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ABSTRACT

Polymorphisms in the target mRNA sequence can
greatly affect the binding affinity of microarray
probe sequences, leading to false-positive and
false-negative expression quantitative trait locus
(QTL) signals with any other polymorphisms in
linkage disequilibrium. We provide the most
complete solution to this problem, by using the
latest genome and exome sequence reference
data to identify almost all common polymorphisms
(frequency >1% in Europeans) in probe sequences
for two commonly used microarray panels (the
gene-based Illumina Human HT12 array, which
uses 50-mer probes, and exon-based Affymetrix
Human Exon 1.0 ST array, which uses 25-mer
probes). We demonstrate the impact of this
problem using cerebellum and frontal cortex
tissues from 438 neuropathologically normal individ-
uals. We find that although only a small proportion
of the probes contain polymorphisms, they account
for a large proportion of apparent expression
QTL signals, and therefore result in many false
signals being declared as real. We find that the
polymorphism-in-probe problem is insufficiently

controlled by previous protocols, and illustrate this
using some notable false-positive and false-
negative examples in MAPT and PRICKLE1 that
can be found in many eQTL databases. We recom-
mend that both new and existing eQTL data sets
should be carefully checked in order to adequately
address this issue.

INTRODUCTION

Expression quantitative trait locus (eQTL) studies look
for association signals between genetic variation (typically
single nucleotide polymorphisms, or SNPs) and gene ex-
pression. Here, we use ‘eQTL’ to refer to all kinds of ex-
pression quantitative trait loci, whether arising from
association with gene-level or exon-level expression
patterns. These eQTL studies have provided insights into
the mode and regulatory action of gene-level expression
and the differential expression of alternatively spliced
transcripts, and have provided important insights into
the causal mechanisms behind some genome-wide associ-
ation study signals (1–3).
It is anticipated that RNA-seq will become the future

platform of choice for these studies. However, the proto-
cols for this technology are still immature, and the costs
for assaying large numbers of individuals are still high.
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For now, older platforms relying on microarrays remain
important, not least because large and valuable
repositories of data exist based on this technology.
Expression microarrays work through the binding of
oligonucleotide probe sequences to expressed mRNA.
Two widely used examples are the Illumina Human
HT12 array, which uses 50-mer probes biased towards
the 30 end of mRNA transcripts to estimate whole-gene
levels of expression, and the Affymetrix Human Exon 1.0
ST array, which uses 25-mer probes, typically grouped in
sets of four per exon, to estimate exon-specific levels of
expression.
All microarrays are susceptible to a polymorphism-

in-probe problem, which arises because probes are typic-
ally designed to match one reference sequence only. Thus
sequences which depart from this reference, either due to
the presence of different nucleotides (i.e. SNPs) or (par-
ticularly) due to the presence or absence of nucleotides
(i.e. indels), are likely to exhibit a weaker binding
affinity for the probe in question (4). This results in an
apparent association between genotype and expression,
confounding eQTL studies that are looking for just such
a signal. Furthermore, this problem will not only generate
a false eQTL signal with the polymorphism in the probe
sequence, but also localized linkage disequilibrium (LD)
will ensure that all polymorphisms in high LD with the
offending polymorphism will likewise display a false asso-
ciation signal.
We note that an analogous problem can arise in RNA

sequence-based eQTL studies. Allele-specific biases may
occur when aligning RNA sequence reads to a single ref-
erence genome. Addressing these biases is an active line of
enquiry in the field of allele-specific expression studies (5–
7). We anticipate that aligning reads to personal genomes
(e.g. via exome sequencing) will provide the best solution
to this problem in the context of RNA sequencing.
Previous microarray-based eQTL studies have dealt

with the polymorphism-in-probe problem with varying
degrees of thoroughness and with considerable differences
both in how investigators sought to identify suspect
probes and also in how they then chose to remove
suspect eQTL signals based on this information (see
Supplementary Table S1 for selected examples). Several
studies have attempted to quantify this problem empiric-
ally, either explicitly or as part of a biological result paper
(Table 1), but again they vary in protocol (8–14). Several
factors are likely to have led investigators to underesti-
mate the scale of this issue. These include incomplete ref-
erence information on the location of all common SNPs
and indels, associated difficulties in applying high quality
imputation techniques to enable the prediction of
non-genotyped SNPs and a lack of appreciation for the
possibility of false associations due not only to genotyped
polymorphisms within the probe sequences, but also poly-
morphisms in LD located outside the probe sequence and
other polymorphisms like indels.
This article aims to deal with this problem comprehen-

sively. First, using the most recent releases of the 1000
Genomes (March 2012) and NHLBI Exome Sequencing
Project (NHLBI-ESP) together with data generated on
two popular platforms, we provide the most

comprehensive method to date for the identification and
removal of suspect eQTL signals due to the
polymorphism-in-probe problem. Second, we conduct a
systematic investigation of the effect of the signal
removal protocol on the quality of downstream eQTL
signals. Third, we consider and evaluate the available
solution for this problem. And finally, we provide some
guidance and a website for users on how to identify probes
that may contain polymorphisms.

MATERIALS AND METHODS

Data source

To demonstrate the extent of this problem, we used data
from two consortia that have genotyped and expression
profiled human cerebellum (CRBL) and frontal cortex
(FCTX) from neuropathologically normal individuals
using two popular platforms. Details on the data set gen-
eration and characteristics are given in the Supplementary
Methods and summarized in Supplementary Table S2.
Briefly, the Illumina HT12 data set consists of 304 indi-
viduals profiled by the North American Brain Expression
Consortium (NABEC) (15–17), whereas the Affymetrix
Human Exon data set consists of 134 individuals
profiled by the UK Brain Expression Consortium
(UKBEC) (18). In terms of probe design, the Illumina
HT12-v3 BeadChip Array uses 50-mer probes whereas
the Affymetrix Human Exon 1.0 ST array uses sets of
25-mer probes designed to target individual exons
(usually 4 probes per set), the basic unit of expression in
this case. These two arrays are used in the large majority
of expression QTL studies to date (Supplementary
Table S1).

The two consortia used different genome-wide
genotyping arrays but both imputed additional markers
(�5.8 million SNPs) using the 1000 Genomes (March
2012) data, thereby improving the coverage in SNPs
between both data sets for eQTL analysis. The eQTL
analysis was restricted to the autosomal regions of the
genome for expression and genotype data.

Expression QTL analysis and LD-resolved signal
identification

We tested the association between each SNP and each ex-
pression profile assuming an additive genetic model for
SNPs. The computation was done using MatrixEQTL
software (19) and R (http://www.r-project.org/) on a
high performance linux-based computer cluster.

The process of imputation and natural LD across the
genome, while useful to identify causal variants, does
create a problem in that eQTLs from SNP-rich high LD
regions would be represented several times by LD proxy.
Therefore, we treated multiple associations for a given
probe/probeset as a single signal if the associated SNPs
were in pairwise LD of r2> 0.5 with each other, and the
SNP with the smallest P-value as the ‘LD-resolved’ eQTL.

We consider an eQTL signal as cis-acting if the hit SNP
is located within 1Mb of the transcription start site of the
associated transcript.
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Polymorphism reference data sources and identification of
polymorphism-containing probes

We define a ‘suspect cis-eQTL’ to be any cis-eQTL signal
where the relevant probe contains a polymorphism with a
minor allele frequency >1% in Europeans, regardless of
the LD between the hit SNP and the polymorphism-
in-probe. To identify probes containing polymorphisms,
we considered several different genetic variation reference
data sets, which differ in their completeness. The smallest
is the set of SNPs available on the genotyping chip
(Illumina HumanHap550 for the NABEC data set and
Illumina Omni-1M Quad for the UKBEC data set).
We then considered the CEU panel of the final release
of HapMap (release #28, merged Phase I+II+III data),
although one should note that most of the studies listed in
Supplementary Table S1 used earlier versions of HapMap.
Next, we considered the SNP and indel data of the
European panel (n=381) of the latest version of the
1000 Genomes Project (March 2012: Integrated Phase I
haplotype release version 3, based on the 2010–11 data
freeze and 2012-03-14 haplotypes). Finally, we considered
the SNPs (average read depth� 10) from the Exome
Variant Server, NHLBI-ESP, Seattle, WA (URL: http://
evs.gs.washington.edu/EVS/) (accessed 11 May 2012),
taken from 3510 European Americans drawn from
multiple ESP cohorts. In all reference data sources, we
restricted to polymorphisms that were identified with at
least 1% allele frequency in European descent samples.
The list of probes and probesets used in Affymetrix

Exon 1.0 ST and Illumina HT12 in this article along
with the positions of the polymorphism-in-probe (if any)
is given in Supplementary Table S5.

Probe masking for Affymetrix Exon 1.0 ST Array data

Affymetrix probes are grouped into probesets of typically
four probes, which measure the expression of a given
exon. If one of the four probes contains a polymorphism
and three good one remain, we re-estimated the exon
signal from the remaining three. We refer to these as
‘altered’ probesets. If less than three probes remain
(either because more than one probe has a polymorphism
or because of other QC-related drop out of probes) then
the remaining information was considered insufficient and
the probeset was discarded. Masking was done using
Affymetrix Power Tools (see Supplementary Table S2
for codes). Probe masking has the advantage that both
false-positive and false-negative eQTL signals can be
recovered.

Conditional analysis for rescuing suspect cis-eQTLs
from discarded probes/probesets

We applied conditional analysis by including the genotype
dosage (number of minor alleles in the genotype) of the
polymorphism in probe as a covariate in the linear model
regressing the expression of a discarded probe/probeset
against the SNP of interest. Multiple covariates were
used if more than one polymorphism in the probe or
probeset was found. We note that this method can in prin-
ciple correct both false-positive signals (where the only

signal is from the polymorphism-in-probe) and false-nega-
tive signals (where the polymorphism-in-probe counter-
acts the true signal). However, unlike probe masking,
true signals can only be recovered if the truly associated
SNP is in low LD with the polymorphism in the probe.
High-LD SNPs are irretrievably confounded and unre-
coverable by this method. Indeed, any SNPs that are in
perfect LD with the corresponding polymorphism-
in-probe will fail to fit in the conditional model, and
must be assigned a conditional association P-value of 1
regardless of whether they are a true hit or not. The
method also requires that the polymorphism-in-probe
genotype be known for all individuals in the eQTL study
(either via imputation or more directly via sequencing).

LD filtering for rescuing suspect cis-eQTLs from
discarded probes/probesets

We applied LD filtering by choosing an arbitrary thresh-
old for pairwise LD between the SNP of interest and the
polymorphism-in-probe, to rescue cis-eQTLs with low
LD. In contrast to conditional analysis, LD values can
be obtained directly from the reference data source and
therefore knowledge of the polymorphism-in-probe
genotype for individuals in the eQTL data set is not
required. We note that this method can only rescue
false-positive signals, not false-negative ones, and further-
more, the rescued signals still carry some probability of
being false positives via LD (and indeed we shall show this
probability remains high even for very stringent LD
thresholds).

An efficient approach to identifying probes containing
polymorphism

The start and stop positions of probes from commercial
arrays are generally available from the microarray chip
manufacturer’s websites. The positions of the variants
are available from the latest releases of public projects
such as the 1000 Genomes or NHLBI-ESP or other
in-house sequencing projects. After obtaining this, one
could then scan for overlapping variants in between the
start and stop positions of every probe. Although this can
be coded in many ways, we found the intersectBED tool,
which uses the concept of an interval tree from the
BEDtools suite (20), to be efficient. For example, it took
approximately 3 s to search through 6 million SNPs and
indels for 5000 probes. The codes for implementing this
are given in Supplementary Methods. Special care is
required when dealing with insertion polymorphisms. A
user-friendly implementation (PiP Finder) is available at
http://bit.ly/pipfinder using the final variation set defined
here.

RESULTS

Proportion of probes (and probesets) containing
polymorphism(s) in probe sequence

Using different reference data sources for defining poly-
morphisms, we identified the number of probes/probesets
affected by the polymorphism-in-probe problem in both
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datasets (Table 2). The difference between the two datasets
in the proportion of probes / probesets affected is roughly
proportional to the amount of mRNA sequence covered.
As a result of probe drop out and overlapping probes, each
Affymetrix Human Exon 1.0 ST Array probeset covers on
average 72.3 unique nucleotides, compared with the 50 nu-
cleotides of each Illumina HT12 Expression Array, which
explains why the proportion of altered plus discarded
Affymetrix probesets is higher than the proportion of dis-
carded Illumina probes (i.e. 15.8% vs. 11.7% for the latest
polymorphism reference data source) (see ‘Materials and
Methods’ section for definitions of ‘altered probeset’ versus
‘discarded probeset’).
As one might expect, as the number of polymorphisms

available in the reference data source increases, so the true
extent of the polymorphism-in-probe problem becomes
more evident. Since the majority of expression QTL
studies listed in Supplementary Table S1 have attempted
to identify SNP-containing probes using earlier HapMap
information, it is important to note the considerable
increase in the number of SNPs and the availability of
data on indels between the final release of HapMap and
the current release of 1000 Genomes (March 2012).
Therefore, even findings from these studies have to be
rigorously checked for any residual polymorphism-
in-probe problem.

Proportion of LD-resolved cis-acting eQTLs arising from
probes containing polymorphism(s) in probe sequence

We investigated the number of LD-resolved cis-acting
eQTLs (<1Mb from transcription start site of associated
transcript, SNPs in a single LD block counted as one
signal) that can be considered suspect because they are
associated with polymorphism-containing probes/
probesets. We considered a wide range of significance
thresholds, polymorphism reference sources and different
brain regions (Figure 1).
We found that the proportion of the LD-resolved cis-

eQTLs affected by polymorphism-in-probe is much larger

than the overall proportion of probes affected (Tables 2
and 3). This finding is consistent across the two brain
regions and across data sets. In the frontal cortex of
the Affymetrix Human Exon data set, we found that up
to 90% of the declared eQTL signals involved
polymorphism-containing probes when we should have
expected only 6.1% based on the overall proportion of
such probes. Table 3 illustrates this point by tabulating
the number of suspect LD-resolved cis-eQTLs at P-
value< 10�12 when using the European ancestry panels
of the 1000 Genomes Project (March 2012) and
NHLBI-ESP.

The exon-level cis-eQTL results generated using the
Affymetrix array (25-mer probe design) are much more
affected by the polymorphism-in-probe problem than
those results generated using the Illumina array (50-mer
probe design). This is in agreement with previous studies
showing that the presence of a polymorphism in a longer
sequence has a less pronounced effect on the binding
affinity than in a shorter sequence (21). However, the en-
richment of false positives at gene-level by averaging
exon-level data is comparable with the performance of
the Illumina array (Supplementary Table S3).

Finally, we note that the proportion of suspect cis-
eQTLs generally increases with more stringent P-value
cut-offs. Therefore, and somewhat counter-intuitively,
the more significant a result is the more likely it is to be
a false positive.

When we repeated the analysis with trans-eQTL sig-
nals, we also saw a small, but noticeable, enrichment of
false positives (Supplementary Figure S1). This affects
some of the commonly presented statistics from eQTLs
studies such as cis- to trans-eQTL ratios (Supplementary
Figure S2).

Approaches to dealing with suspect cis-eQTLs from
discarded probes/probesets

For Affymetrix Exon 1.0 ST arrays, where a probeset ex-
pression value is typically estimated from four constituent

Table 3. Number of LD-resolved cis-eQTLs (P< 10�12) for the two data sets, using polymorphisms (present with minor allele frequency >1% in

Europeans) from the combined 1000 Genomes (March 2012) plus NHLBI Exome Sequence Project data sources

Affymetrix Human Exon 1.0 (25-mer probe design)
based on the UK Human Brain Expression Consortium

(UKBEC, N=134)

Illumina Human HT-12v3 (50-mer probe design)
based on the North American Brain Expression Consortium

(NABEC, N=304)

CRBL FCTX CRBL FCTX
Total number of cis-eQTLs 1275 705 Total number of cis-eQTLs 1192 1018

Type of probeset giving rise to the cis-eQTL Type of probe giving rise to the cis-eQTL
None of the corresponding probes contain a

polymorphism (‘unaltered’)
517 227 Probe does not contain a polymorphism

(‘unaltered’)
793 681

Only one corresponding probe contains
polymorphism(s) (‘altered’)

119 54 Probe contains polymorphisms(s) (‘discarded’) 396 337

Two or more corresponding probes contain
polymorphism(s) (‘discarded’)

639 424

Proportion of eQTLs discarded (excluding
altered)=discarded / (discarded+unaltered)

55.2% 65.1% Proportion of eQTLs discarded 33.2% 33.1%

Expected proportion of eQTLs to be discarded 6.1% Expected proportion of eQTLs to be discarded 11.7%

The expected proportion to be discarded is the proportion of all probe/probesets discarded (including ones without a cis-eQTL signal).
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probes, we apply probe masking (10) to exclude the
polymorphism-containing probe and re-estimate the
probeset expression value. If less than three probes
remain free of polymorphism(s) for estimation, the
probeset is still discarded. This solution recovers about
two thirds of the polymorphism-containing probesets (to
become ‘altered’ probesets).

This still leaves a large number of suspect cis-eQTLs
from discarded probesets, especially for Illumina array
data where probe masking is not applicable. Three alter-
natives to dealing with these suspect cis-eQTLs are (i) to
remove all suspect cis-eQTLs; (ii) apply conditional asso-
ciation analysis; and (iii) apply LD filtering (see Materials
and Methods section for details). Conditional association
is a better motivated approach than LD filtering, but
requires either imputation or sequencing to obtain the

polymorphism-in-probe genotypes, a laborious step for
existing eQTL data sets.
We find that we can rescue <6% of the suspect cis-

eQTLs from both discarded Affymetrix probesets and dis-
carded Illumina probes via the conditional analysis
method (Supplementary Figure S3), so there is little add-
itional benefit to using this method over probe masking
(which does not require genotype imputation). LD filter-
ing does a poor job of identifying these true eQTLs, re-
gardless of the r2 threshold applied. In all conditions
considered, even if a stringent LD threshold of r2< 0.1 is
used, at least 80% of the cis-eQTLs signals ‘rescued’
by LD filtering are in fact false according to the more
proper conditional association method (Supplementary
Table S4), and this percentage increases with the P-value
stringency used to declare eQTL signals. This

Figure 1. The proportion of LD-resolved cis-eQTL signals discarded because of the polymorphism-in-probe sequence problem using different
polymorphism reference data sources and P-value thresholds. Multiple significant associations with a probe/probeset caused by SNPs in high LD
(r2� 0.5) were treated as a single ‘LD-resolved’ signal. Also shown is the expected proportion that would be discarded if the rate was the same as the
proportion of all probe/probesets (including ones without a cis-eQTL signal) discarded using the 1000 genomes (March 2012) plus Exome Sequencing
Project reference data source.
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contraindicates the use of LD filtering to recover suspect
cis-eQTLs.

Examples of false positives and false negatives due to
polymorphism-in-probe

We selected three examples in two genes of relevance in
brain disorders to demonstrate this problem in cerebellum
(Figure 2). Common genetic variation at the MAPT gene
has been associated with multiple neurodegenerative dis-
orders (22) including Parkinson’s Disease, progressive
supranuclear palsy and corticobasal degeneration while
PRICKLE1 has been implicated in progressive myoclonic
epilepsy (23).
The first example (Figure 2A) shows a false-positive

association between rs650927 and exon 6 of MAPT
(probeset 3723733) in the Affymetrix Human Exon data
set. The target sequence contains two SNPs that affect all
four constituent probes, but the hit SNP is in high LD
only with rs10445337 (r2=0.98), which affects two of
the probes. After excluding these two probes and
re-calculating the probeset expression value via probe
masking, the eQTL signal is no longer significant
(P-value changes from 4.2� 10�20 to 4.6� 10�5).
Conditioning on both SNPs in the probe sequence also
results in a non-significant result (P=0.644).
The second example (Figure 2B) shows a false-negative

association involving exon 8 of PRICKLE1 (probeset
3412103). One of the probes contains an SNP that is in
high LD (r2=0.96) with the hit SNP, which results in an
opposite association compared with the other three
probes. Excluding this probe results in the discovery of a
significant eQTL signal (P-value changes from 1.4� 10�5

to 4.3� 10�18), which would have been missed otherwise.
Conditional analysis, using the original probeset expres-
sion, is not useful here, as the truly associated SNP is in
too high LD with the polymorphism-in-probe, resulting in
too high a level of confounding.
The final example (Figure 2C) is the false-positive asso-

ciation between rs1751739 (which tags the H1/H2 haplo-
type) and the probe ILMN_1710903 in the 30UTR region
of the MAPT gene. This influential finding was first
reported in 2007(9) and has since been replicated in a
number of other high profile studies (16,24). The hit
SNP is in high LD with this common 2-base pair
deletion (labelled as chr17:44102741:D in 1000 Genomes
or as rs67759530 in dbSNP) within the probe (r2=0.91,
minor allele frequency=23%), giving rise to a highly sig-
nificant association in the Illumina HT12 data set
(P-value=8� 10�31). Since there are no constituent
probes like there are in the Human Exon array, we
investigated the association of the hit SNP with
ILMN_2310814, which is located 2738 base pairs away
and also in the 30UTR of the MAPT gene, and observed
no significant associations (P-value=0.76). We discuss
more about the eQTLs in this gene elsewhere (25).

DISCUSSION

In this article, we show that the presence of a small pro-
portion of probes binding to sequences containing

common polymorphisms massively inflates the number
of cis-eQTL signals. These false eQTL signals tend to
generate large effect sizes in relation to true signals, and
so the problem only becomes worse as one increases the
stringency of the P-value threshold used to define signifi-
cance. Furthermore, these false signals will appear to rep-
licate across studies if one uses the same array platform.
We show here that previous eQTL studies are likely to
have failed to adequately correct for this problem. This
is primarily because of incomplete reference data on the
location of all common polymorphisms at the time the
studies were performed, but other factors have also
played a part. For example, we show here that LD filtering
introduces a large number of false positives, even if very
low r2 thresholds are used.

Our study suggests we are close to reaching a ‘satur-
ation point’ in cataloguing all common exonic polymorph-
isms in the human genome. Although the number of
polymorphisms with minor allele frequencies >1% goes
up with every new reference data source we considered,
often doubling or tripling compared with previous defin-
itions, the proportion of cis-eQTLs discarded showed
smaller and smaller changes. For example, the proportion
of cis-eQTLs discarded in the frontal cortex samples of
UKBEC at P< 10�12 is 39.8% using genotype only
data, 49.8% using HapMap release 28, 64.0% using
1000 Genomes SNPs, 64.4% using 1000 Genomes SNPs
plus NHLBI-ESP exomes and 65.1% using 1000 Genomes
(SNPs and indels) plus NHLBI-ESP exomes. This suggests
we are close to having the full list of common polymorph-
isms, and that the ones we are missing are likely to be close
to 1% in frequency and so with less of a tendency to
generate false cis-eQTL signals. It is also worth noting
that the number of probes/probesets discarded owing to
the addition of nearly 1 million indels in the latest release
of the 1000 Genomes Project is relatively low. One
possible explanation for this is that, unlike SNPs, the ex-
istence of indels within exons is more likely to lead to
deleterious frameshift changes in peptide sequences and
thus are under negative selection.

Although the present study is the most complete
analysis of the polymorphism-in-probe problem to date,
it has limitations. We have not considered all types of
polymorphisms, namely inversions and copy number vari-
ations, which are currently not as well characterized as
SNPs or indels. We have also not attempted to model
the binding affinity of probes as a function of the
number of polymorphisms within a sequence; the
position, nucleotide type and length of polymorphisms
relative to the probe sequence; and the surrounding nu-
cleotide types (4,21,26). We are, however, confident that
the current size of reference data from the 1000 Genomes
and Exome Sequence projects means that we are close to a
complete catalogue of all common point-mutation poly-
morphisms in the major human populations.

Although the technology for assaying gene expression is
now moving away from microarray-based methods and
towards RNA sequencing, properly addressing the
problem of polymorphism-in-probe remains important.
Sample size remains the biggest driver for eQTL discov-
ery, and while microarrays remain cheaper than RNA
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Figure 2. Illustrative examples of eQTLs with relevance to brain disorders. (A) Boxplots show the false-positive association between rs650927
genotypes and the measured expression of each of the four probes contained within the probeset 3723733 (exon 6 of MAPT) due to an SNP in
the probe sequences. Two SNPs are present in the target sequence but only one is in high LD with the hit SNP. (B) Boxplots show the false-negative
association between rs34725377 and probeset 3412103 (exon 8 of PRICKLE1) due to an SNP in one of the probe sequences. (C) Boxplots show the
false-positive association between rs1751739 and the probe ILMN_1710903 (30UTR region of the MAPT) due to a common 2-base pair deletion. The
association between this SNP and ILMN_2310814, which also targets the 30UTR of MAPT but is free of polymorphisms, is shown.
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sequencing, they will continue to be used for large-scale
studies. In particular, low-expressed genes may require
prohibitively large amounts of RNA sequencing to
capture, but remain cheaply detectable via microarrays.
Indeed, we are aware of only two eQTL studies based
on RNA-sequence conducted in humans (both published
in 2010), which use 69 HapMap West Africans (27) and
60 HapMap Europeans (28). In contrast, there are
numerous recent studies, some involving thousands of
samples, using microarray technology [e.g. 2355 sam-
ples from Grundberg et al. (29); 1490 samples from
Zeller et al. (30)].
There is also a large and important body of existing

microarray-based eQTL data spanning multiple tissue
types and using large sample sizes. We believe that these
data should be reassessed for potential false signals caused
by polymorphism-in-probe issues, especially given the
widespread distribution of these data via catalogues such
as the Phenotype–Genotype Integrator, eQTLbrowser,
seeQTL (31), SNPexpress (11) and GeneVar (32).
Ideally, these catalogues should automatically flag up
any suspect signals arising from polymorphism-containing
probes. We have also written a web tool, PiP Finder
(http://bit.ly/pipfinder), to provide researchers with an
easy-to-use interface to identify this issue in any given
eQTL signal. For an example of how we used this tool
to check a recent publication for suspect eQTLs, please see
our online comments to Zou et al. (33).
The polymorphism-in-probe problem is widely

recognised in the eQTL literature, and various solutions
have been proposed and implemented. Despite this, we
show that false eQTL signals are likely to be widespread
both in the literature and in extant eQTL databases.

We note that the pervasive presence of false eQTL
signals may have implications for, inter alia, the overlap
of eQTL signals with genome-wide association study
signals; the empirical distribution of eQTL signals
relative to the transcription start site of genes; and
apparent ratios of tissue-specific to cross-tissue eQTL
signals. More generally, the findings of our study act as
a cautionary tale for the interpretation of all types of
genomic data, illustrating that even a relatively
well-understood problem can be inadequately corrected.

Although we show that a large proportion of published
cis-eQTL signals could be false, we also show that this
problem can now be identified and resolved. From our
own experience, meaningful, exciting and valid insights
into the regulation of gene expression emerge once the
polymorphism-in-probe problem is properly addressed.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–5, Supplementary Figures 1–3,
Supplementary Methods and Supplementary references
[34–39].
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