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Common genetic risk variants identified in the
SPARK cohort support DDHD2 as a candidate risk
gene for autism
Nana Matoba 1,2, Dan Liang1,2, Huaigu Sun1,2, Nil Aygün1,2, Jessica C. McAfee 1,2, Jessica E. Davis3,4,5,6,7,8,
Laura M. Raffield1, Huijun Qian9, Joseph Piven10, Yun Li1,11,12, Sriam Kosuri3,4,5,6,7,8, Hyejung Won 1,2 and
Jason L. Stein 1,2

Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder. Large genetically informative
cohorts of individuals with ASD have led to the identification of a limited number of common genome-wide
significant (GWS) risk loci to date. However, many more common genetic variants are expected to contribute to ASD
risk given the high heritability. Here, we performed a genome-wide association study (GWAS) on 6222 case-
pseudocontrol pairs from the Simons Foundation Powering Autism Research for Knowledge (SPARK) dataset to
identify additional common genetic risk factors and molecular mechanisms underlying risk for ASD. We identified one
novel GWS locus from the SPARK GWAS and four significant loci, including an additional novel locus from meta-
analysis with a previous GWAS. We replicated the previous observation of significant enrichment of ASD heritability
within regulatory regions of the developing cortex, indicating that disruption of gene regulation during
neurodevelopment is critical for ASD risk. We further employed a massively parallel reporter assay (MPRA) and
identified a putative causal variant at the novel locus from SPARK GWAS with strong impacts on gene regulation
(rs7001340). Expression quantitative trait loci data demonstrated an association between the risk allele and decreased
expression of DDHD2 (DDHD domain containing 2) in both adult and prenatal brains. In conclusion, by integrating
genetic association data with multi-omic gene regulatory annotations and experimental validation, we fine-mapped a
causal risk variant and demonstrated that DDHD2 is a novel gene associated with ASD risk.

Introduction
Autism spectrum disorder (ASD) is a common neuro-

developmental disorder characterized by characteristic
social deficits, as well as ritualistic behaviors1. Because
ASD is highly heritable (~50–80%)2–6, a number of stu-
dies have been conducted to identify both rare and
common genetic variants contributing to risk for ASD.

While previous studies have successfully identified rare de
novo and rare inherited presumed loss of function
mutations leading to risk for ASD7–14, these de novo
variants do not explain the large heritability and therefore
are missing an important component of ASD risk.
To identify common inherited genetic risk factors,

genome-wide association studies (GWAS) have accumu-
lated over 18,000 individuals with ASD and have begun
discovering genome-wide significant (GWS) loci that
explain some of the inherited risks for ASD15. The pre-
viously discovered three GWS ASD susceptibility loci from
the discovery sample of the iPSYCH-PGC study together
explain only 0.13% of the liability for autism risk, whereas all
common variants are estimated to explain 11.8% of

© The Author(s) 2020
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Hyejung Won (hyejung_won@med.unc.edu) or
Jason L. Stein (jason_stein@med.unc.edu)
1Department of Genetics, University of North Carolina at Chapel Hill, Chapel
Hill, NC 27599, USA
2UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel
Hill, NC 27599, USA
Full list of author information is available at the end of the article
These authors contributed equally: Hyejung Won, Jason L. Stein

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0001-5329-0134
http://orcid.org/0000-0001-5329-0134
http://orcid.org/0000-0001-5329-0134
http://orcid.org/0000-0001-5329-0134
http://orcid.org/0000-0001-5329-0134
http://orcid.org/0000-0001-8340-7153
http://orcid.org/0000-0001-8340-7153
http://orcid.org/0000-0001-8340-7153
http://orcid.org/0000-0001-8340-7153
http://orcid.org/0000-0001-8340-7153
http://orcid.org/0000-0003-3651-0566
http://orcid.org/0000-0003-3651-0566
http://orcid.org/0000-0003-3651-0566
http://orcid.org/0000-0003-3651-0566
http://orcid.org/0000-0003-3651-0566
http://orcid.org/0000-0003-4829-0513
http://orcid.org/0000-0003-4829-0513
http://orcid.org/0000-0003-4829-0513
http://orcid.org/0000-0003-4829-0513
http://orcid.org/0000-0003-4829-0513
http://creativecommons.org/licenses/by/4.0/
mailto:hyejung_won@med.unc.edu
mailto:jason_stein@med.unc.edu


liability15. Therefore, there are more common risk variants
to be discovered, which requires larger sample sizes to
provide sufficient power to detect risk variants of small
effect16–18. The newly established genetic cohort, SPARK
(Simons Foundation Powering Autism Research for
Knowledge) (https://sparkforautism.org/), is planning to
collect and analyze data from 50,000 individuals with
ASD19. SPARK has recently released genotype data for over
8000 families or singletons with ASD, which we utilize here
to increase the power of ASD GWAS.
Once we identify GWS loci, the critical next step is to

understand their biological impact. This is especially
challenging because most GWAS identified loci for
neurodevelopmental disorders and other traits are loca-
ted in poorly annotated non-coding regions with pre-
sumed gene regulatory function20. In addition, most loci
are comprised of multiple single nucleotide polymorph-
isms (SNPs) that are often inherited together, which
makes it difficult to identify the true causal variant(s) and
their regulatory effects21,22. To overcome these problems,
various experimental validation tools have been devel-
oped23–25. One of these tools, a massively parallel
reporter assay (MPRA), simultaneously evaluates allelic
effects on enhancer activity for many variants. In this
assay, exogenous DNA constructs, harboring risk and
protective alleles at an associated variant, drive the
expression of a barcoded transcript. Differences in bar-
code counts between the risk and protective alleles
indicate the regulatory function of that variant24,25. This
assay thus demonstrates the regulatory potential of
individual SNPs and provides evidence of causal variants
within an associated locus.
Though fine-mapping approaches can suggest causal

variants at a locus, they cannot identify target genes
affected by those variants. Several approaches are
designed to link variants to genes they regulate including
expression quantitative trait loci (eQTL)26–28, as well as
chromatin interaction (via Hi–C) assays29–31. Recently, we
developed Hi–C coupled MAGMA (H-MAGMA) which
predicts genes associated with the target phenotype by
integrating long-range chromatin interaction with GWAS
summary statistics32. Together with existing eQTL
resources in the adult and fetal cortex33,34, it is possible to
link variants associated with risk for ASD to target genes
and functional pathways.
In this study, we increase the sample size of existing

ASD GWAS by adding 6222 cases-pseudocontrol pairs
from the genetically diverse SPARK project. Our analysis
identified five loci associated with risk for ASD, including
two novel loci. For one novel locus identified, we used an
MPRA to identify the causal variant within the locus.
Further, we integrated multi-level functional genomic
data obtained from the developing brain, including
eQTLs, chromatin interactions, and regulatory elements,

to identify DDHD2 as a candidate gene involved in ASD
etiology at the MPRA-validated locus.

Methods and materials
This study (analysis of this publicly available dataset)

was reviewed by the Office of Human Research Ethics at
UNC, which has determined that this study does not
constitute human subjects research as defined under
federal regulations [45 CFR 46.102 (d or f) and 21 CFR
56.102(c)(e)(l)] and does not require IRB approval.

SPARK dataset
SPARK participants who received any of the following

diagnoses: autism spectrum disorder [ASD], Asperger
syndrome, autism/autistic disorder and pervasive devel-
opmental disorder-not otherwise specified (PDD-NOS)
were recruited. The samples were enriched for affected
individuals whose parents were also available to partici-
pate. Participants registered for SPARK online at www.
SPARKforAutism.org or at 25 clinical sites across the
country by completing questionnaires on medical history
and social communication as described here: https://
www.sfari.org/spark-phenotypic-measures/. Thus, case
status is based on patient/parent-report.
In this study, participants were drawn from the SPARK

27K release (20190501 ver.) through SFARIBase (https://
www.sfari.org/resource/sfari-base/), which included
27,290 individuals (who were genotyped with a SNP array
and/or whole-exome sequencing [WES]) with phenotype
information such as sex, diagnosis, and cognitive
impairment. The data included probands and their family
members if applicable (e.g., 3192 quads (2798 families
with unaffected siblings, 394 with multiple affected sib-
lings), 2486 trios, and 2448 duos) (Supplementary Fig. 1).
Individuals overlapping with either Autism Sequencing
Consortium (ASC) cohorts or the Simons Simplex Col-
lection (SSC) were excluded by SPARK. Twenty families
in this release overlapped with the Simon’s Variations in
Individuals Project (SVIP) cohort and were subsequently
removed for the genome-wide association analysis (Sup-
plementary Fig. 2) since the SVIP cohort has targeted
probands with 16p11.2 deletions. We also obtained
whole-exome sequencing (WES) data to estimate the
imputation accuracy. Details on genotyping and whole-
exome sequencing data, and pre-imputation quality con-
trol are provided in Supplementary Methods.

Genotype phasing and imputation
Phasing was performed using EAGLE v2.4.135 (https://

data.broadinstitute.org/alkesgroup/Eagle/) within SPARK
samples. Before making pseudocontrols, we removed two
individuals, one each from two pairs of monozygotic twins
with Identity-By-Descent (PI_HAT) > 0.9, by selecting the
individual with lower call rates. We then defined
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pseudocontrols by PLINK 1.936 (www.cog-genomics.org/
plink/1.9/) for trios by selecting the alleles not inherited
from the parents to the case37. We re-phased all SPARK
samples that passed our QC measures with pseudocon-
trols. Imputation was performed on the Michigan impu-
tation server38 (https://imputationserver.sph.umich.edu/
index.html). Since SPARK participants are genetically
diverse, we imputed genotypes using the Trans-Omics for
Precision Medicine (TOPMed) Freeze 5b (https://www.
nhlbiwgs.org/) reference panel which consists of 125,568
haplotypes from multiple ancestries39,40. Imputation
accuracy relative to WES was assessed using a similar
approach to previous work41 (Supplementary Fig. 3) as
described in Supplementary Methods.

Genome-wide association analysis and meta-analysis with
iPSYCH-PGC study
We tested association within the SPARK all case-

pseudocontrol pairs (full dataset; Supplementary Table
1) using PLINK2 generalized linear model (--glm) for
SNPs with MAF ≥ 0.01 and imputation quality score
from minimac4 (R2) > 0.5 (Supplementary Fig. 3). In this
model, we did not include any covariates since cases and
pseudocontrols are matched on environmental variables
and genetic ancestry. We performed secondary GWAS
analyses by subsetting to only specific ancestry groups.
We called ancestry using multidimensional scaling
(MDS) analysis with 988 HapMap3 individuals and one
random case from each trio (Supplementary Fig. 4,
Supplementary Table 2). Ancestry of individuals from
SPARK was called as European, African or East Asian
ancestries if they were within 5 standard deviations of
defined HapMap3 population (CEU/TSI; YRI/LWK; or
CHB/CHD/JPT, respectively) centroids in MDS dimen-
sions 1 and 2. Population-specific GWASs were carried
out using the same association model as described above
for the SPARK all ancestries dataset. Meta-analyses with
iPSYCH-PGC study15 were performed by METAL
(release 2018–08–28)42. Additional information for
iPSYCH-PGC summary statistics is provided in Supple-
mentary Methods.

Investigation of pleiotropic effects for ASD loci
The pleiotropic effects of identified loci were investigated

for phenotypes available in the NHGRI/EBI GWAS catalog
(downloaded October 22, 2019)43 (Supplementary Methods).

Linkage disequilibrium score regression analysis
LD SCore regression (LDSC) (v1.0.0)44,45 was used to

estimate genome-wide SNP based heritability, heritability
enrichment of tissue/cell-type specific epigenetic states,
and genetic correlation across phenotypes for GWAS
meta-analysis results (Supplementary Methods). Prior to
the analyses, we filtered SNPs to those found in HapMap3

and converted to LDSC input files (.sumstats.gz) using
munge_sumstats.py. The pre-computed LD scores for
Europeans were obtained from https://data.broadinstitute.
org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2. For all
LDSC analyses, we used individuals from European
ancestry as described in the “Genome-wide association
analysis (GWAS)” section above.

Estimating polygenic risk score
Polygenic risk scores (PRSs) were calculated based on

the iPSYCH-PGC study15 using PRSice-246 (https://www.
prsice.info/). Details on generation of PRS, sex-stratified
and family-type PRS, and parental origin PRS analyses are
provided in Supplementary Methods.

H-MAGMA
SNP to Ensembl gene annotation was carried out by

Hi–C coupled MAGMA (H-MAGMA) (https://github.
com/thewonlab/H-MAGMA) by leveraging chromatin-
interaction generated from fetal and adult brain Hi–C33,47

as previously described32. Details on H-MAGMA and
functional analyses of H-MAGMA genes are provided in
Supplementary Methods.

Construction of a massively parallel reporter assay (MPRA)
library
Because the novel SPARK associated locus

(chr8:38.19M–chr8:38.45M) was also detected in a
previous schizophrenia GWAS which is better powered,
we obtained a set of credible SNPs for the locus based
on schizophrenia GWAS results48 (see Supplementary
Methods). Ninety-eight credible SNPs were detected in
this locus. We obtained 150 bp sequences that flank
each credible SNP with the SNP at the center (74 bp+
75 bp). Because each SNP has risk and protective alleles,
this resulted in 196 total alleles to be tested. We seeded
HEK293 cells (ATCC® CRL-11268™) in 6 wells (total 6
replicates) to be 70–90% confluent at transfection. We
used lipofectamine 2000 (Invitrogen cat#11668) with
our final MPRA library following the manufacturer’s
instructions. Additional information for construction of
MPRA library is available in Supplementary Methods.
MPRA data was analyzed by the mpra package in R49,50

(https://github.com/hansenlab/mpra) with more details
in Supplementary Methods.

Functional annotation of rs7001340 locus with multi-omic
datasets
To investigate the target gene(s) affected by allelic variation

at rs7001340, we used two expression quantitative trait loci
(eQTL) datasets derived from fetal cortical brain tissue34 and
adult dorsolateral prefrontal cortex33. We also used chro-
matin accessibility profiles from primary human neural
progenitor cells and their differentiated neuronal progeny51,
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as well as HEK293T cells (GSM1008573)52. Further infor-
mation is provided in Supplementary Methods.

Results
GWAS in SPARK dataset identified a new locus associated
with ASD risk
We obtained genotype and clinical diagnosis of ASD via

self-report or parent-report from 27,290 individuals who
participated in the SPARK project19. The majority of data
comprised families, including those where both parents and
multiple children were genotyped (quads; N= 3192 families),
where both parents and one child were genotyped (trios;
N= 2486 families), or where one parent and one child were
genotyped (duos; N= 2448 families) (Supplementary Fig. 1).
Only 68 individuals were ascertained without family mem-
bers (singletons). After genotyping quality control (Supple-
mentary Methods), 375,918 variants from 26,883 individuals
were retained. Because the SPARK dataset did not genotype
unrelated controls, we created pseudocontrols from the
alleles not transmitted from parents to probands37. Case-
pseudocontrol design requires genotyping of both parents, so
singletons and duos were excluded from the analysis. Due to
the diverse ancestry in the cohort (Supplementary Fig. 4,
Supplementary Table 1), genotypes of all individuals
including pseudocontrols were imputed to a diverse refer-
ence panel (TOPMed Freeze 5b reference panel consisting of
125,568 haplotypes). After imputation quality control
(Methods; Supplementary Fig. 2, 3), 8,992,756 autosomal
SNPs were tested for association in 6222 case-pseudocontrol
pairs (SPARK full dataset) consisting of 4956 males and 1266
females from multiple ancestries including European (N=
4535), African (N= 37), East Asian (N= 83) and other
ancestries/admixed individuals (N= 1567) (Supplementary
Fig. 2, Supplementary Table 2). We observed no inflation of
test statistics (λGC= 1.00) (Supplementary Fig. 5), indicating
population stratification was well-controlled when using this
case-pseudocontrol design. We identified two SNPs at one
locus (index SNP: rs60527016-C; OR= 0.84, P= 4.70 × 10–8)
at genome-wide significance (P < 5.0 × 10–8) (Fig. 1a, Table 1,
Supplementary Table 3), which were supported by the pre-
vious largest ASD GWAS15 (OR= 0.95, P= 0.0047) derived
from the PGC and iPSYCH cohorts (Supplementary Fig. 6).

Replication of genetic risk factors for ASD
Given the phenotypic heterogeneity of ASD and

potential technical differences such as genotyping plat-
forms or data processing, we assessed the replication of
genetic risk factors across cohorts by comparing previous
major ASD studies including PGC and iPSYCH
cohort15,53 with the SPARK dataset subset to individuals
of European descent (EUR) (Fig. 1b). Although each
study included multiple ASD subtypes including ASD
from DSM5, Asperger’s, autism/autistic disorder, and Per-
vasive Developmental Disorder–Not otherwise specified

(PDD-NOS) from DSM IV, and approaches differed across
these samples from requiring community diagnosis to best-
estimate diagnosis based on standardized assessment, we
obtained high genetic correlations between the SPARK
EUR dataset and the largest iPSYCH-PGC GWAS (rg=
0.82; P= 5.27 × 10–14), suggesting the genetic risk factors
for autism are largely shared among different ASD GWAS
and are generalizable despite differences in diagnostic cri-
teria and batch effects.
We next performed meta-analysis with SPARK EUR

samples and iPSYCH-PGC samples (Ncase= 18,381 and
Ncontrol= 27,969) to maximize power. The meta-analysis
identified four additional loci associated with risk for ASD
(Supplementary Figs. 7–10). These included three pre-
viously reported loci15 and one novel locus on chromosome
17, where a gene-based test from the iPSYCH-PGC study
has previously shown association with risk for ASD15

(Fig. 1c, Table 1, Supplementary Fig. 9). This novel locus
was also reported to be associated with more than 60
phenotypes including neuroticism54–58, educational attain-
ment59 and intracranial volume60 (index SNPs r2 > 0.8 in
1 KG EUR) (Supplementary Table 4), indicating highly
pleiotropic effects. The SNP based heritability in SPARK
EUR samples was estimated (h2G) to be 0.117 (s.e.= 0.0082)
for population prevalence of 0.01215,61 which was compar-
able with the previous report (h2G= 0.118; s.e.= 0.010)15.
The generalization of effects across ancestries for the

five index SNPs identified (Table 1) was examined (Sup-
plementary Fig. 6, and Supplementary Table 5). The
association results from the cross-ancestry dataset were
mainly driven by the European population, as expected
given the larger sampling from this population. We found
that some regions showed differences in allele frequencies
based on population. For example, rs10099100 was more
common in European and African populations (MAF=
0.33, 0.39 from tested samples, respectively) than in East
Asians (MAF= 0.02 from tested samples), necessitating a
further investigation of genetic risk factors for ASD in
populations of diverse ancestry62,63.
The generalization of genetic effects on risk for ASD

was also confirmed by polygenic risk scores (PRSs)
derived from the iPSYCH-PGC GWAS that showed
higher scores in SPARK EUR cases (N= 4097) compared
to pseudocontrols (N= 4097) (P= 1.61 × 10–19; p value
threshold= 0.01; Nagelkerke’s R2= 1.4%) (Fig. 1d, Sup-
plementary Fig. 11).

Investigation of common variant burden impacting risk for
ASD
We next used PRSs to compare common variant risk

burden among family types, sex, and parent of origin (Fig.
1e-g). Because ASD families with multiple affected sib-
lings were shown to have different segregation patterns
compared with simplex families that have a higher burden
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of de novo mutations11,64,65, we compared the distribution
of PRSs across four family types (Fig. 1e, Supplementary
Table 1). Our results showed no evidence for a difference
in common variant burden impacting risk for ASD in

multiplex families as compared to simplex families. We
note that multiplex/simplex status was indicated by either
enrollment or self-report in a questionnaire and may be
underestimated due to missing survey data.
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Fig. 1 Genome-wide association of ASD in the SPARK dataset. a GWAS result from SPARK full dataset (Ncase+pseudocontrol= 12,444). b Genetic
correlations across ASD GWAS. From left to right, iPSYCH versus PGC53, SPARK EUR versus iPSYCH, SPARK EUR versus PGC and SPARK EUR versus
iPSYCH-PGC study15. c GWAS results from the meta-analysis (SPARK European population and iPSYCH-PGC, Nmax_case+control= 55,420). For Manhattan
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for a difference in the transmission of common variant risk burden from mother versus father.

Matoba et al. Translational Psychiatry          (2020) 10:265 Page 5 of 14



As the prevalence of ASD is higher in males than in
females (OR= 4.20)66, and previous studies have reported
that females with ASD have a higher burden of de novo
variants9,67–69, we also investigated the potential con-
tribution of common variants to the female protective
effect by comparing PRS between sexes. We did not find
evidence that ASD common variant risk burden differs
between females and males (Fig. 1f).
A previous study hypothesized that a new mutation in a

mother, who is less susceptible to developing autism
because of the female protective effect, may be more likely
to transmit risk factors to their children with ASD70. We,
therefore, examined the over-transmission of common
variant risk for ASD from mother to offspring. We found
no evidence of the over-transmission of common variant
risk burden from either mothers or fathers to their
affected children (Fig. 1g).

Contribution of cortical development to risk for ASD
Previous studies suggest an important role of brain

development in ASD15,71. To characterize tissue types
relevant to risk for ASD, we next evaluated heritability
enrichment within active enhancer or promoter regions in
different tissues72 (Supplementary Fig. 12A, Table 5).
Significant enrichment of heritability was observed in
regulatory elements of brain germinal matrix, as well as
primary cultured neurospheres from the fetal cortex
(FDR= 0.004 and 0.015, respectively, Supplementary
Table 6), suggesting that disruption of gene regulation in

these tissues increases the risk for ASD. We further
examined SNP heritability in the developing cortex using
differentially accessible peaks between the neuron-
enriched cortical plate and the progenitor-enriched
germinal zone73 (Supplementary Fig. 12B). We found
significant enrichment in peaks more accessible in the
germinal zone (FDR= 0.008), but not in the cortical plate,
replicating previous reports that genetically mediated
alterations in cortical development play a crucial role in
ASD etiology15.

H-MAGMA identified genes and pathways impacting risk
for ASD
To identify genes associated with risk for ASD from

meta-analysis (EUR only), we applied Hi–C coupled
MAGMA (H-MAGMA)32, which aggregates SNP-level
P-values into a gene-level association statistic with an
additional assignment of non-coding SNPs to their
chromatin-interacting target genes generated from fetal
brain Hi–C47 (Fig. 2a). We identified 567 genes associated
with ASD (FDR < 0.1), including 263 protein coding genes
(Fig. 2b, Supplementary Table 7). Five genes implicated
from common variant evidence (KMT2E, RAI1, BCL11A,
FOXP1, and FOXP2) also harbored an excess of rare
variants associated with ASD74. This overlap between rare
and common ASD risk variants was more than expected
by chance (hypergeometric P= 0.01; Fig. 2c), corrobor-
ating previous findings that common and rare variation
converge on the same genes and pathways32,75,76. We also

Table 1 Genome-wide significant loci associated with ASD risk.

SNPa Position(hg38) EA OA EAF SPARK iPSYCH+ PGC Meta(EUR)b

OR(95%CI) P OR(95%CI) P OR(95%CI) P

Genome-wide significant loci (P < 5 × 10–8)

rs716219 1:96104001 T C 0.34 1.08 (1.03–1.14) 0.003 1.08 (1.05–1.11) 3.99 × 10–7 1.08 (1.05–1.11) 6.42 × 10–9

rs10099100 8:10719265 C G 0.31 1.08 (1.02–1.14) 0.008 1.09 (1.06–1.12) 1.07 × 10–8 1.08 (1.05–1.11) 7.65 × 10–9

rs60527016 8:38442106 C T 0.21 0.84 (0.79–0.90) 4.70 × 10−8 0.95 (0.92−0.99) 0.00466 0.93 (0.91–0.96) 3.05 × 10−6

rs112436750 17:45887763 A AT 0.21 1.07 (1.01−1.14) 0.027 1.09 (1.05−1.12) 1.23 × 10−6 1.09 (1.06–1.12) 2.62 × 10−8

rs1000177 20:21252560 T C 0.24 1.08 (1.02−1.15) 0.014 1.10 (1.07−1.14) 3.32 × 10−9 1.09 (1.06–1.13) 1.34 × 10−9

Suggestive loci (5 × 10−8 ≤ P < 1 × 10−6)

rs6701243 1:98627228 A C 0.38 0.99 (0.94−1.00) 0.610 0.93 (0.90−0.96) 3.07 × 10−7 0.94 (0.91–0.96) 5.90 × 10--7

rs6743102 2:158521946 G A 0.34 0.94 (0.89−0.99) 0.021 0.94 (0.91–0.97) 8.99 × 10−6 0.94 (0.91–0.96) 4.07 × 10−7

rs33966416 4:170285452 CA C 0.50 0.95 (0.90−1.00) 0.038 0.94 (0.91–0.96) 2.73 × 10−6 0.94 (0.92−0.96) 6.99 × 10−7

rs4916723 5:88558577 A C 0.40 1.10 (1.00–1.10) 0.062 1.07 (1.04–1.10) 1.92 × 10−6 1.07 (1.04–1.09) 6.90 × 10−7

rs416223 5:104655775 C A 0.40 1.00 (0.96–1.10) 0.730 1.07 (1.04–1.10) 3.84 × 10−7 1.07 (1.04–1.09) 3.56 × 10−7

rs67248478 6:134711094 C T 0.34 0.94 (0.90–1.10) 0.032 0.94 (0.91–0.96) 3.22 × 10−6 0.94 (0.91–0.96) 3.22 × 10−7

rs76569799 9:73565191 C T 0.15 1.10 (0.99–1.10) 0.076 1.09 (1.05–1.13) 3.90 × 10−6 1.08 (1.05–1.12) 9.99 × 10−7

rs4750990 10:128689762 T C 0.36 1.00 (0.98–1.10) 0.250 1.07 (1.04–1.10) 1.37 × 10−6 1.07 (1.04–1.09) 4.89 × 10−7

rs2224274 20:14780101 C T 0.43 1.00 (0.97–1.10) 0.310 1.07 (1.04–1.10) 2.86 × 10−7 1.07 (1.05–1.10) 5.56 × 10−8

Genome-wide significant and suggestive loci in any of the GWAS analyses and meta-analysis of SPARK European ancestries and iPSYCH+PGC participants are shown.
EA effect allele, OA other allele, EAF effect allele frequency in SPARK full dataset.
aIndex SNPs from loci that survived genome-wide significance in any of the GWASs including meta-analysis.
bMeta-analysis of SPARK European ancestries and iPSYCH+PGC.
P-values < 5 × 10−8 are shown in bold.
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found that 14 H-MAGMA genes were also differentially
expressed in the post-mortem cortex between individuals
with ASD and neurotypical controls (upregulated in ASD:
NFKB2, BTG1, RASGEF1B, TXNL4B, IFI16, WDR73, and
C2CD4A; downregulated in ASD: PAFAH1B1, SEMA3G,
DDHD2, GTDC1 ASH2L, USP19, and ARIH2; FDR <
0.05)77 (Fig. 2d). Rank-based gene ontology enrichment
analysis78 suggested that ASD risk genes were enriched in
188 terms including telencephalon development and
regulation of synapse organization (Fig. 2E, Supplemen-
tary Tables 8, 9).
Since heritability enrichment analyses suggested geneti-

cally mediated impacts on cortical development contribute
to ASD risk (Supplementary Fig. 12), we explored whether
the expression level of ASD risk genes from H-MAGMA is
different between prenatal and postnatal cortex. In this
analysis, we combined H-MAGMA genes from either
adult or fetal brain Hi–C (Supplementary Fig. 13) to
ensure that the enrichment is not driven by the use of
Hi–C from only one developmental time period, such as
observing higher prenatal expression levels of H-MAGMA
identified ASD risk genes exclusively due to the use of fetal
brain Hi–C (Supplementary Table 7,10). As shown pre-
viously15,32, we found ASD risk genes exhibited higher
expression in the prenatal cortex as compared to the
postnatal cortex (P= 2.77 × 10–62) (Fig. 3f). In particular,
the expression level of ASD risk genes was highest
between 20 and 30 post-conception weeks (Supplementary
Fig. 14, Supplementary Table 11). Taken together, our
results demonstrate common risk variants for ASD play an
important role in the developing cortex.

Genetic correlation between ASD and 12 brain and
behavioral phenotypes
Both epidemiological studies and genetic studies sug-

gested the phenotypic comorbidity79–82 or genetic corre-
lation15,83 of ASD with various brain and behavioral
phenotypes. Thus, we evaluated the pleiotropic effect of
ASD risk SNPs with twelve other brain and behavioral
phenotypes48,57,60,84–91 (Fig. 3, Supplementary Table 12).
We observed a novel genetic correlation between ASD
and cigarettes per day (rg= 0.16, P= 8.80 × 10–5), indi-
cating a partially shared genetic basis between risk for
ASD and addictive smoking behavior. We also replicated
positive genetic correlations previously detected for seven
phenotypes (FDR < 0.05)15, providing further support for
a shared genetic basis of multiple neuropsychiatric
disorders83,92.

Functional validation to fine-map causal variants and
prioritize genes
Interestingly, the novel locus identified by the SPARK

full dataset (rs60527016 at chr8:38.19M–chr8:38.45M,
Figs. 1a, 4a) was previously identified as a pleiotropic
locus in a recent cross-disorder meta-analysis on
eight psychiatric disorders83, as well as a schizophrenia
GWAS48 (Supplementary Fig. 15). This locus was not only
associated with ASD but also with schizophrenia, bipolar
disorder and obsessive-compulsive disorder (OCD), sug-
gesting that understanding the regulatory mechanism at
this locus may reveal the basis for pleiotropic effects
across psychiatric disorders. The index SNP (rs60527016)
was located within a 300 kb LD block (r2 > 0.5 in SPARK
full dataset) that contains seven genes (Fig. 4a). To
prioritize causal variants within this locus, we performed a
massively parallel reporter assay (MPRA)24,25 on 98
credible SNPs in this region in HEK 293 cells (Supple-
mentary Fig. 15, 16, 17). MPRA measures barcoded
transcriptional activity driven by each allele in a high-
throughput fashion (Supplementary Fig. 16). Surprisingly,
SNP rs7001340 exhibited the strongest allelic difference in
barcoded expression (P= 1.51 × 10–24) even though it is
37 kb away from the GWAS index SNP (r2= 0.85 with the
index SNP in SPARK full dataset) (Fig. 4a, b, Supple-
mentary Table 13), demonstrating the regulatory potential
of this SNP and suggesting its causal role in psychiatric
disorders, including ASD. While MPRA was performed in
HEK cells, the SNP was located in a regulatory element
present in both HEK cells and neural progenitors, with
higher chromatin accessibility in human neural progeni-
tors compared with postmitotic neurons51 (Fig. 4a, Sup-
plementary Fig. 17), indicating its regulatory potential in
the developing brain. The risk allele (T) at this SNP was
associated with downregulation of barcoded expression in
MPRA (Fig. 4b, Supplementary Fig. 16), and was predicted
to disrupt two transcription factor binding motifs93

P
sy

ch
ia

tri
c/

C
og

ni
tiv

e
A

dd
ic

tio
n

D
eg

en
er

at
iv

e
br

ai
n

 d
is

or
de

rs
B

ra
in

 s
iz

e

P = 0.93

P = 0.63

P = 0.68

P = 0.32

P = 1.76x10−5

P = 5.92x10−9

P = 2.58x10−6

P = 4.00x10−4

P = 3.18x10−12

P = 2.08x10−17

P = 2.41x10−11

P = 1.68x10−26

Intracranial volume

Alzheimer’s disease

Parkinson’s disease

Drinks per week

Cigarettes per day

Cannabis use

Neuroticism

Bipolar disorder

Schizophrenia

IQ

ADHD

MDD

0.0 0.2 0.4
Genetic Correlation (rg)

Fig. 3 Genetic correlation of ASD against twelve brain and
behavioral phenotypes. The x-axis represents an estimate of the
genetic correlation (rg). Error bars represent the 95% confidence
interval. P-values at FDR < 0.05 are shown in bold. MDD major
depressive disorder, ADHD attention-deficit/hyperactivity disorder.

Matoba et al. Translational Psychiatry          (2020) 10:265 Page 8 of 14



Differential chromatin 
 accessibility
FDR > 0.05 
 (No significant difference)

logFC > 1 
 (Neuron >> Progenitor)

0 < logFC < 1
(Neuron > Progenitor)

-1 < logFC < 0
(Progenitor > Neuron)

logFC < -1 
 (Progenitor >> Neuron )

10.50

10.75

11.00

11.25

11.50

C/C C/T T/T
rs7001340

D
D

H
D

2 
no

rm
al

iz
ed

 x
pr

es
si

on

Fetal Brain
Beta = -0.080 P = 2.21 x10-13

1.2

1.4

1.6

1.8

2.0

C T

B
ar

co
de

d 
ex

pr
es

si
on

logFC = -0.72 P = 1.58x10-22

rs7001340

LD (r²) to 
MPRA index SNP

0.8 - 1.0
0.6 - 0.8
0.4 - 0.6
0.2 - 0.4
0.0 - 0.2

GWAS
MPRA 
eQTL

index SNP

−2

0

2

C/C C/T T/T
rs7001340

D
D

H
D

2 
no

rm
al

iz
ed

 e
xp

re
ss

io
n

Adult Brain
Beta = −0.177 P = 1.38x10-20

AS
D 

G
W

AS
-lo

g 10
 P

DD
HD

2 
eQ

TL
-lo

g 10
  F

DR
M

PR
A

-lo
g 10

  F
DR

AT
AC

-S
eq

de
pt

h

Chromosome 8

38.2 mb

38.3 mb

38.4 mb

38.5 mb

0
2
4
6
8

10
12

0

5

10

15

0
5

10
15
20

0
5

10
15
20
25

0
2
4
6
8

10
12

0
2
4
6
8

10
12

ASH2L BAG4 C8orf86
DDHD2 FGFR1

LETM2

LSM1 NSD3

PLPP5
STAR

rs60527016rs7001340

rs2234549

rs9643870

Fetal Brain

Adult Brain

Neuron

Progenitor

A

B C D

Fig. 4 Identification of putative causal variant and gene impacting risk for ASD. a Annotated locus plot near rs60527016 ASD risk index variant,
from top panel to bottom, ASD associations within SPARK full dataset (n= 6222 case-pseudocontrol pairs), eQTL for DDHD2 in fetal brains (n= 235)
and adult brain (n= 1387), MPRA expression (n= 6), ATAC-seq averaged depth in neuron (n= 61) and progenitor (n= 73). Differential open
chromatin accessibility peaks from ATAC-seq, and gene model (NCBI Refseq). LD was calculated to rs7001340 within SPARK parents of cases, fetal
brain donors, or 1 KG EUR and colored accordingly. b The barcoded expression level of mRNA based from each allele at rs7001340 from the MPRA
experiment. c The expression level of DDHD2 by rs7001340 genotypes in the fetal brain. d The expression level of DDHD2 by rs7001340 genotypes in
adult brain. Individuals with allele dosage (0–0.1 as C/C, 0.9–1.1 as C/T, 1.9–2.0 as T/T) are shown. For b to d, ASD risk allele for rs7001340 is T and
protective allele is C.

Matoba et al. Translational Psychiatry          (2020) 10:265 Page 9 of 14



(TBX1 and SMARCC1) (Supplementary Fig. 18), provid-
ing a possible mechanism of action of this variant. We
next investigated potential target genes impacted by reg-
ulatory changes at this SNP by using eQTL data from
fetal34 and adult brain tissues33. Expression levels of three
eGenes were significantly associated with this SNP
(DDHD2 from the fetal brain and DDHD2, LSM1, LETM2
from the adult brain) (Fig. 4a, Supplementary Fig. 19). Of
these three genes, two genes (DDHD2, LETM2) showed
the direction of the effect expected from the MPRA result
(risk allele downregulates the eGene). It is of note that
DDHD2 was identified in both fetal and adult brain eQTL
datasets (beta=−0.080, P= 2.212 × 10–13; beta=−0.177,
P= 1.38 × 10–20, respectively; Fig. 4c, d). We further
validated the association between DDHD2 and ASD by
additional transcriptome wide association study (TWAS)
in the brain (PrediXcan94–96 and FUSION97) (Supple-
mentary Fig. 20)28,98–101. Notably, DDHD2 was also sig-
nificantly downregulated in the post-mortem cortex of
individuals with autism (logFC=−0.28, FDR= 0.013),
providing an added layer of evidence supporting its role in
ASD risk77. DDHD2 was also identified by H-MAGMA
(Fig. 2f), and a copy number variation (CNV) containing
DDHD2 (deletions) was found in proband-sibling pairs
with discordant social-behavior phenotypes102. Collec-
tively, by integrating existing multi-level functional
genomic resources and an experimental fine-mapping
approach using MPRA, we suggest DDHD2 as a strong
candidate gene impacting risk for ASD.

Discussion
In this study, we increased sample sizes for ASD GWAS

to Ncase(max)= 24,063, Ncontrol(max)= 34,191 and identified
five loci associated with risk for ASD (four from European
only meta-analysis, one locus from SPARK project alone),
including two new loci (marked by index SNPs
rs60527016 and rs112436750). These loci have pleiotropic
effects on multiple psychiatric disorders including schi-
zophrenia (for rs60527016 and rs112436750), bipolar
disorder, and OCD (for rs60527016).
Using a PRS derived from a previous study15, we found

enrichment of risk variants in SPARK cases, indicating the
contribution of common genetic risk factors to ASD is
consistent across cohorts. However, despite several
hypotheses that rare variants associated with risk for ASD
are enriched in certain subgroups of individuals with
ASD, such as in females compared to males (female
protective effect)9,67–69,103, multiplex families compared
to simplex families11,64,65, or maternal alleles compared to
paternal alleles10,70, we do not find evidence to support
the increased burden of common risk variants within
those subgroups. This result indicates potential rare and
common variant differences in contribution to subgroup
risk for ASD. However, it is notable that similar to GWAS

in other neuropsychiatric disorders104,105, PRS explained
only a small percent of variance in risk (1.4%). Moreover,
given the small sample size of specific subgroups (N= 835
in female whereas N= 3262 in male, N= 14 for families
with multiple affected children versus N= 3618 with one
affected children), our study may have limited power to
identify the differences among subgroups. Thus, a larger
sample size would be warranted to compare the difference
in the role of common variants within these categories.
Identifying locations in the genome associated with risk

for ASD does not in itself lead to insights into what tissues
or developmental time points are crucial for the etiology
of ASD. Here, by integrating SNP association statistics
with existing annotations of regulatory elements active
during specific developmental time periods or within
specific brain regions, we found an excess of common
genetic risk for ASD in the fetal brain regulatory elements
(brain germinal matrix and primary cultured neuro-
spheres from the fetal cortex), and progenitor enriched
germinal zone of the developing cortex, confirming pre-
vious findings that alterations of gene regulation in the
prenatal cortex play a key role in ASD etiology15.
To further understand genes leading to risk for ASD, we

applied a recently developed platform, H-MAGMA32 and
identified 263 putative candidate protein-coding risk
genes. H-MAGMA genes are highly expressed in the
prenatal brain, similar to the enrichment of ASD risk
genes with rare variations during neurodevelopment106.
This result suggests potential molecular convergence
regardless of classes of mutation, which is supported by
five genes (previously identified KMT2E and newly iden-
tified RAI1, BCL11A, FOXP1, and FOXP2) that are
affected by both rare and common variation.
Since identification of a GWS locus does not elucidate the

causal variant(s), we performed MPRA and identified a
potential causal SNP (rs7001340) at a novel ASD locus
discovered in the SPARK sample. Interestingly, the indivi-
dual variant with the strongest regulatory effect (rs7001340;
r2= 0.85 with the index SNP in SPARK full dataset) was
different from the SNP with the strongest association with
ASD (rs60527016), highlighting the importance of experi-
mental validation in identifying causal variants. It should be
noted that the regulatory effects of these variants were
assessed in non-neural (HEK) cells. Although this reg-
ulatory element was found in both HEK cells and neural
progenitors (Supplementary Fig. 17), further validation of
these effects in ASD-relevant cell types would provide
increased confidence in declaring this SNP as causal. The
experimentally validated regulatory SNP (rs7001340) is in
the intron of LETM2, and is also an eQTL for LETM2,
LSM1 (247 kb away) and DDHD2 (173 kb away), indicating
that the SNP functions as a distal regulatory element. The
risk allele (T) was associated with decreased expression of
barcoded transcripts in the MPRA and downregulation of
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DDHD2 from eQTL in both fetal and adult brains, implying
a consistent direction of the allelic effects on gene regula-
tion. The risk allele showed the same direction of effect for
LETM2 in adult brain tissue, but was not significantly
associated in fetal brain tissue (P-value= 0.33). Intriguingly,
DDHD2 was also downregulated in the cortex from indi-
viduals with ASD compared to neurotypical controls77,
providing an additional level of support for this gene as a
risk factor for ASD. DDHD2 (DDHD domain-containing
protein 2), also known as KIAA0725p, encodes a phos-
pholipase and is localized in the Golgi107. DDHD2 plays a
role in the efficient regulation of membrane trafficking
between the Golgi and cytosol107 and is highly expressed in
the brain108–110. Mutations in DDHD2 have been previously
found in individuals with spastic paraplegia type 54
(SPG)110–112. Ddhd2 null mice exhibited motor and cog-
nitive impairments113, which are frequent comorbidities of
ASD114. We, therefore, conclude DDHD2 is a strong can-
didate risk gene for ASD through multiple lines of evidence.
There is still a large amount of common variant heritability

not explained in this study indicating that further increases in
sample size will be necessary to explain the common
inherited component of ASD risk. While the combination of
TOPMed imputation and the case-pseudocontrol study
model enabled us to include individuals from multiple
ancestries, the case-pseudocontrol model is lower powered
compared to case-unscreened control models because a
pseudocontrol might have greater liability for ASD than the
average individual in the population115. In addition, the case-
pseudocontrol model cannot incorporate duos or singletons
due to the lack of parental genotype information, which
resulted in over 2000 individuals with ASD with genotyping
information in the SPARK project not being included in our
analysis. Moreover, this model has the disadvantage that X-
chromosome cannot be analyzed due to lack of untrans-
mitted genotype information from the father. Future studies
could potentially solve this problem and also increase power
by including all cases available in SPARK and using
unscreened population matched controls116. Secondly,
although we performed population stratified GWAS, the
limited number of individuals for some populations (e.g., 37
from AFR and 83 from EAS) may lead to a large standard
error in the estimate of the effect size. Also, subsequent
analyses including PRS, LDSC regression, and H-MAGMA
were limited to individuals from European ancestries only,
because most resources and software are designed to be used
only within one population, generally European ancestry117.
Including other ancestries for these analyses will be able to
uncover risk factors shared or specific to existing human
populations.
In summary, ASD GWAS in the SPARK dataset and

meta-analysis with previous GWAS identified two new
susceptibility loci. By integrating existing multi-level
functional genomic resources and experimental tools

such as MPRA and eQTL, we highlight DDHD2 as a
novel high confidence ASD risk gene impacted by a distal
common variant within a regulatory element present in
neural progenitors of the developing cortex. This strat-
egy can be broadly applied to common variant risk loci of
multiple neuropsychiatric disorders to identify causal
variant(s), regulatory regions, cell-types, and genes
whose misregulation leads to risk for neuropsychiatric
disorders.
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