spatial hindrance for small fragments to ligate (Figure S1L) (Yaffe and Tanay, 2011).

The eHi-C has an overall better performance capturing ligation between small-sized (�200bp-1kb) fragments (Figure S1L, M and

P), presumably because DpnII can digest small HindIII fragments effectively as long as the restrictive sites are present. Furthermore,

the profile of distance decay at short range is affected by the length of the two HindIII fragments (Figure S1M and 1P), indicating an

interaction between the three parameters. Intriguingly, the GC-bias profile in eHi-C library is opposite to what was observed for con-

ventional Hi-C (Yaffe and Tanay, 2011) (Figure S1N). We speculate that this might be because both ends of the eHi-C library start with

a fixed HindIII restrictive sequence (AGCTT). Therefore, the GC-bias in eHi-C reflects the efficiency of DNA polymerase elongation

after it has already gone through first few bases during PCR amplification or sequencing. Finally, as expected, eHi-C libraries are also

constrained by the size selection of ligation products (Figure S1O). These analyses provide a basis for the eHi-C data normalization

and computational inference of DNA contacts.

Methods: To plot the decay of contact with distance (Figure S1K), we only used ‘‘same-strand’’ cis- contact reads. For any given

distance L, we found all HindIII fragment pairs with gap distance between 0:9 � L and 1:1 � L, and computed the average contact

frequency among them. We normalized these numbers by dividing them by the average contacts from all the intra-chromosome

HindIII fragment pairs. For length bias (Figure S1L), we divided all the HindIII fragments into 40 equal-sized groups and computed

the average trans- contact frequency for each pair of groups, and enrichment values were calculated by normalizing to the global

average. Similarly, we also plotted the GC bias (Figure S1N) using trans- data. We divided all the HindIII ends into 20 equal-sized

groups by GC content. For Hi-C, the GC content was computed using the 200bp near each HindIII end. For eHi-C, the GC content

was computed for the region between a HindIII end and the nearest DpnII site.
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Compartment level Hi-C or eHi-C data analysis
Calling compartments from Hi-C or eHi-C data

We performed compartment level analysis following the method described previously (Lieberman-Aiden et al., 2009). We divide the

genome into 250kb bins and generate the contact matrices between bins for each chromosome. We next normalize the matrixM by

genome distance. For every interaction value xi;j (i is the row number, j is the column number) in matrixM, let the distance for this

interaction be Ljj�ij, and we calculated the average of all interaction values with the same distance avgðPLjj�ijxÞ: Thus, the normalized

matrixM0 is:

x
0
i;j = xi;j

�
avg

�X
Ljj�ij

x

�

We next generated the correlation matrixM00 = corðM0Þ, in which each element x
00
i;j is the Pearson’s correlation coefficient for two

vectors x
0
i;� and x

0
j;� fromM0, representing the similarity of two bins’ interaction pattern. The principal component analysis on the cor-

relation matrix then assigns the genome into two compartments depending on whether the PC1 of a bin is negative or positive value.

We used the H3K4me3 data in each cell type to determine the compartment A and B (More H3K4me3 peaks: compartment A; fewer

H3K4me3 peaks: compartment B). Since H3K4me3 data for the fetal CP and GZ are not available, we used the H3K4me3 data from

fetal cortex instead.

Identifying regions with different neighborhood profiles, or differentially compartmentalized regions (DCRs)

In compartment level analysis, The ± sign of eigenvector, or PC1 value, is used to determine compartment A/B. Additionally, the

actual PC1 values were often used as a semiquantitativemeasurement for the correlation with gene expression and active chromatin,

such as in the reference (Dixon et al., 2015). Therefore, when comparing two samples, a common practice is to directly compute the

differences between the PC1 values, bigger difference indicates more significant compartment switching. However, we found that

this approach can be sometimes misleading when the two samples have extensive changes at compartment level, especially on

smaller chromosomes. In this study, we actually used amore rigorous way to compute the compartment changes between two sam-

ples. To find the statistically significant DCRs, instead of directly using eigenvectors (PC1), we defined a ‘‘similarity score’’to describe

how similar the interaction patterns of the same bin i between cell type A and cell type B are. Only cis data are used.

sA;Bi = cor
�
x

00
i;A ; x

00
i;B

�
Because sA;Bi ˛½ � 1; 1�, we first do data transformation x = ðs + 1Þ=2, then used Beta distribution to model the similarity score.

fðxÞ = xa�1ð1� xÞb�1

Bða;bÞ 0%x%1;a;b> 0

Bða;bÞ is the Beta function; a;b are the shape parameter to describe the Beta distribution. We computed the p value to pick up the

bins with significantly different interaction patterns between two cell types.

p = ProbðX < xj�a; bÞ
To further increase the stringency of DCRs, we also require all DCRs should switch their compartments (the ± sign of the PC1 value

should switch).

Fragment-resolution Hi-C or eHi-C data analysis
Determine the sequencing depth required for fragment-level analysis

The highest possible resolution of Hi-C analysis is between individual restrictive fragments (fragment level). Depending on the restric-

tive enzyme used, the theoretically best resolution for Hi-C is 2 kb (with 6-cutter, e.g. HindIII) or 128 bp (with 4-cutter, e.g. DpnII).

However, the feasibility to achieve high resolution also depends on the sequencing depth. Here we propose a rule-of-thumb to deter-

mine the sequencing depth requirement for high-resolution analysis.

There are�350,000HindIII fragments in human genome (wemerge fragments < 5 kb in to neighboring fragments,�7kb resolution),

and therefore �65 billion possible fragment pairs. With �1 billion total contacts, the average reads number of a fragment pair is only

0.015. Therefore, genome-wide fragment level Hi-C analysis is not possible with billion-scale sequencing depth due to the lack of

statistical power. On the other hand, within a short range (such as�1-2 Mb), data density is high enough so that most fragment pairs

have non-zero values. According to our experience, the density of cis- data is �20 fold higher than trans-; and the cis- data density

within 2Mb is �30 fold higher than over 2Mb (Table S1).

Analyses of the�350,000 HindIII fragments in human genome has an average resolution of 5-10 kb. There are�3.5 billion possible

fragment pairs in cis, and�100million possible pairs with the 2Mbwindow. In order to determine theminimumsequencing depth, we

required the average expected frequency to be > 2 between all fragment pairs within 2 Mb. The purpose is to prevent too many zeros

in the contact matrices. This translates to a requirement of at least 200 million cis- contacts within 2 Mb (or mid-range contacts) after

data filtering.
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It should be noted that themid-range contacts are not evenly distributed within the 2Mbwindow. In the example of GM12878 cells,

with the global average value in 2 Mb being 2, the average contact number decreases when the distance increases, e.g., 6 (100 kb),

2 (500 kb), 1 (1 Mb), and 0.4 (2 Mb). Therefore, unless �2�-5 times more data above minimum are generated, we still expect a

suboptimal performance for the range between 1 Mb and 2 Mb. In a typical Hi-C experiment, �40%–80% of all cis- contacts are

within 2 Mb. Therefore, �300-500 million filtered cis- contacts are required for fragment level analysis within 2 Mb. Depending on

the cis- / trans- ratio of the Hi-C experiments, the minimum number of contacts (cis and trans) after filtering should be �0.5-1 billion

(Table S1).

The same rule also applies to Hi-C data with 4-cutter, which theoretically may achieve finer resolution. For 1kb resolution within

2Mb window (7-fold finer), a minimum of �25 billion contacts (0.5 X 72 billion) is required. To our knowledge, the densest published

dataset is the in situ Hi-C data in GM12878 (4.9 billion total contacts) (Rao et al., 2014), which is roughly enough for 1 kb resolution in

1 Mb window, or 2kb resolution in 2Mb window. Taken together, sequencing depth, not the choice of cutter, is the bottleneck for

kilobase-scale resolution Hi-C analysis due to the cost-effectiveness limitation of current sequencing technology.

Hi-C and eHi-C data filtering for fragment level analysis

This step is largely the same as described in ‘‘Conventional Hi-C data filtering and QC analysis’’ and ‘‘eHi-C data filtering and QC

analysis’’ with additional data filtering at the fragment level. Specifically, for Hi-C data, we keep all ‘‘same-strand’’ reads, discard

all ‘‘inward’’ data for fragment pairs with the size of gap less than 1kb, and discard all ‘‘outward’’ data for fragment pairs with gap

size less than 25kb, as reported previously (Jin et al., 2013). For eHi-C, we also keep all ‘‘same-strand’’ reads, but discard all ‘‘inward’’

data for fragment pairs with the size of gap less than 25kb, and discard all ‘‘outward’’ data for fragment pairs with gap size less than

1kb. We used different rules in eHi-C because strand-directions in eHi-C and Hi-C are opposite (Figure S1E). For example, undi-

gested HindIII sites cause ‘‘inward’’ reads in Hi-C but ‘‘outward’’ reads in eHi-C.

Fragment-resolution Hi-C analysis to identify cis- looping interactions

This part describes the method to analyze cis- Hi-C data within 2Mb window at fragment resolution. The eHi-C data analysis follows

the same idea but is slightly different (section ‘‘Fragment-resolution eHi-C analysis to identify cis- looping intractions’’). We have pre-

viously reported a fragment level Hi-C data analysis to model the significance of ligation product enrichment between any pairs of

HindIII fragments (Jin et al., 2013) based on a previous systematic study of biases in Hi-C data (Yaffe and Tanay, 2011). The pipeline

includes a normalization step that estimates expected frequencies between any two fragments after correcting several explicit Hi-C

biases, a negative binomial model to assess the statistical significance, and a peak-calling step identifying significant fragment pairs

as DNA loops. In this study, we included an additional factor in the normalization step to correct an implicit ‘‘visibility’’ factor, which

can correct unknown sources of biases and improve the normalization results (‘‘A model to estimate expected frequencies between

two HindIII fragments,’’ ‘‘Correcting known sources of biases with explicit approach’’ and ‘‘Implicitly correcting unknown biases

hidden in ‘‘visibility’’’’). We still used a negative-binomial model to compute the p values for each fragment pairs (‘‘Use negative bino-

mial model to compute the significance of pixels’’). Finally, we devised a balanced loop-calling method which reduces biases by

considering both enrichment ratio and p values (‘‘Looping calling and visualization in ratio heatmaps’’).

A model to estimate expected frequencies between two HindIII fragments

In Hi-C, every HindIII fragment has two ends that can form ligation junction with other fragments, and the two ends of the same frag-

ment may have different local mappability and GC content values. We therefore analyze the two ends of a fragment differently. Note

that if two ends i and j belong to the same HindIII fragments, they will have the same length and distance parameters, but different

GC-content and mappability parameters. The goal of this normalization step is to estimate mi;j, the expected number of reads be-

tween two ends i and j. We have developed a new model to compute mi;j, which corrects both known and unknown sources of

Hi-C biases.

mi;j = mi �mj � Fgc
i;j � Li;j � Vi � Vj

In this equation,mi andmj are the mappability of end i and end j. Fgc
i;j is a correction factor for GC-bias. Li;j is the expected cis-con-

tact frequency between end i and end j if both ends are 100%mappable. The explicit correction of factorsmi,mj, F
gc
i;j and Li;j are the

same as described previously (Jin et al., 2013). We introduce two additional factors, Vi and Vj, for the ‘‘visibility’’ of the two ends. The

correction of visibility corrects unknown sources of biases implicitly.

To further explain this model: (1) Mappability bias originates from the sequence alignment step, the mappability of two fragments

are independent from each other, and independent from all other sources of biases. (2) The computation of Li;j corrects biases from

distance and the length of the two fragments. These three parameters are interacting factors affecting the proximity ligation in Hi-C

protocol, which need to be corrected using the joint function (Figure S1M). (3) The GC contents of the two fragments are likely inter-

acting factors, which also need to be corrected using joint function (Fgc
i;j ). On the other hand, as Yaffe et al. pointed out (Yaffe and

Tanay, 2011), the GC content of the two ends introduce bias mainly through affecting PCR efficiency during the library preparation,

which is an independent step from the proximity ligation in Hi-C protocol. Therefore, we assume that the correcting factors in Fgc
i;j and

Li;j are independent from each other. (4) After correcting the aforementioned explicit biases, we assume that the implicit visibility

factors Vi and Vj are additional independent sources of biases that are also independent from each other. Biologically, Vi and Vj

may be understood as the concentration of the two ends in the Hi-C protocol. For example, HindIII sites at open chromatin are

more likely to be digested by restrictive enzyme. Another possibility is that there might be unannotated copy number variants for
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a fragment. (5) Theoretically, the mappability biases can be corrected during visibility correction. An alternative model is: mi;j = Fgc
i;j �

Li;j � Vi � Vj, in which Vi and Vj incorporatemi andmj as implicit bias sources. Here, we still correct mappability explicitly even though

the difference between two models are trivial.

Correcting known sources of biases with explicit approach

This step is largely the same as described previously (Jin et al., 2013). First, local fragment mappability is expected to have a linear

effect on the expected ligation frequency (Yaffe and Tanay, 2011). We used a real valuemi (ranges from 0 to 1) to represent themapp-

ability of fragment i at forward or reverse strand (representing the two ends of the restriction fragment). To calculate themappability of

a fragment, we generated 36-base pseudo-reads every 9 bases within 500 bases from the end of fragment i, and then use bowtie to

determine the fraction of uniquely mapped pseudo-reads.

It has been reported that ligation product processing and sequencingmay be biased due to local GC content 200bp near restrictive

cutting site (Yaffe and Tanay, 2011). We therefore corrected this bias by adjusting mi;j according to the local GC content of the two

fragments. We split all the ends in to 20 equal-size groups according to their GC contents, and calculated two-dimensional GC-bias

matrices (for the fold enrichment of average read counts between groups) using trans- Hi-C data. We corrected GC-bias in cis- Hi-C

data with the GC-bias matrices.

To correct biases from end size and distance, we sorted all the ends based on the length of their corresponding HindIII fragments,

and divided all the ends into 20 equal size groups. We define the distance between two ends being the size of the gap between their

corresponding fragments, and set up 400 groups for distance within the range �0-2Mb, or one group per 5kb distance. Therefore,

group 1 has gap size �0-5kb; group 2 has gap size �5-10kb; group 3 is �10-15kb, etc. Because when we do the data filtering, we

remove ‘‘inward’’ reads between end pairs with gap size < 1kb, in order to be consistent, we further split group 1 into two new groups

with gap size �0-1kb and gap size �1-5kb. Therefore, there are total 401 groups based on distance.

Let Glen
i and Glen

j be the group assignment of ends i and j based on length; Gdist
i;j be the group assignment for the pair of end i and j

based on the distance between the two ends;Ggc
i andGgc

j be the group assignment for the ends i and j based onGC content of its two

ends; and xi;j be the observed paired-end reads count between ends i and j.

We used the following equation to estimate Li;j

Li;j =

 X
k;l

xk;l
mk �ml

!, X
k;l

1

!

For cfk; lg satisfying:

Glen
k = Glen

i ; Glen
l =Glen

j ; Gdist
k;l =Gdist

i;j ; and chrðkÞ= chrðlÞ; mk > 0:2;ml > 0:2

(Minimum mappability values of 0.2 are set to avoid division-by-zero errors). Therefore, this is a joint function of two size param-

eters and the distance parameter. There are 16,040 groups in total with different combination of fragment size and distance.

Fgc
i;j is a correction factor for GC-bias, which can be computed with trans- Hi-C data using the following equation:

Fgc
i;j =

�P
k;l

xk;l
mk �ml

���X
k;l

1
�

�P
u;v

xu;v
mu �mv

���X
u;v

1
�

For cfk; lg satisfying:

Ggc
k = Ggc

i ;Ggc
l =Ggc

j ; chrðkÞschrðlÞ;mk > 0:2; ml > 0:2

And for cfu; vg satisfying:

chrðkÞschrðlÞ; mu > 0:2;mv > 0:2

In this equation, the denominator is the average frequency of all trans- fragment pairs; and the numerator is the average frequency

of a subset of those fragment pairs after stratifying GC-content. Note chrðiÞ is the chromosome where fragment i is in. The same

equation was also used to correct trans- Hi-C data except requiring chrðkÞschrðlÞ.
Implicitly correcting unknown biases hidden in ‘‘visibility’’

We computed visibility for every HindIII end using trans- Hi-C data. Since known sources of biases are corrected explicitly for cis-

data normalization in 2Mb, we need to remove the known biases while calculating visibility factor. The following equation is used

to compute Vi:

Vi =

P
k

xi;k
mi �mk � Fgc

i;k � Flen
i;k�P

u;v

xi;k
mu �mv � Fgc

u;v � Flen
u;v

!,�X
u

1
�
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For cfkg satisfying: chrðkÞschrðiÞ; mk > 0:2; mi > 0:2;

And for cfu; vg satisfying: chrðuÞschrðvÞ; mu > 0:2;mv > 0:2.

This equation counts the total trans- reads for a HindIII end (after correcting the known bias including mappability, GC content and

fragment length), and computes its correction factor by dividing with the average count of all the ends. Fgc is the same correction

factor for the GC-bias computed in ‘‘Correcting known sources of biases with explicit approach.’’ Flen is a correction factor for HindIII

fragment length calculated with trans- data:

Flen
i;j =

�P
k;l

xk;l
mk�ml

�.�P
k;l1
�

�P
u;v

xu;v
mu�mv

�.�P
u;v1
�

For cfk; lg satisfying: Glen
k = Glen

i ;Glen
l = Glen

j ; chrðkÞschrðlÞ;mk > 0:2; ml > 0:2;

And for cfu; vg satisfying: chrðuÞschrðvÞ; mu > 0:2;mv > 0:2.

Finally, after estimating the m values for all the ends, we can sum all end-specific values to obtain expected Hi-C read counts for the

whole fragment. The fragment-specific m values are the Poisson parameter between fragments.

Use negative binomial model to compute the significance of pixels

Two classes of loop calling methods, looking for either ‘‘global enrichment’’ or ‘‘local enrichment,’’ have been developed to identify

cis- chromatin interactions fromHi-C data. However, the identified loops from thesemethods only partially overlapped (Forcato et al.,

2017). This is mainly due to the interference from high background signal at short range, reflected by the strong signal along the di-

agonal in raw contactmatrices. ‘‘Global enrichment’’ methods are highly sensitive to Hi-C data normalization because under- or over-

correction of Hi-C biases will lead to a large number of false positives or false negatives. On the other hand, the alternative ‘‘local

enrichment’’ performs better identifying discrete peak summits with low surrounding signal, but loses its power when surrounding

background signal is high, such as at short-range.

We have previously shown that the Hi-C reads count Xi;j between two fragments i and j can be modeled by negative binomial dis-

tribution (Jin et al., 2013):

Xi;j � NB

�
ri;j =

mi;j

b� 1
; p =

b� 1

b

�

This distribution has mean mi;j and variance b � mi;j, in which b is a constant number. To estimate b, we first selected 20 m values

spanning the range of all mi;j, then we for each of the selected 20 m value, we took all pairs with expected values between 0:99� m

and 1:01 � m (this typically includes at least 100,000 fragment pairs), and then plotted the variance within each group against their

expected reads count. Therefore, b is the slope value between variance and mean estimated from linear regression analysis. For

each dataset, b needs to be re-estimated. We can therefore calculate p value using negative binomial distribution for any pair of frag-

ments pi;j =PðXi;j Rxi;j
�� mi;j; bÞ reflecting the significance of enrichment. Importantly, negative binomial distribution has additive prop-

erties when p is constant: read counts between any two groups of fragments can be modeled by Xi˛I;j˛J � NBðri˛I;j˛J; pÞ, in which I

and J are two disjoint subsets of restriction fragments, and ri˛I;j˛J =
P

i˛I; j˛J
ri;j =

1
b�1

P
i˛I; j˛J

mi;j is dependent on the sum of expected

random collision frequency between two groups of fragments. This additive property is convenient because we can quickly deter-

mine the parameters for statistical tests when neighboring HindIII fragments are merged. Using this model, we can calculate the p

value for any fragment pair i and j: pi;j = ProbðXi;j > xi;j jmi;j; bÞ.
Looping calling and visualization in ratio heatmaps

We computed the enrichment ratio of each pixel and used the value to draw the ratio heatmaps.

ei;j = ðxi;j + dÞ�	mi;j + d



In this equation, d is a dummy number to prevent large ratio when mi;j is very small.

The loop calling procedure identifies red pixels as chromatin interactions. Using p value alone for loop calling is biased toward

short-range, because the data density at short-range is high, a pixel may achieve statistical significance even with modest enrich-

ment. It actually makes better sense to call loops using enrichment ratios. However, using a ratio cutoff is biased toward long-range

because when mi;j is very small due to the low data density, the ratio can be very big but lacks statistical significance. If the dummy

number is too small, the ratio heatmaps have many red noisy pixels at long-range.

We devised a method to address this problem by adjusting the dummy number. For any pixel, the ratio decreases with increasing

d, but its p value does not change. Therefore, if we use a two-fold cutoff, there will be fewer positive pixels when dummy number is

higher. We picked the minimum dummy number so that every pixel passed the two-fold cutoff have p value < 0.001. The dummy

numbers are 6 (H1 hESC), 10 (IMR90, fetal CP, fetal GZ, and adult cortex), 7 (GM12878), 13 (hiPSC, hNPC, hNeuron, and fetal cortex).

These dummy numbers are also used to compute the ratios when we draw the ratio heatmaps. In the ratio heatmaps, we used a

default color scale so that the pixels with over two-fold enrichment are in brightest red.
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Fragment-resolution eHi-C analysis to identify cis- looping interactions

There are some important differences between Hi-C and eHi-C data normalization. First, eHi-C read from a HindIII end is completely

predictable (Figure S1). Therefore, themappability of a HindIII end is only 0 or 1.We therefore first filtered out data fromall the 0mapp-

ability ends. Furthermore, if a HindIII fragment does not haveDpnII sites, it should not generate ligation reads because we usedDpnII

to fragment the DNA. We therefore next removed all the reads from such fragments and excluded these fragments from further anal-

ysis. After this additional data filtering, the resulting model does not involve mappability anymore. As discussed in ‘‘Compare the bias

structure of Hi-C and eHi-C,’’ eHi-C reads are restricted by the size of DNA circles from the ligation product, we therefore need an

additional parameter to model DNA circle size.

mi;j = Fgc
i;j � Fcir

i;j � Li;j � Vi � Vj

In this equation, everything else is the same as Hi-C analysis except that Fcir
i;j is a correction factor for the size of ligation product of

two ends. Let lenHDi be the length form a HindIII end i to its nearest upstream DpnII site, lenciri;j = lenHDi + lenHDj .

The following equations are used for eHi-C analysis:

Li;j = meanðxk;lÞ
For cfk; lg satisfying: Glen

k = Glen
i ; Glen

l = Glen
j ; Gdist

k;l = Gdist
i;j ; chrðkÞ = chrðlÞ.

Fgc
i;j =

meanðxk;lÞ
meanðxu;vÞ

For cfk; lgsatisfying: Ggc
k = Ggc

i ;Ggc
l = Ggc

j ; chrðkÞschrðlÞ, and
for cfu; vg satisfying: chrðuÞschrðvÞ.

Fcir
i;j =

meanðxk;lÞ
meanðxu;vÞ

For cfk; lg satisfying: lencirk;l = lenciri;j ; chrðkÞschrðlÞ, and
for cfu; vg satisfying: chrðuÞschrðvÞ.

Vi =

P
k

xi;k
Fgc
i;k � Flen

i;k � Fcir
i;k�P

u;v

xi;k
Fgc
u;v � Flen

u;v � Fcir
u;v

!,�X
u

1
�

For cfkg satisfying: chrðkÞschrðiÞ, and
for cfu; vg satisfying: chrðuÞschrðvÞ.

Flen
i;j =

meanðxk;lÞ
meanðxu;vÞ

For cfk; lg satisfying: Glen
k = Glen

i ;Glen
l = Glen

j ; chrðkÞschrðlÞ, and
for cfu; vg satisfying: chrðuÞschrðvÞ .

Loop calling reproducibility
Assess the reproducibility of our loop calling method requires independent datasets with adequate sequencing depth. As mentioned

in ‘‘Determine the sequencing depth required for fragment-level analysis,’’ we need�200million mid-range contacts (within 2Mb) for

fragment-level loop calling. Therefore, we performed reproducibility analysis after splitting datasets with�400millionmid-range con-

tacts or more. To summarize, inadequate sequencing depth and batch variation are the two major causes for lower reproducibility;

our peak caller consistently achieves Jaccard Index �0.3 with 60�150K mid-range (< 2Mb) loop calls at �10kb resolution. This

means that �50% of pixels called from one replicate will be called in another replicate. This is a significant improvement compared

to the metrics of existing methods according to (Forcato et al., 2017). Specifically, Forcato et al. reported median JI < 0.03 for cis-

interactions across multiple loop callers. Forcato et al. also reported that at high-resolution, HICCPUS achieved best JI among all

methods because it is more conservative (calling fewer than 10K loops), but the median JI of HICCUPS is still only �0.07.

Loop calling reproducibility in GM12878 and hiPSC cells
The GM12878 Hi-C dataset has 5 biological replicates from two different labs with �385 million total mid-range contacts (Table S1).

We therefore split the 5 replicates into two subsets with roughly equal mid-range contacts (199M and 187M) and compare the repro-

ducibility of chromatin loop callings (Table S1). Using the same peak calling method described above, the two subsets identified 65K

and 84K chromatin loops with 28K overlapping (Figure S4A).

We next explored the reason for the non-reproduced loops in GM12878 cells. Our loop pixel caller requires p values < 0.001, and

ratio > 2 after dummy number adjustment (see ‘‘Looping calling and visualization in ratio heatmaps’’), but when sequencing depth is

ll
Article

Molecular Cell 79, 1–14.e1–e15, August 6, 2020 e13

Please cite this article in press as: Lu et al., Robust Hi-C Maps of Enhancer-Promoter Interactions Reveal the Function of Non-coding Genome in
Neural Development and Diseases, Molecular Cell (2020), https://doi.org/10.1016/j.molcel.2020.06.007



not adequate, loops from one subset may not pass significant test due to low read numbers. We found that most of the non-repro-

duced loops in one subset still have enrichment signal (but less significant) in the other subset. For example, among the 56,564 loops

identified from subset 2 but not subset 1, in subset 1 data 37,106 (66%) have ratios > 1.5, and 43,515 (77%) have p values < 0.05; only

692 (1.2%) do not have any enrichment signal (Figure S4B). Due to this reason, we always identifymore loopswhen data from subsets

are pooled together; the pooled data identity all the overlapped loops and over 80% of the subset-specific non-overlap loops (Fig-

ure S4A). We concluded that inadequate sequencing depth is a major reason for non-reproduced loops, and therefore always use

pooled data when multiple biological replicates are available.

We also performed the same analysis after splitting the hiPSC eHi-C data into two subsets with 172M and 176M mid-range cis-

contacts (Table S1). The two subsets called 64K and 55K loop pixels with �22K common ones (Figure S4C). Again, inadequate

sequencing depth is the major reason for non-reproduced loops (Figure S4D).

Loop call reproducibility in fetal brain
The fetal brain Hi-C dataset is generated by the same lab with a total of �471 million mid-range contacts from 6 Hi-C experiments,

including 3 cortical plate (CP) and 3 germinal zone (GZ) cortex samples (Table S1). The sequencing depth and QC metrics of the

6 samples are quite even (Table S1). Although we treated CP and GZ samples separately in all follow-up analyses, the similarity be-

tween the two samples are very high, most likely reflecting the fact that CP and GZ are two spatially close regions of brain cortex. At

compartment level, CP andGZ show highest similarity (Figure 1D). Ourmethod identified 138K and 141K loops fromCP andGZ sam-

ple, with 71K overlapping (Jaccard index 0.35) (Figure S4E). After pooling CP andGZ data together, we called 244,586 loops covering

99.8% of the overlap loops between CP and GZ, and 78% of non-overlap loops.

Given the high reproducibility between CP andGZ data, we also tried to group this dataset into three subsets (every subset has one

CP and one GZ); each subset has 150�160 million mid-range contacts (Table S1). Again, the three subsets identified similar number

of chromatin loops (114K, 116K and 119K), the overlap between any two subsets is 54�58K loops. 59�64% of chromatin loops from

any subset can be called in at least another subset (Figure S4F, left panel). Again, the pooled dataset can recover nearly 80% of all

loops identified from the subset analysis, including 60�70% of the subset-specific loops (Figure S4F, right panel).

Reproducible neural chromatin loops among 6 neural samples
Finally, we compared the loops identified from 6 neural samples (hNPC, hNeuron, fetal cortex, adult cortex, CP and GZ), and postu-

lated that a meta-analysis of these heterogeneous samples may improve both sensitivity and accuracy, even though the variation

between samplesmay also reflect the tissue- or cell-type specificity.We identified 165K loops that are observed in at least 2 samples,

which are considered credible neural loops (Figure S4K). As expected, this number is higher than loops identified from any sample

alone; averagely �60% of loops from any single dataset are credible neural loops level.

Other data analysis methods
ChIP-seq analysis

ChIP-seq data weremapped to human reference genome hg19 using Bowtie. The first 36 bases of each readwere used for mapping.

We only use non-redundant reads to eliminate possible duplicates from biased PCR amplification. We used MACS (Zhang et al.,

2008) with default parameters to call ChIP-seq peaks.

Network analysis

For network analysis of neuron differentiation chromatin loops, we took all fragments containing TSSs, and all fragments containing

H3K27ac peaks in hiPSC, hNPC or hNeuron. All chromatin loops in the three cell types are used to construct the network. Each frag-

ment is a node and every chromatin loop is an edge. We built the network with NetworkX (Hagberg et al., 2008) and visualized with

Cytoscape (Shannon et al., 2003). The network in Figure 5A is drawn using only a portion of top interactions (�800) based on

enrichment ratios. The resulting network is divided into hundreds of components and the smallest component is two node and

one edge. We defined 603 multi-node components (with at least 5 edges) as candidates of enhancer-promoter aggregates. We

call neuron-specific component if the average ratio of all its edges in hNeuron is > 1.5 fold higher than the average ratio in hiPSC.

174 components satisfied these criteria.

Gene Ontology analysis

For GO analysis, we used RefSeq genes as the background genes downloaded fromUCSC table browser. We downloaded the com-

plete gene sets (function categories) from MSigDB (Molecular Signatures Database, version 5.2) from GSEA website (https://www.

gsea-msigdb.org/gsea).We used one-tailed binomial test to calculate p values of enrichment of any function categories.We used the

R package qvalue to estimate q-values and FDR for the p values. We used a cutoff FDR < 0.05 in the analysis.

GWAS SNP, eQTL, and LD analyses

We compiled lists of GWAS SNPs in neuronal relevant disease and diabetes/obesity relevant disease from the NHGRI-EBI GWAS

catalog (MacArthur et al., 2017) (Table S5). The eQTL data of 44 tissues were downloaded from GTEx portal (Battle et al., 2017).

We calculated linkage disequilibrium (LD) for all pairs of genetic variants within 1Mb, among individuals with global Europe ancestry

estimateR 0.8 in TOPMed freeze5b samples. The global ancestry estimates were derived from local ancestry estimates from RFMix

(Maples et al., 2013) using data from the Human Genome Diversity Project (HGDP) (Li et al., 2008) as the reference panel with seven

populations, namely Sub-Saharan Africa, Central and South Asia, East Asia, Native America, Oceania, and West Asia and North
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Africa (Middle East). Global ancestry for each TOPMed individual is defined as the mean local ancestry across all HGDP SNPs. We

defined the LD of a GWAS SNP being the region that every SNP inside has D’ > 0.8 with the lead SNP. Consequently, the median size

of LD’s is �150kb. A bigger LD should be more inclusive with potential causal SNPs, which is probably beneficial for the study of

SNPs from highly heterogeneous sources provide by GWAS catalog. Additionally, bigger LD also make it more likely that the defined

outside-LD SNP-gene pairs (loop or eQTL) represent distal regulatory relationship.

Predicting GWAS target genes with chromatin loop or eQTL data

For any GWAS lead SNP, we define a loop target gene if its TSS loop to the GWAS LD. Similarly, because eQTL data are in the format

of SNP-gene pairs, we also predict a GWAS SNP’s eQTL target gene if the eQTL data link a SNP in the LD to the TSS. Note that in this

study, we only focused on predicted genes with TSS outside of the GWAS LD. Additionally, since the GTEx only called cis-eQTLs

within 1Mb, we only used chromatin loops in this window for fair comparison.
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