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Abstract

Hi-C data provide population averaged estimates of three-dimensional chromatin contacts

across cell types and states in bulk samples. Effective analysis of Hi-C data entails control-

ling for the potential confounding factor of differential cell type proportions across heteroge-

neous bulk samples. We propose a novel unsupervised deconvolution method for inferring

cell type composition from bulk Hi-C data, the Two-step Hi-c UNsupervised DEconvolution

appRoach (THUNDER). We conducted extensive simulations to test THUNDER based on

combining two published single-cell Hi-C (scHi-C) datasets. THUNDER more accurately

estimates the underlying cell type proportions compared to reference-free methods (e.g.,

TOAST, and NMF) and is more robust than reference-dependent methods (e.g. MuSiC).

We further demonstrate the practical utility of THUNDER to estimate cell type proportions

and identify cell-type-specific interactions in Hi-C data from adult human cortex tissue sam-

ples. THUNDER will be a useful tool in adjusting for varying cell type composition in popula-

tion samples, facilitating valid and more powerful downstream analysis such as differential

chromatin organization studies. Additionally, THUNDER estimated contact profiles provide

a useful exploratory framework to investigate cell-type-specificity of the chromatin interac-

tome while experimental data is still rare.
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Author summary

Hi-C data is used to understand how chromosomes are ordered in a cell. Often, this data

is made up of different kinds of cells. Usually, we do not know the number of each kind of

cell in the data. When we study Hi-C data, we must learn which part of the data comes

from each kind of cell. If not, what we learn in our study might be wrong. As of now,

there is no such approach that can do this for Hi-C data. We created an approach, THUN-

DER, to learn the parts of Hi-C data for all the kinds of cells in our data. We showed that

our approach learns well in many settings using data we created. We then used our

approach on real Hi-C data to show how others can use it in their work.

Introduction

Statistical deconvolution methods have been applied extensively to studies of gene expression

and DNA methylation to infer cell type proportions and estimate cell-type-specific profiles[1–

6]. Deconvolution methods infer latent clusters from observed data which can correspond to

either cell types or cell states (hereafter we refer to both as cell types). In epigenome-wide associ-

ation studies (EWAS) where the individual-level signal is a mixture of methylation profiles

from different cell types, it has become standard practice to control for inferred cell type pro-

portions when analyzing heterogeneous samples.[7] As we accumulate chromatin interaction

information from heterogeneous samples using recently developed technologies such as Hi-C at

an increasing rate, there will soon be sufficient individual level data to conduct similar 3D-chro-

matin-interactome wide association studies (3WAS) or chromatin interactome QTL (iQTL)

studies.[8] Similar to DNA methylation and gene expression, there is growing evidence from

single-cell Hi-C (scHi-C) data of important cell-to-cell variability in spatial chromatin interac-

tion.[9–12] In order to effectively garner insights from associations between chromatin interac-

tions and phenotypes of interest or to identify genetic determinants underlying variations in

3D- chromatin-interactome across biological samples, future 3WAS or iQTL analyses must

control for the almost inevitable confounding factor of differential cell type proportions across

heterogeneous bulk samples. If not accounted for, we risk inducing an increased false positive

rate by Simpson’s Paradox.[7,13] However, to the best of our knowledge, there is no statistical

deconvolution method which is capable of leveraging both intrachromosomal and interchro-

mosomal contacts for deconvolution across multiple bulk Hi-C samples simultaneously.

There exist two particular challenges of performing deconvolution in bulk Hi-C data: a lack

of cell-type-specific Hi-C reference profiles and having no ubiquitous aggregating unit for

summarizing Hi-C data. First, many deconvolution methods require cell-type-specific refer-

ence profiles for each cell type potentially present in a mixture (e.g., the genes whose expres-

sion define a cell type), but analogous data are not yet available for Hi-C. Second, Hi-C data

can be summarized at several different structural levels, such as A/B compartments, topologi-

cally associating domains (TADs)[14], frequently interacting regions (FIREs)[15,16], chroma-

tin loops[17], interchromosomal contacts, and/or intrachromosomal contacts[18,19], and it is

unclear which level(s) of measurement are most scientifically relevant or effective for deconvo-

lution purposes. In contrast, when deconvolving gene expression data it is clear that the aggre-

gating unit of interest is the gene.

To address these challenges, we propose a non-negative matrix factorization (NMF) based

Two-step Hi-c UNsupervised DEconvolution appRoach (THUNDER), to infer cell type pro-

portions from bulk Hi-C data. THUNDER consists of a feature selection step and a deconvolu-

tion step, both of which rely on NMF. NMF has been used in many computational biology
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applications to cluster genes, discover cancer types using microarray data, and study functional

relationships of genes[20–22]. In the first step, we perform feature selection on the cell type

profiles estimated from an initial deconvolution to identify informative bin-pairs in the mix-

ture data (Fig 1A and 1B). In the second step, we perform deconvolution after subsetting the

mixture matrix on informative bin-pairs (Fig 1B).

To the best of our knowledge, THUNDER is the first unsupervised deconvolution method

for Hi-C data that integrates both intrachromosomal and interchromosomal contact informa-

tion to estimate cell type proportions in multiple bulk Hi-C samples simultaneously. Two

other matrix-based deconvolution approaches exist for Hi-C intrachromosomal contact matri-

ces: 3CDE infers non-overlapping domains of chromatin activity in each cell type and uses a

linear combination of binary interaction information at these domains to perform deconvolu-

tion.[23] Junier et al. put forth a method to infer overlapping domains of chromatin activity as

well as their mixture proportions.[24] Unlike THUNDER, neither method integrates

Fig 1. Overview of THUNDER Procedure. (A) Overview of nonnegative matrix factorization (NMF) in the context of bulk Hi-C data. Three underlying cell types

each contribute to the observed contact frequencies in two bulk Hi-C samples. The first step of the THUNDER algorithm is to deconvolve the input bulk Hi-C data

into two estimated matrices: the cell type profile matrix and the proportion matrix. (B) In order to select informative bin-pairs for deconvolution, THUNDER utilizes

a feature selection algorithm specifically tailored to Hi-C data to analyze the contact frequency distribution of the bin-pairs in the cell type profile matrix. (C) In the

final step of THUNDER, we subset the bin-pairs contained in the input bulk Hi-C samples to only informative bin-pairs and perform NMF a second time. The

proportion matrix is scaled to be estimates of the underlying cell type proportions in the bulk Hi-C samples. The cell type profile matrix estimates cell-type-specific

contact distributions.

https://doi.org/10.1371/journal.pgen.1010102.g001
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information from interchromosomal bin-pairs. We tested 3CDE on our simulated bulk Hi-C

mixtures, but found that it is almost impossible to apply in practice because it does not accom-

modate the inclusion of interchromosomal contacts and it requires across-sample cell type

matching to align proportion estimates since it infers cell type proportions for each sample

separately (S1 Fig). To the best of our knowledge, no software accompanies the work by Junier

et al.[24] Carstens et al. infer chromatin structure ensembles from bulk Hi-C contact informa-

tion using a Bayesian approach but does not infer cell type proportions directly.[25]

In this work, we consider two other deconvolution methods developed for gene expression

or methylation data: MuSiC and TOAST. MuSiC is a reference based deconvolution method

which estimates cell type proportions from bulk RNA sequencing data based on multi-subject

single cell data.[6] TOAST is a feature selection algorithm for gene expression or methylation

data to select a pre-specified number of features while performing unsupervised deconvolution

via NMF.[3]

Description of the method

THUNDER

In order to estimate the underlying cell type proportions found in bulk Hi-C datasets, we pro-

pose a Two Step Hi-C UNsupervised DEconvolution appRoach (THUNDER). THUNDER

consists of a feature selection step and a deconvolution step, both of which rely on non-nega-

tive matrix factorization. For Hi-C data, V denotes the p x n mixture matrix of bulk Hi-C sam-

ples with p bin-pairs and n columns of mixture samples. We assume that the mixtures present

in Hi-C data have been normalized to a function of contact frequency (for example contacts

per million). THUNDER does not distance-normalize the input data because we analyze each

bin-pair interaction as an independent feature. We let k>0 be an integer specified for the num-

ber of distinct cell types in the mixture sample and is chosen a priori. NMF seeks to find an

approximation V�WH, where W and H are p×k and k×n non-negative matrices. We refer

to W and H as the cell type profile and proportion matrices, respectively. The NMF problem

can be solved by finding a local minimum for the Euclidean norm between V and WH, kV
−WHk2, under the constraint that W and H are non-negative. We use the NMF R package[26]

with the updates provided by Lee and Seung[27] with random initialization of the W and H
matrices.

In step one of THUNDER, we perform an initial NMF deconvolution estimate on the p x n
matrix V to obtain the deconvolution estimate V�W1H1 where W1 is a p x k matrix and H1 is

a k x n matrix. V may contain both intrachromosomal and interchromosomal features. We

then perform feature selection using the decomposition to identify informative bin-pairs

across cell types. THUNDER performs feature selection on intrachromosomal and interchro-

mosomal contacts separately. Let W1(i,j) denote the element in the ith row and jth column of

the cell-type-specific profile matrix W1. Let Sintra and Sinter denote the set of intrachromosomal

and interchromosomal features respectively.

Standard deviation across cell types for bin-pair i is defined as,

SDi ¼
1

k � 1

Xk

j¼1

W1ði; jÞ �
1

k
W1ði; �Þ

� �2

Feature score across cell types for bin-pair i is defined as follows.

FSi ¼ 1þ 1=log2ðkÞ
Xk

j¼1

pði; jÞ log2ðpði; jÞÞ
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where p(i,O) is the probability that the i-th pairwise bin contributes to cell type O, i.e.

p i;Oð Þ ¼
W1ði;OÞPk

j¼1
W1ði;jÞ

. Feature scores range from [0,1] with higher scores representing bin-pairs

with higher cell-type-specificity. We further define,

m̂SD;inter ¼
1

jSinterj

X

fi:i2Sinterg

SDi

ŝSD;inter ¼
1

jSinterj � 1

X

fi:i2Sinterg

ðSDi � m̂sd;interÞ
2

m̂FS;intra ¼ medianfi:i2SinragðFSiÞ

ŝFS;intra ¼ medianfi: i2Sinrag
ðjm̂FS;intra � FSijÞ

Intrachromosomal bin-pair i is defined to be an informative bin-pair if

FSi > m̂FS;intra þ 3ŝFS;intra, and interchromosomal bin pair j is defined to be an informative bin

pair if SDj > m̂SD;inter þ 3ŝSD;inter.

After identifying p� informative bin-pairs, we subset V on all informative bin-pairs to form

the reduced p�x n mixture matrix V�. We then perform NMF on V� to arrive at our final esti-

mates, W� (of dimension p� x k) and H� (of dimension k x n). Finally, we normalize the columns

of H� by the column sums to represent cell type proportions. This transformation ensures that

the cell type proportion estimates sum to one. The scaled elements of H� are cell type propor-

tion estimates in the p mixture samples. The columns of W� are parsimonious cell-type-spe-

cific contact profiles. These parsimonious contact profiles estimate Hi-C contact frequencies at

the bin-pairs which most differentiate the inferred cell types in the Hi-C samples.

MuSiC

MuSiC is a reference-based deconvolution method which estimates cell type proportions from

bulk RNA sequencing data based on multi-subject single cell RNA sequencing data. MuSiC lever-

ages features which demonstrate cross-cell and cross-sample consistency to apply cell-type-specific

feature information in estimating cell type proportions. MuSiC additionally applies a tree-based

procedure to address collinearity in closely related cell types within a bulk tissue. To run MuSiC,

we used the MuSiC R package (version 0.1.1) with default parameters. We constructed a scHi-C

reference dataset using cells from Lee et al. which match cells considered in the simulated mix-

tures. Using multinomial sampling, we selected n cells from each cell type in the mixture where n
is 75% of the minimum number of cells available in a given cell type within the Lee el al. dataset.

TOAST

TOAST is a recently proposed unsupervised deconvolution and feature selection algorithm which

iteratively searches for cell type-specific features and performs composition estimation.[3] We use

the TOAST Bioconductor package version 1.0.0 using the default 1,000 features for deconvolution.

Additionally, we use NMF with KL divergence function as the deconvolution engine of TOAST.

3CDE

3CDE is a matrix-based deconvolution approach for bulk Hi-C data which infers non-overlap-

ping domains of chromatin activity in each cell type from data and uses a linear combination
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of binary interaction information at these domains to deconvolve the contact frequency

matrix.[23] We downloaded software from their Github page (https://github.com/emresefer/

3cde), and ran 3cdefrac.py with default settings. We found that the results were not usable

when deconvolving multiple samples with the same underlying cell types without additional

feature matching algorithms (S1 Fig).

Simulating Bulk Hi-C data

Ramani et al. dataset. Cellular indices were downloaded from GSE84920 which included

6 libraries: ML1, ML2, ML3, ML4, PL1 and PL2.[10] For our simulations, we use data from all

libraries except ML4. These libraries are composed of scHi-C data from five distinct human

and mouse cell lines. Within each cell, we follow the same preprocessing procedure as outlined

in Ramani et al. Specifically, cellular indices with fewer than 1000 unique reads, a cis:trans
ratio less than 1, and cells with less than 95% of reads aligning uniquely to either the mouse or

human genomes are filtered out before analysis. Additionally, we remove reads whose geno-

mic distance was <15Kb due to self-ligation, and only considered unique reads. For the four

libraries containing HAP1 and HeLa cells (ML1, ML2, PL1 and PL2), cellular indices were dis-

carded where the proportion of sites where the non-reference allele was found was between

57% and 99%.

To account for varying levels of single-cell sequencing depth across libraries, we consider

only cells with filtered reads greater than the 20th quantile and less than the 90th quantile of

reads and across all libraries and cell types considered in the simulated mixture sample. We

then downsample each cell via multinomial sampling to the number of contacts in the cell

with the fewest number of contacts across all cell types considered in the sample. We construct

contact matrices on the filtered and downsampled scHi-C data at three levels of data represen-

tation at 10Mb bin-pair resolution: interchromosomal contacts only, intrachromosomal con-

tacts only, and both interchromosomal contacts and intrachromosomal contacts together. The

total number of cells in each mixture sample is equal to the smallest number of cells present in

a cell line after the filtering step across cells in the mixture sample. Finally, we transform the

data by dividing each sample by the total number of intrachromosomal and interchromosomal

contacts in the sample and multiplying by 1,000,000.

To test proposed feature selection methods for THUNDER, we generate three cell type mix-

tures of GM12878, HAP1, and HeLa cells. We generate 5 replications of 12 bulk samples (3

pure samples and 9 mixture samples) which are mixtures of the three cell lines at the propor-

tions given in S4 Table. These proportions are a subset of those used by Shen-Orr and Tibsher-

ani in their simulated mixture data.[1]

Lee et al. dataset. 4,238 scHi-C profiles from the prefrontal cortex region of two postmor-

tem adult human brains were downloaded from GSE130711. Non-neuronal cell types were

previously identified via clustering based on CG methylation signature, followed by fine clus-

tering of neuronal subtypes using non-CG methylation. For each cell, we removed reads with

genomic distance <15kb and only considered unique reads.

We generate 5 replications of 18 mixtures of scHi-C data at 10Mb resolution consisting of 6

cell groups: oligodendrocyte (ODC), oligodendrocyte progenitor cell (OPC), astrocyte (Astro),

microglia (MG), endothelial (Endo), and the 8 neuronal subtypes as one group (Neuron). Mix-

tures were generated at the same three resolutions of Hi-C data as the mixtures from Ramani

et al (S5 Table).

In order to assess the robustness of the reference-based deconvolution method compared

to reference-free deconvolution approaches, MuSiC, we estimated cell type proportions under

three scenarios.[6] First, we estimated cell type proportions where all cell types in the mixture
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were present in the reference panel. Second, we randomly removed one or two cells, respec-

tively, from the reference panel and estimated the cell type proportions of the remaining cells.

Window size. In large part, the 10Mb window choice for our feature selection experiment

was limited by the library size of current scHi-C datasets and sparsity of contacts from which

to generate synthetic bulk Hi-C datasets such that the true cell type proportions and the true

number of underlying cells are known. Without the simultaneous availability of both pieces of

information, our simulation studies would not be accurate. As single-cell technologies improve

and with more data accumulating, we will be able to test Hi-C deconvolution methods at finer

data resolutions where truth is known.

Feature selection. The eleven feature selection methods either performed feature selec-

tion on the bulk Hi-C contact frequencies or on the derived cell-type specific profiles after an

initial NMF fit. Strategies in the former group identify bin-pairs with high Fano Factor esti-

mates across all samples. Strategies in the latter group identify informative bin-pairs with high

cell-type-specificity and/or high variation across inferred cell types. Cell type specificity is mea-

sured by feature score within a bin-pair and across estimated cell types. Across-cell-type varia-

tion is measured by standard deviation within a bin-pair and across estimated cell types. For

both metrics, we use empirical thresholds based on the distribution of these estimates across

all bin-pairs for feature selection.

Choosing Hi-C readout for deconvolution. Using the 12 simulated mixtures of HAP1,

HeLa, and GM12878 cell lines from Ramani et al, we summarized the Hi-C contacts into vary-

ing readouts: 10Mb intrachromosomal contacts, 10Mb interchromosomal contacts, 1Mb

intrachromosomal contacts, 1Mb interchromosomal contacts, 1Mb A/B compartment PC

scores, and 100Kb insulation score. We computed normalized insulation score for 100Kb con-

tacts with a sliding window size of 1.2Mb [28]. For insulation scores and compartment PC’s,

we apply the absolute value transformation to ensure that the input mixture matrices are non-

negative. For each sample, we applied THUNDER to estimate cell type proportions using

k = 3. We compared the deconvolution performance at each readout of Hi-C data using MAD

and correlation between estimated cell type proportions and true cell type proportions. Addi-

tionally, we computed the proportion of explained variance of the mixture matrix by the NMF

fit. Specifically, given mixture matrix V and THUNDER estimated matrix H� �W� ¼ V̂ ,

RSS ¼
X

ij
ðVij � V̂ijÞ

2

and

Proportion of Variance Explained ¼ 1 �
RSS
P

ijV̂ 2

Similar measures of performance have been used previously to determine goodness of fit for

NMF deconvolution estimates ([29,30]).

Real data analysis

Sullivan Lab eHi-C data. Anterior temporal cortex was dissected from postmortem sam-

ples from three adults of European ancestry with no known psychiatric or neurological disor-

der. Protocol for generating Hi-C data on these samples has been described previously[31].

We applied THUNDER to the three adult samples at 1Mb, 100Kb, and 40Kb resolutions. We

ran THUNDER on intrachromosomal contacts only, and performed feature selection on each

chromosome separately. To obtain the final estimated cell type proportions, we concatenated

selected features across all chromosomes before running step 2 of the THUNDER algorithm.
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We assumed a range of possible values for the number of cells in the mixture (k = 3,. . .,7), and

ran THUNDER for 100 iterations for both feature selection and cell type proportion estima-

tion. For downstream analysis, we chose the Hi-C bin size resolution and k value which maxi-

mized the proportion of variance explained in the subset mixture matrix by the final

THUNDER deconvolution estimate.

After running THUNDER, we identified bin-pairs that demonstrated specificity to each

inferred cell-type-profile. Informative bin-pairs were selected as specific to each inferred cell-

type-profile if the row-normalized element of the basis matrix was greater than or equal to 0.3.

This threshold was chosen to select a sufficient number of bin-pairs for each feature. We then

compared the unique bins in these bin-pairs with cell-type specific epigenomic annotations

(described below). We assigned cell types to the THUNDER inferred cluster-specific contact

profiles based on the enrichment of epigenetic features within the THUNDER bins based on

the results of a chi-squared test. Finally, we compared the THUNDER estimated cell-type pro-

portions for each labelled cluster with the distribution of cell types within cortex tissue.

We tested if THUNDER bin pairs identify biologically relevant bin pairs by examining the

gene expression distributions for cell-type-specifically expressed genes in each THUNDER

cluster. Specifically, for each THUNDER feature of the final deconvolution estimate, we identi-

fied all cell-type-specifically expressed genes for neurons, oligodendrocytes, microglia, and

astrocytes. After assigning the THUNDER features as described above, we tested the hypothe-

sis that the gene expression distribution for genes in a THUNDER feature would be higher in

the assigned cell type compared to other cell types using pairwise two-sample Wilcoxon rank

sum tests.

Enhancer annotations. We obtained cell-type-specific enhancer annotations for neurons,

microglia, oligodendrocytes, and astrocytes generated from Nott et al. They performed

ATAC-seq as well as H3K27ac and H3K4me3 chromatin immunoprecipitation sequencing on

cell-type-specific nuclei. We did not consider cell-type-specific enrichments for promoters

due to previous evidence supporting that promoters are mostly conserved across cell types.

[32]

Cell type specifically expressed genes. We used cell-type-specific RNA-seq data in neu-

rons, microglia, oligodendrocytes, and astrocytes generated by Zhang et al. to identify cell type

specific genes.[33] We defined a cell type specific gene as a gene where the difference between

the cell type specific expression and the mean expression level of all other genes was greater

than one. To examine overlap with Hi-C bins, we check the region within 2kb of the gene tran-

scription start site.

High-confidence regulatory chromatin interactions. High confidence regulatory chro-

matin interactions (HCRCIs) are genomic regions physically proximal in the nuclear 3D

space. HCRCIs were identified for the three adult cortex tissue samples as described above in a

previous study.[31] HCRCIs are interacts that demonstrated significant evidence of increased

interaction frequency (p< 2.31 10−11) and overlapped with open chromatin, active histone

marks, or transcription start sites of brain-expressed genes. Data were generated with two 10

Kb anchors that are�20 Kb and�2 Mb apart.

Computation test with 10Kb Hi-C data

In order to assess the computational costs of THUNDER on genome-wide Hi-C data, we

apply THUNDER to intrachromosomal Hi-C data at 10Kb resolution in YRI samples.[8] We

randomly select 5 samples to be included in the analyses. First, we perform feature selection

for each chromosome through simple parallelization. Then, we concatenate the selected fea-

tures across all chromosomes for the final deconvolution estimate. We use computing time
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and memory usage to assess the computational efficiency for both feature selection and estima-

tion of cell type proportions across the three datasets.

Verification and comparison

THUNDER feature selection. In order to determine the feature selection method for

THUNDER, using scHi-C data generated from Ramani et al. [10], we simulated 12 mixtures

of Hi-C data at 10Mb resolution consisting of three cell lines, HAP1, HeLa, and GM12878,

where we set the cell composition proportions (details in Methods). We evaluated the perfor-

mance of 11 published and novel NMF feature selection strategies for intrachromosomal only

and interchromosomal only bin-pairs by computing the mean absolute deviation (MAD) and

the Pearson correlation between the true simulated cell type proportions and the estimated

proportions across simulations across 5 simulation replicates (S1 Text)

Our simulation results suggest that the optimal feature selection method differs for decon-

volving interchromosomal and intrachromosomal contacts (Fig 2). For intrachromosomal

contacts, the best feature selection method is “High CTS (median)” which prioritizes features

with high cell-type-specificity using median-based empirical thresholds and selects an average

of 353 informative bin-pairs out of an average of 2,590 input intrachromosomal contact fea-

tures. The best performing interchromosomal feature selection method is “High ACV”. “High

ACV” prioritizes features with high across-cell-type variation (ACV) using mean-based empir-

ical thresholds and selects an average of 287 informative bin-pairs out of an average of 42,871

Fig 2. Performance of Feature Selection Strategies for Unsupervised Hi-C Deconvolution in HAP1, HeLa, and GM12878 Mixtures. We

test 11 feature selection strategies including no feature selection (NMF), Fano 100, Fano 1,000, and 8 feature selection strategies combining

bin-pairs with high cell-type-specificity (CTS) and high across-cell-type variation (ACV). We computed the mean absolute deviation (MAD)

and Pearson correlation between the true simulated cell type proportions and the estimated proportions across simulations across 5

simulation replicates. Colors are grouped such that the “reds” are strategies analyzing the estimated cell-type-specific profiles using the mean

across bin-pairs for thresholding, “blues” are feature score strategies analyzing the estimated cell-type-specific profiles using the median

across bin-pairs for thresholding, and “greens” are NMF with no feature selection or a pre-specified number of features based on Fano factor.

Distributions are presented across simulation replicates.

https://doi.org/10.1371/journal.pgen.1010102.g002
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input interchromosomal contact features. We refer to these two methods hereforeward as

THUNDER-intra and THUNDER-inter, respectively. Compared to NMF with no feature

selection, THUNDER-intra reduced average MAD (mean absolute deviation, smaller indicates

better performance) by 42% and increased average Pearson correlation by 0.4%. Similarly,

THUNDER-inter reduced average MAD by 69% and increased average Pearson correlation by

3.3%. Feature selection methods that require specifying the number of informative bin-pairs a
priori such as Fano-100 and Fano-1000, which selects the top 100 and 1000 features with high-

est Fano factor respectively, exhibit the most variable performance across simulations, and per-

form poorly relative to other methods despite specifying a similar number of bins.

Using simulated Hi-C mixtures from Ramani et al, we assessed THUNDER’s performance

across a variety of Hi-C data readouts including 10Mb intrachromosomal contacts, 10Mb

interchromosomal contacts, 1Mb intrachromosomal contacts, 1Mb interchromosomal con-

tacts, 1Mb A/B compartment PCs, and 100Kb insulation scores. We measured performance

using proportion of explained variance by the THUNDER fit, MAD with true cell type propor-

tions, and correlation with true cell type proportions. In all three measures, THUNDER

deconvolution estimates were most accurate on 10Mb interchromosomal contacts and by

10Mb intrachromosomal contacts (S2A, S2B, and S2C Fig). Notably, the next best performing

inputs were 100Kb-resolution TAD insulation score and 1Mb-resolution A/B compartment

PC’s. This suggests that deconvolution of Hi-C data may be enhanced by summarizing Hi-C

data to biologically relevant features before analysis. Across all simulation results, MAD was

negatively correlated with the proportion of variance explained by the THUNDER fit (S2D

Fig). Additionally, the proportion of variance explained does not require knowledge of the

true underlying cell type proportions to compute the goodness of fit. We therefore propose to

use the proportion of variance explained as a practical solution to choose Hi-C data readout

and the number of underlying cell types, k.

Simulations based on scHi-C from brain (Lee et al)

We tested the accuracy of THUNDER cell type proportion estimates using scHi-C data from

Lee et al.[12] to simulate 18 Hi-C mixtures at 10Mb resolution of 6 brain cell types: microglia,

astrocytes, oligodendrocytes, oligodendrocyte progenitor cells, endothelial cells, and neuronal

cells. THUNDER cell type proportion estimates were most accurate when deconvolving intra-

chromosomal and interchromosomal contacts together, reducing MAD by 9.7% and 7.6% and

increasing Pearson correlation by 3.7% and 1.4% compared to intrachromosomal contacts and

interchromosomal contacts respectively. We compared THUNDER’s performance to NMF

with no feature selection, MuSiC, and TOAST on mixtures with both intrachromosomal and

interchromosomal contacts, intrachromosomal contacts only, and interchromosomal contacts

only (Fig 3). THUNDER outperformed all alternative reference-free deconvolution

approaches in each simulation. When deconvolving both intrachromosomal and interchromo-

somal contacts together, THUNDER decreased average MAD by 23% and 36% and increased

Pearson correlation by 6% and 31% relative to NMF and TOAST, respectively. MuSiC, a refer-

ence-based deconvolution approach, outperformed THUNDER in all simulation scenarios

when all cell types in the mixtures are present in the reference panel. However, due to the cur-

rent paucity of cell-type specific Hi-C reference panels, we tested the performance of MuSiC

with one and two cell types randomly removed from the reference panel (Methods). In all

three simulation settings, MuSiC’s performance decreased with the number of cell types ran-

domly removed from the reference (MuSiC, MuSiC—One Missing, and Music—Two Missing

in Fig 3A and Fig 3B). The performance of MuSiC one-missing was comparable to THUNDER

in all simulation settings, and MuSiC—Two Missing was either worst or close to the worst
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performing methods. From our simulations, THUNDER performed best among reference free

methods, and was more robust compared to MuSiC which performed poorly when cell types

are missing from the reference panel. We anticipate reference based methods such as MuSiC

will become more advantageous as we accumulate resources to build a comprehensive refer-

ence panel. Currently, with limited resources to construct a reference dataset, reference free

methods are more valuable.

Applications

THUNDER estimates cell-type specific features from real brain Hi-C data (Giusti-

Rodriguez et al.). We applied THUNDER to bulk Hi-C data generated on cortex tissue from

three postmortem adult samples (Methods). In order to select a Hi-C data resolution and k for

our analysis, we fit THUNDER to data summarized at 1Mb, 100Kb, and 40kb for values of k
from 3 to 7. In downstream analysis, we proceeded with the Hi-C data resolution and k which

maximized the proportion of variance explained by the THUNDER fit, 1Mb and k = 6

(S3 Fig).

In order to assign plausible cell type labels to the 6 THUNDER inferred clusters, we com-

pared the cluster-specific bins to cell-type specific enhancers and genes from four cell types,

namely neurons, oligodendrocytes, microglia, and astrocytes, commonly found in cortex tis-

sue. Specifically, THUNDER cluster 1 showed evidence of enrichment for neuronal specifically

expressed genes (p = 3.2e-3) and was thus assigned as neurons. THUNDER cluster 6 demon-

strated enrichment for neuronal enhancers (p = 3.79e-9) and a trend (although not statistically

significant) for enrichment of neuron specific genes (p = 0.104). We assigned THUNDER clus-

ter 6 to neurons. THUNDER cluster 4 demonstrated enrichment with neuronal enhancers

(p = 1.89e-3), and was thus assigned to neurons as well. Bins distinct to THUNDER clusters 2

and 3 demonstrated consistent evidence of enrichment of oligodendrocytes (ODC) features, in

terms of enhancers (p = 3.3e-4 and p = 7.5e-9) and ODC-specifically expressed genes

(p = 7.5e-3 and p = 4.78e-3). Therefore, both were assigned as ODC cells. THUNDER cluster 5

was not assigned to a cell type due to a lack of specific enrichments in any of the four cell types

considered.

With these assigned cell type labels to the clusters, THUNDER estimated 62.7–65.2% neu-

rons, 2.3–34.5% ODCs, and 0.3–35% unassigned for the three samples, largely matching the

Fig 3. Performance of Deconvolution Methods on Mixtures with 6 Human Brain Cell Types. (A,B) We computed the mean absolute deviation

(MAD) and Pearson correlation between the true simulated cell type proportions and the estimated proportions across simulations across 5

simulation replicates. Bars are the average value across simulation replicates. Lower MAD and higher Pearson correlation indicates better

performance. Error bars are equal to the standard deviation across simulation replications. (C) Number of bin-pairs selected by deconvolution

methods which perform feature selection.

https://doi.org/10.1371/journal.pgen.1010102.g003
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expected ratio of neuronal to non-neuronal cells in cortex tissue (Fig 4). To examine the bio-

logical relevance of the THUNDER inferred features, we compared the distribution of cell-

type-specific gene expression across the four cell types in genes identified in feature-specific

bin-pairs. Genes in bin-pairs specific to the THUNDER feature were enriched for cell-type-

specifically expressed genes of the assigned cell type compared to the other three possible cell

types (S4 Fig).

Additionally, THUNDER informative bin-pairs identified biologically relevant cell-type

specific interactions. For example, the bin-pair defined by genomic regions chr5:130Mb-

131Mb and chr5:131Mb-132Mb was an informative bin pair for THUNDER cluster 6, which

was assigned to neurons via enrichment analysis. This bin-pair contained 14 high-confidence

regulatory chromatin interactions (HCRCI) identified in the three adult cortical samples in a

previous study with genomic coordinates within chr5:130,600,000–130,970,000 and

chr5:131,100,000–131,730,000, respectively.[31] Further, two neuron-specific genes identified

in our analysis of data from Zhang et al. were contained in chr5:131,100,000–131,730,000,

ACSL6 and P4HA2. Together, these results suggest that THUNDER informative bin pairs may

correspond to a group of neuron-specific chromatin interactions. Another such example is the

THUNDER informative bin-pair defined by the genomic regions chr12:121Mb-122Mb and

chr12:122Mb-123Mb for THUNDER cluster 3, which enrichment analysis suggested as ODCs.

The two regions defining this bin pair contained 64 HCRCIs, and two ODC specifically

expressed genes, P2RX7 and ANAPC5. Our results suggest that THUNDER estimated cell-

type-specific profiles (S1 Table) can identify biologically meaningful cell-type-specific interac-

tions from bulk Hi-C data.

Fig 4. THUNDER Estimated Cell Type Proportions in 3 Samples of Human Cortex Tissue. We use THUNDER to estimate cell type

proportions for 3 Hi-C samples from cortex tissue and perform enrichment analyses to assign brain cell types to THUNDER clusters. Our results

match the expected ratio of neuronal to non-neuronal cells in cortex tissue.

https://doi.org/10.1371/journal.pgen.1010102.g004
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Computations on 10Kb Hi-C data

We assessed THUNDER’s computing performance on Hi-C data of lymphoblastoid cell lines

(LCLs) derived from five YRI (Yoruba in Ibadan, Nigeria) individuals.7 Specifically, we ana-

lyzed intrachromosomal contacts at 10Kb resolution, with 38,343,298 unique intrachromoso-

mal bin-pairs ranging from 380,000 to 3.5 million bin-pairs per chromosome. To obtain cell

type proportion estimates genome-wide using THUNDER, we first perform feature selection

by chromosome, then concatenate the selected features across chromosomes as input for the

final deconvolution estimate. We do not present cell type proportion estimates here as the

main focus of this experiment is to assess the computation time of THUNDER with Hi-C data

at 10Kb resolution. Further, deconvolution results have no interpretability in this setting since

the bulk samples are all derived from a single cell line.

THUNDER scales linearly with both the number of samples under inference and the num-

ber of input features (S2–S4 Tables). THUNDER’s average computing time is 3.4 hours (range

0.6–7.2 hours) with an average of 57GB memory (range 18GB - 103GB) per chromosome

using a single core on a 2.50 GHz Intel processor with 256GB of RAM. The final genome-wide

estimation step to obtain cell type proportions, with 693,771 (~2%) bin-pairs selected as infor-

mative, took 2.5 hours and 18GB of memory (S3 Table). Similar summaries are presented for

analyzing 3 and 10 YRI samples respectively (S2 and S4 Tables). One advantage of THUN-

DER’s feature selection method when analyzing genome-wide Hi-C data is the ease with

which it can be parallelized by subsetting the original input matrix in smaller regions than by

chromosome, then concatenating Hi-C data for the final cell type proportion estimation step.

This run time and memory usage serves as an upper limit on the computational costs of run-

ning THUNDER, as 10Kb is one of the finest resolutions of Hi-C data currently analyzed in

practice.

Discussion

THUNDER is the first unsupervised deconvolution method for Hi-C data that integrates both

intrachromosomal and interchromosomal contact information to estimate cell type propor-

tions in multiple bulk Hi-C samples. Across all simulations, THUNDER’s accuracy in estimat-

ing cell type proportions exceeded all reference-free alternative approaches tested.

Importantly, THUNDER’s feature selection strategy for identifying informative bin-pairs

before deconvolution improves performance relative to NMF with no feature selection. We

found THUNDER to be a robust alternative to reference-dependent methods which may not

estimate cell type proportions accurately when cells are missing from the reference panel, a

realistic scenario in practice with Hi-C data deconvolution. Further, we found that even in

non-cancerous cell lines, the inclusion of sparse interchromosomal contact information (in

addition to intrachromosomal contacts) improves deconvolution performance. This, however,

comes at the cost of increased computational cost. THUNDER also provides an approach to

infer cell-type-specific contact frequency from bulk Hi-C data.

We demonstrated that THUNDER successfully integrates interchromosomal contacts to

improve deconvolution estimates for Hi-C data. In most cell types, we have more reliable Hi-C

data at a much larger number of intrachromosomal bin-pairs compared to interchromosomal

bin-pairs. For this reason, previous methods to deconvolve Hi-C data restricted their estima-

tion to these intrachromosomal contacts. However, even in simulations with no strong inter-

chromosomal signatures (for example, in the Lee et al human brain data), THUNDER’s

performance improves when integrating interchromosomal and intrachromosomal data for

deconvolution relative to only using intrachromosomal contacts. Our results suggest some

value in including interchromosomal contacts bulk Hi-C deconvolution, though at the tradeoff
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of computational efficiency. Since we analyze Hi-C data by grouping contacts into bin-pairs,

the feature space increases rapidly with increasing bins. As demonstrated in our computation

test, THUNDER’s computation costs increase linearly as the number of features increases.

Despite this tradeoff, our results suggest that interchromosomal bin-pairs contain useful infor-

mation that warrant consideration before excluding these bin-pairs in Hi-C deconvolution.

Additionally, we demonstrate that THUNDER estimated cell-type-specific profiles are

enriched for relevant cell-type-specific enhancers and specifically expressed genes through our

analysis of 3 adult human cortex samples. We demonstrate how existing cell-type specific

annotations can be used to label THUNDER inferred clusters, and thus provide cell type pro-

portion estimates in real Hi-C data. Thus, the estimated cell type profile matrix serves a dual

purpose: identifying informative bin-pairs from the large input feature space (dimension

reduction) and accurately estimating relative cell-type-specific contact frequency at informa-

tive bin-pairs.

An additional application of these cell-type-specific contact profiles could be in fine map-

ping of GWAS variants in non-coding regions of the genome. Genome-wide association stud-

ies (GWAS) have identified over 300,000 unique associations between single-nucleotide

polymorphisms (SNPs) and common diseases or traits of interest.[34] However, the majority

of these SNPs reside in non-coding regions where little is understood about their underlying

functional mechanisms, which has limited the adoption of variant-trait associations into

revealing molecular mechanisms and further into transforming clinical practice. Functional

annotation of GWAS results are often most relevant in a cell-type-specific fashion due to

important variability across cell types[35]. By further understanding the cell-type-specific

interactome via THUNDER’s estimated profiles, we anticipate more informative linking puta-

tively causal variants identified by GWAS to the target genes on which they act.

We provide a statistical approach for selecting Hi-C bin size and k for the THUNDER

deconvolution estimates that was correlated with accurately estimated cell type proportions in

our real data-based simulations. Selecting these parameters are essential to an effective decon-

volution approach for Hi-C data. We demonstrated the practical utility of our approach

through our real Hi-C data analysis on data from Giusti et al. In addition to our goodness of fit

metric proposed here, we recommend that analysts consider relevant information from histo-

logical experiments regarding the number of major cell types present in a tissue sample and

the expected range of cell type proportions when evaluating the estimates provided by THUN-

DER. Additionally, analysts must consider the read depth of the Hi-C data when selecting the

optimal resolution for deconvolution.

While we have presented results for Hi-C data here, the THUNDER algorithm could easily

be modified to other variations of Hi-C data such as HiChIP/PLAC-seq data (HP data), which

couple standard Hi-C with chromatin immunoprecipitation to profile chromatin interactions

anchored at genomic regions bound by specific proteins or histone modifications, with

reduced cost and enhanced resolution.[36,37] Used in concert with methods to identify long-

range chromatin interactions from HP data[38], our method is anticipated to efficiently lever-

age interchromosomal contacts jointly with high quality intrachromosomal contacts to esti-

mate underlying cell type proportions. The robustness of our feature selection strategy and

subsequent deconvolution performance warrant future interrogation in the setting of HP data.

There are two primary limitations of our study. First, due to the number of cells present in

current scHi-C datasets and the library size, our simulation analysis may be biased toward

coarser Hi-C resolutions due to increasing sparsity at lower bin sizes. However, we find that

THUNDER still performs exceedingly well in estimating true cell type proportions in our real

data analysis even at a coarser 1Mb resolution. Second, the number of cell types and the overall

coverage of the genome with our synthetic bulk Hi-C data are both much lower than one
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would expect in a realistic sample of bulk Hi-C data. As more scHi-C data becomes available,

we hope to continue to test THUNDER in different real-data based scenarios which may be

more realistic in terms of Hi-C data’s read-depth.

To summarize, we present THUNDER, an unsupervised deconvolution approach tailored

to the unique challenges of deconvolving Hi-C data. THUNDER accurately estimates cell type

proportions in bulk Hi-C data. THUNDER’s biologically motivated feature selection approach

performs well in all of our real data or real-data based simulations, including human cell lines,

human cortex tissue, and human brain cells. We have demonstrated the practical utility of the

method through our analysis of Hi-C data from Giusti et al. and the computational efficiency

of the method through our analysis of 10Kb resolution Hi-C data. Finally, the estimated cell-

type-specific chromatin interactome profiles are valuable for identifying bin-pairs which inter-

act differentially across cell types.

Accurately estimating underlying cell type proportions via THUNDER should be the first

step in any individual-level differential analysis of bulk Hi-C data to control for the almost

inevitable confounding factor of underlying cell type proportions. Additionally, THUNDER

provides a unique tool to identify differentially interacting bin-pairs at the cell-type-specific

level which can be associated with disease or phenotypes of interest. An R package for running

THUNDER can be downloaded from https://github.com/brycerowland/thundeR.git. We

anticipate THUNDER to become a convenient and essential tool in future multi-sample Hi-C

data analysis.
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S1 Table. THUNDER estimated cell type profiles from cortex tissue Hi-C deconvolution.
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S2 Table. Computational Performance on 3 YRI Samples of 10Kb Resolution Hi-C Data.
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S3 Table. Computational Performance on 5 YRI Samples of 10Kb Resolution Hi-C Data.
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S4 Table. Computational Performance on 10 YRI Samples of 10Kb Resolution Hi-C Data.
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S5 Table. Mixing Proportions for GM12878, HAP1, and HeLa Simulations.
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S6 Table. Mixing proportions for Lee et al. mixtures of 6 cell types.
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S1 Fig. Performance of THUNDER and 3CDE on HAP1 and HeLa Simulated Mixtures. We

see that in several simulations, 3CDE achieves near the maximum mean absolute deviation

from true cell type proportions (0.5). We do not test 3CDE in further simulations because of

its inability to handle multiple Hi-C samples simultaneously.

(PNG)

S2 Fig. (A-C) We estimated cell type proportions in 12 mixtures of 3 cell lines from Ramani

et al. at a variety of Hi-C data resolutions. We assessed THUNDER’s performance via (A)

MAD, (B) correlation, and (C) proportion variance explained by the THUNDER fit. (D)

THUNDER’s performance as measured by MAD is negatively correlated with the proportion

of variance explained by the THUNDER fit. Since proportion of variance explained does not

rely on knowing the underlying true cell type proportions, we propose using it as a measure of
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goodness of fit to choose the ideal Hi-C resolution and THUNDER k.
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S3 Fig. We applied THUNDER to 3 samples of Hi-C data generated from Giusti et al at

combinations of Hi-C bin size and values of k. For each combination, we computed the pro-

portion of explained variance by the THUNDER fit. Since several fits were tied with propor-

tion variance explained of 1, we chose 1Mb with k = 6, as it was the largest bin size resolution.
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S4 Fig. For the THUNDER deconvolution estimate for the Giusti et al. cortex Hi-C data,

we identified cell-type-specifically expressed genes in each of the THUNDER features. To

determine if THUNDER features identify biologically informative bin-pairs, we tested the

expression values for genes identified in THUNDER features using two-sample Wilcoxon

tests. All THUNDER features have evidence of identifying cell-type-specifically expressed

genes enriched for the labeled cell type.
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S1 Text. THUNDER Feature Selection.
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