
Article

HPRep: Quantifying Reproducibility in HiChIP and
PLAC-Seq Datasets

Jonathan D. Rosen 1 , Yuchen Yang 2 , Armen Abnousi 3, Jiawen Chen 1, Michael Song 4, Ian R. Jones 4,
Yin Shen 4,5, Ming Hu 3 and Yun Li 1,2,*

����������
�������

Citation: Rosen, J.D.; Yang, Y.;

Abnousi, A.; Chen, J.; Song, M.; Jones,

I.R.; Shen, Y.; Hu, M.; Li, Y. HPRep:

Quantifying Reproducibility in

HiChIP and PLAC-Seq Datasets. Curr.

Issues Mol. Biol. 2021, 43, 1156–1170.

https://doi.org/10.3390/

cimb43020082

Academic Editor: Muhammad Jamal

Received: 23 August 2021

Accepted: 11 September 2021

Published: 17 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27516, USA;
jdrosen@live.unc.edu (J.D.R.); jiawenn@email.unc.edu (J.C.)

2 Department of Genetics, University of North Carolina, Chapel Hill, NC 26514, USA; yyuchen@email.unc.edu
3 Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation,

Cleveland, OH 44195, USA; a.abnousi@gmail.com (A.A.); hum@ccf.org (M.H.)
4 Institute for Human Genetics, University of California, San Francisco, CA 94143, USA;

song.michael12@gmail.com (M.S.); Ian.Jones3@ucsf.edu (I.R.J.); Yin.Shen@ucsf.edu (Y.S.)
5 Department of Neurology, University of California, San Francisco, CA 94143, USA
* Correspondence: yun_li@med.unc.edu

Abstract: HiChIP and PLAC-Seq are emerging technologies for studying genome-wide long-range
chromatin interactions mediated by the protein of interest, enabling more sensitive and cost-efficient
interrogation of protein-centric chromatin conformation. However, due to the unbalanced read
distribution introduced by protein immunoprecipitation, existing reproducibility measures developed
for Hi-C data are not appropriate for the analysis of HiChIP and PLAC-Seq data. Here, we present
HPRep, a stratified and weighted correlation metric derived from normalized contact counts, to
quantify reproducibility in HiChIP and PLAC-Seq data. We applied HPRep to multiple real datasets
and demonstrate that HPRep outperforms existing reproducibility measures developed for Hi-C data.
Specifically, we applied HPRep to H3K4me3 PLAC-Seq data from mouse embryonic stem cells and
mouse brain tissues as well as H3K27ac HiChIP data from human lymphoblastoid cell line GM12878
and leukemia cell line K562, showing that HPRep can more clearly separate among pseudo-replicates,
real replicates, and non-replicates. Furthermore, in an H3K4me3 PLAC-Seq dataset consisting of
11 samples from four human brain cell types, HPRep demonstrated the expected clustering of data
that could not be achieved by existing methods developed for Hi-C data, highlighting the need for a
reproducibility metric tailored to HiChIP and PLAC-Seq data.

Keywords: reproducibility; HiChIP; PLAC-Seq; chromatin spatial organization

1. Introduction

Chromatin spatial organization plays a critical role in genome structure and transcrip-
tional regulation [1–3]. During the last decade, great strides have been made in the mapping
of long-range chromatin interactions, thanks to the rapid development of chromatin con-
formation capture (3C) based technologies. Among them, Hi-C enables genome-wide
measurement of chromatin spatial organization [4,5] and has been widely used in practice.
To ensure scientific rigor, various methods have been developed to assess the reproducibil-
ity of Hi-C data [6–10]. For example, HiCRep [6] first performs 2D smoothing to reduce the
stochastic noise resulting from the sparsity of Hi-C data, and then quantifies reproducibility
by calculating a stratified correlation, which is a weighted average of correlation coefficients
between contact frequencies across specific one-dimensional (1D) genomic distance bands.
HiC-Spector [8] adopts a different approach, transforming symmetric Hi-C contact matrices
to their corresponding Laplacian matrices and then calculating similarity as the average
of the distances between normalized eigenvectors. Similar to HiCRep, GenomeDISCO [7]
relies on data smoothing, which is performed over a range of steps of the random walk
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to determine an optimal separation between biological replicates and non-replicates as
measured by area under the precision–recall curve. The reproducibility measure is a func-
tion of distances between two contact matrices smoothed using this optimized number
of steps. QuASAR-Rep [9] determines a local correlation matrix by comparing observed
interaction counts to background signal–distance values within a specified distance. This
local correlation matrix is subsequently transformed by element-wise multiplication with a
matrix of scaled interaction counts. The reproducibility between two samples is defined as
the Pearson correlation coefficient between the corresponding transformed matrices.

Recently, HiChIP [11] and PLAC-Seq [12] technologies (hereafter collectively referred
to as HP for brevity) have been developed to study protein-mediated long-range chromatin
interactions at a much reduced cost and greatly enhanced resolution relative to Hi-C. While
the chromatin immunoprecipitation (ChIP) step involved in HP technologies allows for the
cost and resolution benefits, it also introduces additional layers of systematic biases, which
make analysis methods developed for Hi-C data potentially unsuitable for HP data.

To fill in this gap, we propose a novel method, HPRep, to measure the similarity
or reproducibility between two HP datasets. HPRep is motivated by HiCRep [6], the
previously described method developed for quantifying reproducibility of Hi-C data.
Similar to HiCRep, HPRep leverages the dependence of chromatin contact frequency on
1D genomic distance; however, in contrast, HPRep models different ChIP enrichment
levels (Section 2.1.2), which contribute to the systematic biases specific to HP data, and also
incorporates an unbalanced data matrix that addresses the targeted structure of HP data in
comparison to Hi-C data.

2. Materials and Methods
2.1. Details for HPRep Method
2.1.1. Step 1

During the pre-processing step, intra-chromosomal reads are split into two groups:
short-range reads (≤1 Kb) and long-range reads (>1 Kb). The short-range reads are used as
a measure of ChIP efficiency in the regression framework described later in the pipeline.
Long-range reads are used to determine long-range interactions, which are extracted and
classified as either AND, XOR, or NOT sets based on whether 2, 1, or 0 (respectively) read
ends overlap with a ChIP-Seq identified peak for the protein of interest. Additional details
can be found in the MAPS paper [13].

2.1.2. Step 2

The regression and normalization follow a multi-step procedure:

1. We modeled the non-zero intra-chromosomal contacts as a zero-truncated Poisson
model with mean µij. The covariates for effective fragment length (FL), GC content
(GC), mappability (MS), and ChIP enrichment level (IP) are provided by the feather
pre-processing step (as implemented in the MAPS pipeline), and represent log(xi × xj),
where xi and xj are the corresponding covariate for bin i and j, respectively. We fit
regression models for the AND and XOR sets separately.

log
(
µij
)
= β0 + β1 · FLij + β2 · GCij + β3 ·MSij + β4 · IPij

2. Fitted values were determined for each bin pair based on the resulting model for AND
and XOR sets in each chromosome, resulting in 2 × n files where n is the number of
autosomal chromosomes. In addition, the AIC and BIC values for each fitted model
are supplied in a single file.

3. Normalized values are defined as log2(1 + observed/fitted) and all bin pairs are
combined into one file. Additionally, the ChIP-Seq peaks are binned to analysis
resolution and supplied as a file containing a list of these anchor bins. Peaks that span
a bin boundary are assigned to all bins they span.
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2.1.3. Step 3

The final step involves data smoothing and sample comparison to calculate a final
reproducibility metric between each pair of samples as a weighted Pearson correlation.
The combined AND and XOR normalized data are stored in a matrix that is used as an
input for the comparison algorithm. The basic data structure we considered was an N × m
matrix, where N represents the number of anchor bins in the union set of anchors from
all samples and m is equal to 2 × binning distance/resolution, where binning distance
is recommended to be set at 1 Mb, but can be user specified. Interactions further than
1 Mb are typically sparse and highly variable. The ij element of the matrix represents
the normalized contact frequency between the anchor i and the bin j bin widths away,
j ∈ {−m/2, . . . , −1, 1, . . . , m/2}. For example, at a recommended binning distance of 1 Mb,
m = 400 at 5 Kb resolution, and 200 at 10 Kb resolution.

The normalized values undergo a 1D smoothing procedure as follows: for a specified
window size d, the ij element (xij) is transformed so that the smoothed value is

xsmoothed
ij =

(
j+d

∑
k=j−d

xik

)
/(2d + 1) (1)

Let ak and bk be two vectors of length 2N from samples a and b, respectively, whose
elements consist of the values from the smoothed data matrix from columns ±k units
symmetrically from the center. All these values represent normalized and smoothed
contacts that are ±k bins from their respective anchors. Let ak

′ and bk
′ be the resulting

vectors of length Nk ≤ 2N after removing any elements satisfying ai
′ = bi

′ = 0, where a′ki is
the ith element of vector ak

′. We define rk as

rk =
Nk ∑Nk

i=1 a′i b
′
i −∑Nk

i=1 a′i ∑Nk
i=1 b′i√

Nk ∑Nk
i=1 a′2i −

(
∑Nk

i=1 a′i
)2
√

Nk ∑Nk
i=1 b′2i −

(
∑Nk

i=1 b′i
)2

(2)

namely the empirical correlation between a′k and b′k. They define the weights for each of
the k strata as

wk =

Nk

√
∑

Nk
i=1 a′2i
Nk

−
(

∑
Nk
i=1 a′i
Nk

)2
√

∑
Nk
i=1 b′2i
Nk

−
(

∑
Nk
i=1 b′i
Nk

)2

K
∑

k=1
Nk

√∑
Nk
i=1 a′2i
Nk

−
(

∑
Nk
i=1 a′i
Nk

)2
√

∑
Nk
i=1 b′2i
Nk

−
(

∑
Nk
i=1 b′i
Nk

)2
(3)

The reproducibility score between two matrices is then the weighted average of the
stratified correlations rk

reproducibility score =
K

∑
k=1

rkwk (4)

2.2. Smoothing Parameter Optimization

The smoothing parameter d (Equation (1)) was tuned using the method similar to
the HiCRep protocol with modification to the sampling scheme and search termination
criterion. The following algorithm was used:

Two samples to be analyzed were selected, preferably dissimilar ones such as non-
biological replicates. Twenty-five percent of the non-zero contacts from one were randomly
sampled and used to populate a contact matrix as previously diagrammed, with the
remaining entries set to zero. The analogous positions in the other sample were used
to populate a corresponding matrix. The reproducibility score was calculated for these
matrices and the sampling procedure was repeated a total of ten times with no smoothing
performed. The average of these ten values was recorded.
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The smoothing parameter was then iterated by one, repeating the above procedure
until the average metric using smoothing parameter d + 1 compared to d exhibited less than
a one percent increase. The value of d was recorded and used as the smoothing parameter
for all analyses with the particular dataset.

2.3. Procedures for Comparative Methods
2.3.1. HCRep

All results obtained using HiCRep were conducted using R (3.6.0) and using version
1.12.0 of the HiCRep package obtained from https://github.com/MonkeyLB/hicrep (ac-
cessed on 29 April 2020). Default parameters were used for all experiments. Note that the
documentation recommends a smoothing parameter of 20 for 10 kb resolution, but does
not specify a recommended parameter for 5 kb resolution. We used 20 for 5 kb as well since
marginal difference was reported when tuning beyond 20.

To ensure proper data formatting for use with HiCRep, the built-in function “bed2mat”
was utilized, which converts a 3-column contact matrix to a square contact matrix with all
elements not supplied set to 0. Experiments that included solely AND XOR sets of contacts
were prepared by extracting bin pairs and observed (integer) contacts from the correspond-
ing AND/XOR files and those that also included NOT sets were generated similarly.

2.3.2. HiC-Spector

The Python version of HiC-Spector was used rather than the Julia version since the
former readily accepts Hi-C data in genomic coordinates rather than the hic format. The
program used was “run_reproducibility_v2.py” found at https://github.com/gersteinlab/
HiC-spector (accessed on 17 February 2020). Experiments that included solely AND and
XOR sets of contacts were prepared by extracting bin pairs and observed (integer) contacts
from the corresponding AND/XOR files. Note that the bin positions had to be converted
to indices starting at 1, so the global minimum bin position was determined, and all bin
positions scaled by (genomic position—minimum position)/resolution. Experiments also
including NOT sets were generated similarly.

2.3.3. Pearson Correlation

The upper triangular component of a standard symmetric n × n contact matrix was
flattened to a vector for each sample. The Pearson correlation between two samples was
computed as the correlation between these vectors.

2.4. Down-Sampling Procedure

The generalized downsampling procedure was performed on the AND and XOR
contact files for each chromosome separately. Let n be the total number of counts for all bin
pairs in the specific file and let d be the downsampling coefficient. That is, to downsample
to 0.8 × depth, d = 0.8. The vector v of counts for all bin pairs was downsampled to depth
d utilizing the R function “rmultinom”, where the size parameter was set to floor (n × d)
and the probability vector was the element-wise division of v by n. These downsampled
AND and XOR files then intersected the pipeline as usual with the removal of bins that
now have counts of 0.

2.5. Determination of Silhouette Values

Silhouette values were calculated via the method in [14]. Let d(i, j) be the similarity
between sample i and j, which in this analysis was the scaled reproducibility metric between
the two samples. The silhouette method requires that the similarity (or distance) quantities
be comparable on a ratio scale, that is, if the distance between two points is doubled, it
implies that the points are twice as far apart. The Pearson correlation does not have such a
property, so for each experiment the values were standardized to [0, 1] by subtracting the
lowest value and dividing by the (max −min) value.

https://github.com/MonkeyLB/hicrep
https://github.com/gersteinlab/HiC-spector
https://github.com/gersteinlab/HiC-spector
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Let sample i be a member of cluster A. Furthermore, let a(i) be the average similarity
of i to all other samples in the same cluster. Let d(i, C) be the average similarity of sample i
to all other samples in cluster C and let b(i) be the maximum value of d(i, C) over all clusters
C distinct from cluster A. Then, the silhouette value is defined as

s(i) =
a(i)− b(i)

max{a(i), b(i)} (5)

We report the average s(i) over all 11 samples. The closer this value is to 1, the better
the clustering performance.

2.6. Data Details

For the human brain PLAC-Seq data, fastp (https://github.com/OpenGene/fastp
(accessed on 11 February 2019) was used to trim the fastq files to 100 bp. No additional
modifications to the described pipeline were performed on any of the datasets used in
this paper. Default software options described in https://github.com/yunliUNC/HPRep
(accessed on 16 October 2020) were used for alignment and merging for all samples
analyzed. Resolutions used for each dataset were:

1. Mouse embryonic stem cell and mouse brain tissue H3K4me3 PLAC-seq: 10 Kb
2. Human brain H3K4me3 PLAC-seq: 5 Kb
3. GM12878 and K562 H3K27ac HiChIP: 10 Kb

2.7. Irreproducible Discovery Rate

ChIP-Seq data processing followed the procedure outlined in [13]. Specifically, MACS2
(v 2.1.2) was used to provide the narrowPeak input files using flags: –nolambda, –nomodel,
–extsize 147, –call-summits, -B, –SPMR, and -q 1 × 10−2. These files were processed using
IDR (v 2.0.4.2) with default parameters. Results reported represent the fraction of peaks
that exceed a false discovery rate of 5%. Downsampling was performed on the MACS2
input files by randomly selecting an appropriately sized subset of reads.

3. Results

Currently available methods to quantify reproducibility in Hi-C datasets such as
HiCRep, HiC-Spector, GenomeDISCO, and QuASAR-Rep (systematically evaluated in [10]),
all involve derivation of a similarity metric between two contact frequency matrices. The
input Hi-C data consists of n × n symmetric matrices of non-negative integers, where each
row/column represents one genomic locus (i.e., bin) and n is the total number of bins. The
(i,j) element of such a matrix represents the number of paired-end reads spanning between
bin i and bin j.

These existing methods are conceptually inappropriate for HP data due to the unbal-
anced read distribution due to ChIP enrichment that is introduced in the HP experiments.

In addition, while Hi-C data consist of interactions among all bin pairs, HP data are
restricted to bin pairs where at least one bin overlaps a binding region of the protein of
interest. Such overlapping bins are referred to as the anchor bins, and two HP datasets may
have different sets of anchor bins. We further define bin pairs consisting of two anchor
bins as the “AND” pairs, and those consisting of only one anchor bin are defined as the
“XOR” pairs. In contrast, the “NOT” pairs, for which neither bin is an anchor bin, are
not meaningful due to the nature of HP technologies and therefore not used in HP data
analysis [13].

The data structure in HPRep is an N × m matrix (Figure 1), where N represents the
number of anchor bins and m = 2 * 1 Mb/resolution, where resolution refers to the bin size
(1 Mb is set as the default but can be modified by the user). The (i,j) th element represents
the normalized contact frequency between anchor i and the bin j bin widths away from the
anchor, j ∈ {−m/2, . . . ,−1, 1, . . . ,m/2}. The number of anchor bins, N, is the cardinality of
the union set of anchor bins for all datasets in the study. Normalization is performed via
a two-step procedure. (1) Raw counts are adjusted for the biases introduced by effective

https://github.com/OpenGene/fastp
https://github.com/yunliUNC/HPRep
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fragment length, GC content, mappability, and ChIP efficiency by fitting a positive Poisson
regression model, following the approach detailed in the MAPS method [13]. Separate
models are fit to the AND and XOR pairs since the AND pairs are expected to have
significantly higher contact frequencies due to double ChIP enrichment. (2) Using the
fitted models, the data are normalized by taking the log2 value of (1 + observed/expected
counts). Further details can be found in Section 2.1.
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Figure 1. Cartoon illustration of HPRep. Step 1 involves first identifying anchors (i.e., 1D ChIP
peak sites) and then extracting all interactions between these anchors and bins within a specified
genomic distance from the anchors. This is followed by a one-dimensional smoothing procedure.
Stratification by 1D genomic distance is performed in step 2 so that the elements of vector ak represent
interactions that are equidistant from their respective anchors, k bins apart. In the final step, the
Pearson correlation coefficients are calculated between vectors from two samples both of stratum k,
repeated over all k, and these Pearson correlation coefficients were combined in a weighted average
to yield the final reproducibility metric.

Similar to HiCRep [6], the distance metric used by HPRep is a weighted Pearson
correlation coefficient that is stratified by 1D genomic distance. Note in Figure 1 that
these strata are the pairs of columns of the previously described data matrix, which are
equal-distant from the center. Due to the sparsity of HP data, especially for long-range
chromatin interactions, the normalized count values were smoothed. The smoothing
procedure used was a 1D arithmetic mean of values within a window of d bins away along
the same row (see Section 2.2 for optimization procedure). Each of the m/2 correlations
was weighted based on the variation of the smoothed values at that distance such that the
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weights sum to one. Therefore, the resultant metric was restricted to [−1, 1] and had a
similar interpretation as a standard Pearson correlation coefficient.

Let ak and bk be two vectors of length 2N from samples a and b, respectively, whose
elements are normalized contact counts, where N represents the number of anchor bins in
the union set of anchor bins from all samples in the study, and k indexes bins that are ±k
units away. Let ak

′ and bk
′ be the resulting vectors of length Nk ≤ 2N after removing any

elements that are 0 in identical positions in both two vectors. The weight for stratum k, wk,
is defined as

wk =

Nk

√
∑

Nk
i=1 a′2i
Nk

−
(

∑
Nk
i=1 a′i
Nk

)2
√

∑
Nk
i=1 b′2i
Nk

−
(

∑
Nk
i=1 b′i
Nk

)2

K
∑

k=1
Nk

√∑
Nk
i=1 a′2i
Nk

−
(

∑
Nk
i=1 a′i
Nk

)2
√

∑
Nk
i=1 b′2i
Nk

−
(

∑
Nk
i=1 b′i
Nk

)2
 (6)

where K is the total number of strata, which is analogous to the weights used in HiCRep [6].
The numerator of wk is the product of strata size and the standard deviations of ak

′ and
bk
′, while the denominator is the sum of the numerators over all strata. Consequently, the

weights were restricted to [0, 1] and the sum to 1, where larger and more variable strata
carry more weight than smaller and less variable strata. The final reproducibility metric
was the weighted sum of correlations between each stratum. This workflow is diagrammed
in Figure 1.

3.1. Mouse H3K4me3 PLAC-Seq Data

To evaluate the performance of HPRep, we first analyzed published H3K4me3 PLAC-
Seq datasets from mouse embryonic stem cells (mESCs) [13] and mouse brain tissues [15],
both consisting of two samples, by applying HPRep at 10 Kb resolution. Samples from the
same cell type or tissue were labeled as biological replicates while those cross cell type or
tissue were labeled non-replicates, yielding two pairs of biological replicates and four pairs
of non-replicates. Pseudo replicates were generated by pooling two samples of the same
cell type or tissue together, and then partitioning the pooled contact frequency in each bin
pair randomly via binomial (p = 0.5) sampling.

We would expect that pseudo replicates are most similar, followed by biological
replicates, and that non-replicates are least similar. Indeed, this expected pattern is observed
using HPRep (Figure 2), with results also exhibiting highly consistent patterns across
chromosomes (Supplementary Figure S1). The higher metric for replicate mESC samples
relative to mouse brain samples is due to the higher sampling depth of the former.

We next compared HPRep with alternative methods, specifically two Hi-C repro-
ducibility methods: HiCRep [6] and HiC-Spector [8] as well as a naïve Pearson correlation
(Section 2.3). Since the Hi-C specific methods are designed using n × n symmetric contact
matrices as the standard input, for these comparisons, in addition to restricting to bin pairs
in the AND and XOR sets, we generated a “pseudo Hi-C” dataset from a HP dataset by
also using all bin pairs (including the AND, XOR and NOT sets). The naïve Pearson corre-
lation consisted simply of converting the entire upper triangular Hi-C contact matrices for
each sample to single vectors and calculating the Pearson correlation coefficient between
them. The methods were performed separately on all 19 autosomal chromosomes and
the resulting metrics were reported as the arithmetic mean. The HiCRep and HiC-Spector
methods were applied with the default parameters. The results are displayed in Figure 3.
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Results are presented as the mean value over 19 autosomal chromosomes with error bar representing
±1 standard deviation.
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Figure 3. Comparison of methods in mouse PLAC-Seq datasets. HPRep compared to Hi-C specific
methods HiC-Spector and HiCRep as well as Pearson correlation. (1) All methods using bin pairs in
the AND and XOR sets. (2) Methods other than HPRep using all bin pairs in the AND, XOR and
NOT sets. PLAC-Seq dataset consisted of two mESC and two mouse brain replicates.

All methods except for naïve Pearson correlation yielded results consistent with what
we expected, namely higher similarity for the biological replicates and lower similarity for
the non-replicates. The similarity or reproducibility values for the biological replicates were
similar among these three methods, which is expected for HPRep and HiCRep, since both
methods are based on stratified Pearson correlation, but is noteworthy for HiC-Spector,
since it is based on a rather different method, and was restricted to [0, 1] as opposed to
[−1, 1]. The difference among these methods, with the exclusion of HiC-Spector when
including the NOT set, manifests largely in values for non-replicates, with HPRep yielding
much smaller values relative to the others, although in each case, the four non-replicate
pair results were very consistent. Interestingly, the naïve Pearson correlation fails with
the mouse brain sample, yielding a reproducibility score nearly identical to those of the
non-replicates, whereas the result from mESC replicates is consistent with the other three
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methods. This failure is obviated in HiCRep and HPRep, the other Pearson based methods.
For example, for biological replicates, HPRep yields a mean reproducibility metric of 0.92
compared to a mean value of 0.25 for non-replicates. For the experiments using bin pairs in
the AND, XOR and NOT sets, the mean reproducibility metrics comparing replicates and
non-replicates were 0.80 vs. 0.51, 0.99 vs. 0.73, and 0.88 vs. 0.76 for HiC-Spector, HiCRep,
and Pearson correlation coefficients, respectively.

3.2. Human HiChIP Data

In addition, we applied HPRep to measure the reproducibility of H3K27ac HiChIP data
from GM12878 cells (two biological replicates) and K562 cells (three biological replicates) at
10 Kb resolution [16], resulting in four pairs of biological replicates (one pair from GM12878,
three pairs from K562) and six pairs of non-replicates (Figure 4). We anticipated a priori
that differences between replicates and non-replicates would be more pronounced in this
human dataset than the previous mouse H3K4me3 PLAC-Seq dataset due to the greater
dissimilarity in H3K27ac anchor bins between GM12878 cells and K562 cells. Specifically,
the GM12878 and K562 cell lines contained 31,980 and 26,963 H3K27ac 10 Kb anchor bins
genome-wide (autosomal), respectively, with only 14,304 shared (Jaccard index 0.32). In
contrast, mESC and mouse brain had 28,903 and 21,778 H3K4me3 10 Kb anchor bins, with
17,722 overlapping, (Jaccard index 0.54), which was expected since active promoters are
largely shared across tissues and cell lines. For this human dataset, all methods were
performed individually on all 22 autosomal chromosomes and the resulting metrics were
averaged across chromosomes.
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Figure 4. Comparison of methods in HiChIP datasets from human blood cell lines. HPRep compared
to Hi-C specific methods HiC-Spector and HiCRep as well as Pearson correlation. (1) All methods
using bin pairs in the AND and XOR sets. (2) Methods other than HPRep using all bin pairs in
the AND, XOR, and NOT sets. HiChIP dataset consisted of two GM12878 replicates and three
K562 replicates.

The results from the human HiChIP data were consistent with those from mouse
PLAC-Seq data: the biological replicates yielded high similarity (close to 1) while the
non-replicates yielded uniformly lower similarity. While all autosomal chromosomes were
used in these analyses and the results were largely consistent across them using HPRep,
HiCRep, and Pearson correlation coefficients, the results were quite inconsistent using HiC-
Spector (Supplementary Figure S2). Specifically, HiC-Spector used 20 eigenvectors in the
computation of a reproducibility metric, however, for several chromosomes, convergence
failed, so fewer eigenvectors were used, which yielded erratic results (Supplementary Table
S1). Again, HPRep results in the lowest metrics for the non-replicates, which were all close
to zero, highlighting the influence on anchor bin identity in this method.
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3.3. Human PLAC-Seq Data

We next applied HPRep to a more complex H3K4me3 PLAC-Seq dataset at 5 Kb
resolution, consisting of 11 samples from four brain cell types in human fetal brain obtained
via fluorescence-activated cell sorting [17]: three samples from neurons (N), three samples
from interneurons (IN), two samples from radial glial (RG), and three samples from
intermediate progenitor cells (IPC). These samples had varying sequencing depths (detailed
in Supplementary Table S2 in [17]), with the number of intra-chromosomal reads ranging
from 47.5 million for RG2 (the second replicate of RG) to 390 million for RG1 (the first
replicate of RG). The anchor bins were defined as the union of 1D H3K4me3 peaks from all
four cell types. In Figure 5a, reproducibility obtained by HiCRep showed no differentiation
between inter- and intra-cell types. In contrast, HPRep showed a clear pattern of higher
similarity for replicates from the same cell type compared to those from different cell types.
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Figure 5. Comparison of HPRep and HiCRep in human brain PLAC-Seq datasets. (a) HiCRep and
(b) HPRep. Dendrograms above the heatmaps indicate clustering determined by hclust function
in R. HiChIP dataset consisted of three neurons, three interneurons, two radial glial, and three
intermediate progenitor cell samples. Red color signifies results indicating stronger correlation.

Focusing on bin pairs in the AND and XOR sets highlights the effect of normalizing
ChIP enrichment level. Figure 6 is analogous to 5a excluding bin pairs in the NOT set. The
cell type clustering is more in line with the known truth, however, still has misspecifications
according to the dendrogram: neuron, interneuron, and IPC cells were correctly grouped,
but radial glial cells were misclassified into two groups.

Recent studies have shown that HiCRep is sensitive to sequencing depth [10]. To
evaluate the robustness of HPrep with respect to different sequencing depths, we performed
downsampling to the original PLAC-Seq data from four human brain cell types. This was
performed by sampling from a multinomial distribution with n equal to the original count
multiplied by a downsampling factor and count probabilities set to match the distribution
in the original data (Section 2.4).

The first downsampling was performed so that all samples matched the depth of the
sample (RG2), which had the lowest sequencing depth. Note the identical color scales for
Figures 5b and 7, but the decrease in metric values for many pairwise comparisons for sam-
ples of the same cell type such as interneuron cells. To quantify this reduced discernibility
between samples, we utilized the silhouette procedure [14], treating reproducibility score as
a distance metric and reporting the average of the 11 silhouette values, one for each sample
(Section 2.5). We obtained 0.717 and 0.685 for the original experiment and downsampled
results respectively, where smaller numbers indicate worse clustering performance.
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results indicating stronger correlation.
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Figure 7. Performance of HPRep in downsampled human neural PLAC-Seq data. HPRep results
obtained after downsampling all eleven samples to read depth of the lowest sample.

Subsequent downsampling was performed uniformly across all samples so that the
total counts were reduced to 80%, 60%, 40%, and 20% of their original values following the
previously described sampling protocol. As expected, in Figure 8, we observed decreased
discernibility among samples from different cell types, most strikingly with IPC and RG
where the within sample HPRep reproducibility metric dropped to as low as 0.26 and 0.43,
respectively. Applying the modified silhouette procedure described above to these four
downsampled datasets, we obtained a silhouette score of 0.700, 0.678, 0.634, and 0.518 for
downsampling to 80%, 60%, 40%, and 20%, respectively.
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highlight differences.

We next sought to investigate the extent to which our HPRep metric was driven by the
1D ChIP (anchor) signals relative to the 3D bin contact signals. To this end, we compared
the irreproducible discovery rate (IDR) [18] (Section 2.7) to the HPRep results utilizing the
highest read depth brain sample (RG1). This was accomplished by pairwise comparisons
between the original ChIP-Seq data (IDR) or AND/XOR data (HPRep) and corresponding
samples that had been downsampled to 80%, 60%, 40%, and 20% to the original depth. As
expected, both IDR and HPRep metrics decreased with more aggressive downsampling,
however, the effect on IDR, as measured by fraction of peaks passing a false discovery rate
threshold of 5%, was far more pronounced. HPRep metrics were 0.97, 0.96, 0.93, and 0.88
compared to IDR of 0.80, 0.68, 0.24, and 0.06 at 80%, 60%, 40%, and 20% of the original
depth, respectively. This effect difference suggests that 1D information does not dominate
our results; if the HPRep results were merely a reflection of anchor similarity, we would
expect a more consistent trend between the two experiments.
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4. Discussion

Quantification of data reproducibility is critical to ensure scientific rigor, however,
methods tailored for HiChIP and PLAC-Seq data are still lacking. Here, we propose
HPRep, the first model-based approach to account for ChIP enrichment in measuring HP
data reproducibility. Given the lack of HP specific tools, we compared HPRep to existing
methods designed for Hi-C data, specifically HiCRep and HiC-Spector. Additionally,
since our method, similar to HiCRep, relies on a weighted average of Pearson correlation
coefficients, we also compared HPRep to the naïve Pearson correlation coefficient.

Our HPRep method, improving on existing Hi-C specific methods, was tailored to
HP data for the measurement of reproducibility in two fundamental ways. First, HPRep
was designed to accommodate the specific structure of HP data: while Hi-C data consist
of contact frequencies among all bin pairs, HP data focuses on bin pairs where at least
one bin overlaps with a ChIP-Seq peak for a protein of interest. This was different from
the standard n × n symmetric Hi-C contract matrix. We focused on the data matrix on
anchor bins, regions that overlapped with ChIP-Seq peaks, and pairs between bins within
a specified window of these anchors as illustrated in Figure 1.

Second, HPRep fits a positive Poisson regression model to normalize HP-specific ChIP
enrichment and uses the residuals as the normalized contact frequencies. It also analyzes
bin pairs in the AND and XOR sets separately, effectively accounting for ChIP enrichment
for the two different types of bin pairs.

Our results from mouse H3K4me3 PLAC-Seq data demonstrated very low vari-
ability in metrics between chromosomes (Figure 2), which is consistent with HiCRep
(Supplementary Figure S3). In addition, we also compared HPRep with other existing
methods using human H3K27ac HiChIP data from GM12878 and K562 cells as well as
H3K4me3 PLAC-Seq data from four human brain cell types. Our results demonstrated
the superior performance of HPRep, in terms of accurate clustering of samples from the
human brain cell types, which was not achievable using HiCRep, although better clustering
accuracy was observed when excluding bin pairs in the NOT set.

Future work involves exploring the potential of using this method to determine
minimum per sample sequencing depth or maximum allowable (if any) differential depth
across samples for accurate quantification of HP data reproducibility. We show that sample
differentiation and expected clustering were robust to downsampling, but rigorous analysis
needs to be performed in order to demonstrate practical use, as more high-depth HP data
become available from more tissues, cell lines, or cell types. Additionally, we plan to
examine the use of this general framework with capture Hi-C datasets including those
targeting a relatively small number of loci identified from genome-wide association studies,
and these genome-wide promoter capture Hi-C experiments. The use of pre-defined
anchors by these methods suggests that the HPRep framework will be also applicable
to these capture Hi-C methods, therefore these extensions are highly warranted but are
beyond the scope of our current HPRep work.

In terms of computational efficiency, for the human PLAC-Seq data consisting of
11 samples, tuning the smoothing parameter and determining all 55 pairwise reproducibil-
ity metrics for all 22 autosomal chromosomes took 1 h and 5 min using a single core on
a 2.50 GHz Intel processor with 4GB of RAM. One can choose to apply HPRep to one
chromosome for almost the same result. Using the same data, HPRep takes 35 min to
perform tuning and analysis solely on chromosome 1 using the same single core.

5. Conclusions

Here, we present HPRep, a computationally efficient algorithm based on positive
Poisson regression [13] and a stratified Pearson correlation [6]. Our comprehensive bench-
mark analyses of real HP datasets demonstrate that HPRep outperforms existing Hi-C
reproducibility measurements.
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