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SUMMARY

The three-dimensional configuration of DNA is inte-
gral to all nuclear processes in eukaryotes, yet our
knowledge of the chromosome architecture is still
limited. Genome-wide chromosome conformation
capture studies have uncovered features of chro-
matin organization in cultured cells, but genome
architecture in human tissues has yet to be
explored. Here, we report the most comprehensive
survey to date of chromatin organization in human
tissues. Through integrative analysis of chromatin
contact maps in 21 primary human tissues and
cell types, we find topologically associating do-
mains highly conserved in different tissues. We
also discover genomic regions that exhibit unusu-
ally high levels of local chromatin interactions.
These frequently interacting regions (FIREs) are en-
riched for super-enhancers and are near tissue-
specifically expressed genes. They display strong
tissue-specificity in local chromatin interactions.
Additionally, FIRE formation is partially dependent
on CTCF and the Cohesin complex. We further
show that FIREs can help annotate the function of
non-coding sequence variants.
2042 Cell Reports 17, 2042–2059, November 15, 2016 ª 2016 The A
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INTRODUCTION

Chromosome conformation capture (3C)-based techniques

have begun to reveal molecular details of nuclear organization

in eukaryotic cells (Dekker et al., 2002; Dixon et al., 2012,

2015; Dostie et al., 2006; Fraser et al., 2015; Jin et al., 2013; Lie-

berman-Aiden et al., 2009; Rao et al., 2014; Seitan et al., 2013;

Simonis et al., 2006; Sofueva et al., 2013; Vietri Rudan et al.,

2015; Zuin et al., 2014). It is now clear that each chromosome

occupies a separate space in the interphase nucleus, known

as a ‘‘chromosome territory,’’ which is partitioned into distinct

neighborhoods or compartments (Lieberman-Aiden et al.,

2009; Meaburn andMisteli, 2007). Within each compartment, to-

pologically associating domains (TADs) constrain chromatin in-

teractions (Dixon et al., 2012, 2016; Nora et al., 2012; Sexton

et al., 2012). Within each TAD, chromatin interactions between

distal cis-regulatory elements occur in a cell-type-dependent

manner to allow modulation of promoter activity by enhancers

(Dryden et al., 2014; Montavon and Duboule, 2013; Phillips-Cre-

mins et al., 2013; Simonis et al., 2006; Tang et al., 2015). Previous

3D genome analyses have been largely limited to cultured cells

and a small collection of primary cell types. By contrast, our

knowledge of chromatin organization in human tissues is still

scarce. Variation in chromatin interaction patterns among

diverse tissue types remains poorly defined, and its functional

relationship with gene regulation remains to be characterized.

This is a critical shortcoming because diseases pertaining to
uthors.
creativecommons.org/licenses/by-nc-nd/4.0/).
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specific organ systems are often not easy to recapitulate in vitro.

Therefore, systematic characterization of chromosome architec-

ture across a broad set of well-annotated primary tissues could

be of great value for further study of genome function.

Recent studies of chromatin modification landscapes across a

large number of human tissues and cell types have greatly

improved our understanding of genome function and regulation

(ENCODE Project Consortium, 2012; Roadmap Epigenomics

Consortium et al., 2015). The research has revealed that over

12% of the genome possesses cell-type-specific chromatin

signatures consistent with them acting as cis-regulatory se-

quences. However, to better understand how these DNA se-

quences contribute to tissue- and cell-type-specific gene

expression patterns, it is necessary to characterize the chro-

matin architecture in each tissue. Here, we report integrative

analysis of chromatin organization maps of 14 human tissues

and 7 human cell lines for which complete epigenome datasets

have been generated by the Epigenome Roadmap Consortium,

ENCODE, or the National Institute of Child Health and Human

Development (NICHD) (ENCODE Project Consortium, 2012;

Roadmap Epigenomics Consortium et al., 2015). We developed

a computational method to discover the spatially active chro-

matin segments termed frequently interacting regions (FIREs).

We find FIREs are enriched for active enhancer regions,

harboring super-enhancers as well as disease-associated vari-

ants in the corresponding disease-relevant tissue type. In addi-

tion, FIREs are substantially conserved between human and

mouse genomes of the same cell type, and their formation de-

pends in part on the Cohesin complex and CTCF. Finally, most

FIREs exhibit promiscuous interactions in the local chromatin

neighborhood. These observations improve our understanding

of the role of dynamic chromatin organization in the regulation

of tissue-specific gene expression programs in human cells.

RESULTS

Compendium of Chromatin Organization Maps across
21 Human Cell and Tissue Types
We conducted Hi-C analysis on 14 primary human tissues

collected from four donors (Figure 1A), for which epigenome

datasets had been produced as part of the NIH EpigenomeRoad-

map project (Roadmap Epigenomics Consortium et al., 2015).We
Figure 1. Global Features of 3D Genome Organization in 7 Cell Lines a

(A) Illustration of the primary 21 Hi-C datasets analyzed, depicting the cell (left pan

tissues (right panel). Hi-C interaction patterns across an 11.68-Mb region (chr12:8

resolution.

(B) Genome browser snapshot showing compartment A/B patterns (PC1 value) a

adult tissues on the bottom. Compartment A/B patterns are at 1-Mb bin resoluti

yellow corresponds to compartment B.

(C) Bar plots showing the degree of conservation of A/B compartment labels of

conserved by the 22 possible combinations of compartment A/B designations

designations. For example, ‘‘16A/5B’’ represents the genomic region where 16

compartment B label.

(D) Genome browser snapshot showing topological domain boundaries across c

tissues on the bottom. Boundaries are identified at 40-kb bin resolution.

(E) Bar plots showing the degree of topological domain boundary conservation a

tallied how many samples have a boundary within that region (see Supplement

regions, whereby the y axis is the fraction of TAD boundaries conserved at least
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combined the resulting datasets with those previously generated

by us for seven cultured cell types using a common experimental

protocol that was reported separately (Dixon et al., 2012, 2015;

Jin et al., 2013; Selvaraj et al., 2013). The combined datasets

were processed using a common data processing pipeline, after

merging data from biological replicates deemed as reproducible

(Figures S1A–S1E). Collectively, we analyzed >8.6 billion unique

contacts, out of which >2.5 billion were long-range (>15 kb)

intra-chromosomal contacts, with 809M unique contacts and

254M long-range cis contacts per cell line and 214M unique con-

tacts and 53M long-range cis contacts per tissue type (Table S1).

We first analyzed compartment A/B patterns in each tissue/cell

type (Figure 1B; Table S2). As previously reported for cultured

human cells (Dixon et al., 2015), we observed substantial com-

partment A/B switching across primary tissues (Figures 1B and

1C), finding that 59.6% of the genome is dynamically compart-

mentalized in different tissues and cell types. These data also un-

derscore the significant degree of compartment conservation

across the genome, revealing that as much as 40.4% of the

genome is invariant, which is a statistically significant degree of

invariant genome compartmentalization (chi-square test p value <

2.2e�16) (Figure S1F).

TADs have been reported to be stable across different cell

types and experimental conditions and conserved in related spe-

cies (Dixon et al., 2012, 2015; Rao et al., 2014; Zuin et al., 2014).

To investigate the degree of TAD boundary conservation in pri-

mary human tissues, we applied the insulation score method

(Crane et al., 2015), which is robust in sequencing depth (Figures

S1G–S1I) to identify TAD boundaries at 40-kb bin resolution (Ta-

ble S3). We identified a total of 3,010 distinct TAD boundaries in

21 samples (14 tissues and 7 cell lines). Upon careful inspection

of a broad panel of genetic loci (Figures 1A and 1D) as well as

systematic comparison across samples (Figures 1D and 1E),

we find that TAD boundaries are indeed highly conserved across

different cell lines and tissues. These results are highly signifi-

cant, considering that, by chance, only 1.7% of TAD boundaries

are expected to share for all (chi-square test p value < 2.2e�16).

Identification of Frequently Interacting Regions in the
Human Genome
As a means to investigate conserved and tissue-specific chro-

matin interactions, we first used Fit-Hi-C (Ay et al., 2014) to
nd 14 Adult Tissues

el) or tissue (right panel) origin of the samples as well as the germ layer origin for

2,840,000–94,520,000) are shown for all 7 cell lines and 14 tissues at 40-kb bin

cross chromosome 2 in 21 samples, with 7 cell lines at the top and 14 primary

on. Positive PC1 in blue corresponds to compartment A, and negative PC1 in

21 human cell lines and adult tissues. The y axis is the fraction of the genome

. The label below each bar represents the composition of the compartment

samples exhibit a compartment A label and the other five samples exhibit a

hromosome 7 in 21 samples, with 7 cell lines at the top and 14 primary adult

cross 21 human cell lines and tissues. For each putative boundary region, we

al Experimental Procedures). Shown here is a total fraction of TAD boundary

a certain number of samples, as categorized along the x axis.
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identify significant chromatin interactions at various significance

thresholds (Table S4). However, Fit-Hi-C, like other peak-calling

methods (Jin et al., 2013; Rao et al., 2014; Xu et al., 2015, 2016),

is sensitive to sequencing depth, and therefore we found consid-

erable variation in total chromatin contacts between samples,

precluding any statistically rigorous comparative peak-calling

analysis across tissues. However, upon closer examination

of the chromatin contacts near the contact matrix diagonal

(± 200 kb from the matrix diagonal), we noticed that some re-

gions exhibit unusually high levels of local contact frequency in

a tissue-type-dependent manner (Figure 2A). We therefore

developed a computational approach to normalize and compare

local interaction frequencies across all 21 tissues and cell

types. Specifically, we developed a Poisson-regression-based

normalization approach (termed as ‘‘HiCNormCis’’) to normalize

the total raw local (15–200 kb) cis contacts for each 40-kb bin

genome-wide (Figure S2A; Supplemental Experimental Proce-

dures). This method removes bias from three sources known

to affect Hi-C data, including effective restriction fragment

lengths, GC content, and sequence mappability (Hu et al.,

2012; Yaffe and Tanay, 2011). Compared to other normaliza-

tion approaches, such as HiCNorm (Hu et al., 2012), vanilla

coverage (Lieberman-Aiden et al., 2009), and iterative correction

and eigenvector decomposition (ICE) (Imakaev et al., 2012),

HiCNormCis achieved the best performance for bias removal

(Figure S2B). Lastly, we used a Gaussian distribution to approx-

imate the normalized total local cis contacts (Figure S2C), and

converted HiCNormCis output values to �ln(p value), which we

define as the final ‘‘FIRE score.’’ FIREs (also termed ‘‘FIRE

bins’’) are therefore defined as bins with a one-sided p value

less than 0.05, corresponding to�ln(p value) greater than 3 (Fig-

ure 2A). We found that our FIRE scores were highly reproducible

(Figures S2D and S2E), and robust to sequencing depth (Figures

S2A and S2F), choice of restriction enzymes in Hi-C library prep-

aration (Figures S2G and S2H), as well as choice of experimental

protocols, such as dilution Hi-C or in situ Hi-C (Figure S2I).

We first identified FIREs in GM12878 and IMR90 cells (Figures

2A and 2B). Global analysis of FIREs revealed a dispersed distri-

bution along the genome (Figure 2B). We next determined FIREs
Figure 2. Identification and Positional Enrichment of Frequently Intera

(A) Illustrative examples showing the FIRE scoremethodology. Hi-C contactmaps

and IMR90 cells at 40-kb bin resolution (top). To the right of the contact maps are li

drawn at the significance cutoff. The second row of contact maps illustrates FIR

maps (black box). Line plots directly below show the intermediate stage in the FIR

Experimental Procedures). Genome-wide HiCNormCis normalized counts are the

FIRE score (bottom line plots). Dashed columns highlight two 40-kb bins, one s

showing a low FIRE score in both cell types.

(B) Chromosome ideograms showing the genome-wide positional distribution of F

wide visualization captures both conserved and specific FIRE bins. Only autosom

(C) Genome browser snapshot of compartment A/B patterns in 21 samples acros

chromosome 6 (chr6:25,000,000–115,000,000) showing compartment A/B patte

(D) Bar plots showing an enrichment analysis of FIRE positioning within either com

in compartment B compared to random permutation of the FIRE bin location wit

Statistical tests correspond to the significance of FIRE enrichment in compartme

(E) Line plot showing an example of IMR90 FIRE bin positioning relative to TADs (s

counts (y axis) of actual IMR90 FIRE bins, whereas the gray dashed line shows the

0 represents TAD boundaries and 0.5 represents TAD center points.

(F) Heat map showing the TAD position enrichment analysis across all 21 samples

as computed in (E).
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in the remainder of tissues and cell lines (Tables S5 and S6) after

removing local genomic feature biases (Figure S2J). We then

explored how FIREs are positioned in relation to A or B compart-

ments as well as in relation to TAD boundaries (not chromatin

‘‘loops’’). Careful inspection of FIRE positioning and genome-

wide enrichment analyses indicated that FIREs are enriched in

compartment A and depleted in compartment B (Figures 2C

and 2D; Table S7). We also examined the FIRE distribution within

TADs, and found that FIREs are depleted near TAD boundaries

and enriched within TADs and toward the TAD center (Figures

2E and 2F).

FIREs, Chromatin Loops, and Insulated Neighborhoods
We further analyzed FIREs at 5-kb resolution using previously

published in situ Hi-C data in IMR90 and GM12878 (Rao et al.,

2014), and compared FIRE positioning relative to the smaller

(�185 kb) chromatin ‘‘loops.’’ As expected, FIREs are signifi-

cantly enriched for chromatin loop anchors (chi-square test

p value < 2.2e�16); however, �90% of FIREs are within loops,

and these FIREs demonstrate unique properties to be discussed

in the following sections. Our data indicate that FIREs are hot-

spots of local chromatin interactions that are distinct from com-

partments, TADs, and chromatin loops (Rao et al., 2014), which

are generally anchored by convergent CTCF binding. By

contrast, most FIREs are located within TADs and chromatin

loops, indicating they represent specific loci ‘‘within the loop’’

at higher resolution. Similarly, FIREs are likely distinct from insu-

lated neighborhoods due to the high positional overlap between

the CTCF-mediated ‘‘chromatin loops’’ and ‘‘insulated neighbor-

hoods’’ (Ji et al., 2016). Our analysis of FIREs and insulated

neighborhoods at 40-kb resolution in H1 cells indicates that insu-

lated neighborhoods are also enriched for FIREs (chi-square test

p value = 5.32e�15), but >70% of insulated neighborhoods do

not contain a FIRE (Figure S3D) (also discussed more below).

FIREs Are Tissue-Specific and Located Near Cell
Identity Genes
To characterize the tissue-specificity of FIREs, we combined all

21 datasets (7 cell lines and 14 tissues), and performed a
cting Regions

from a 6.68-Mb region (chr19:40,480,000–47,160,000) are shown for GM12878

ne plots showing the fully processed FIRE score for each 40-kb bin. A red line is

E scores in a sub-matrix (chr19:41,560,000–43,200,000) of the above contact

E score calculation, which is the output from HiCNormCis (see Supplemental

n Z score transformed and converted to a �ln(p value) scale to obtain the final

howing a FIRE peak in GM12878 cells, but not in IMR90 cells, and the other

IRE bins in GM12878 (blue, n = 4,769) and IMR90 (maroon, n = 4,729). Genome-

es are depicted.

s chromosome 6 (top), and a genome browser snapshot of a 90-Mb subset of

rns for 21 samples (top set, blue/yellow) and FIRE calls (bottom set, maroon).

partment A or B, illustrating FIREs are enriched in compartment A and depleted

hin each sample (*p < 5.0e�7; **p < 7.0e�13; #p < 2.2e�16; chi-square test).

nt A.

ee Supplemental Experimental Procedures). The red line depicts the observed

counts of permuted FIRE bin locations. The x axis ranges from 0 to 0.5, where

. Shown are the log2(observed/expected) values for each distance increment,
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comparative analysis (Figure 3A; Table S6). Approximately

38.8% (8,142/20,974 bins) of FIREs were identified in only one

tissue or cell type, and approximately 57.7% (12,094/20,974

bins) of FIREs were identified in two or fewer, revealing the highly

tissue-specific nature of FIREs (Figure S2K). Further, a hierarchi-

cal clustering analysis of genome-wide FIRE scores revealed

similarities among certain cell types, such as H1 and MES, as

well as MSC and IMR90 (Dixon et al., 2015) (Figure 3A). As ex-

pected, tissues from the same organ (brain: cortex and hippo-

campus; heart: left ventricle and right ventricle) clustered

together (Figure 3A). Tissue-specific FIREs tend to be positioned

in close proximity to genes related to the cellular identity (Figures

3B and 3C). For example, within a GM12878-specific FIRE is the

promoter for CD70, a gene well known for its role in immune cell

activation and maturation (Arens et al., 2004) (Figure 3B). More-

over, �110 kb from a FIRE region present only in brain tissues is

an alternative ROBO1 promoter, a gene involved in axon guid-

ance during development (Leyva-Dı́az et al., 2014) (Figure 3C).

To extend these observations to all tissue-specific FIREs and

to interpret the functional roles and disease relatedness of these

FIREs, we performed GREAT analysis (McLean et al., 2010) (Ta-

bles S8 and S9). The results showed that genes in close prox-

imity to tissue-specific FIREs are related to the functionality of

that tissue/cell type (Figures 3D and 3E; Tables S8 and S9).

Moreover, using only our 5-kb resolution FIRE calls in

GM12878 and IMR90, we also found abundant sample-specific

FIREs (�57% of FIREs are sample specific), and confirmed that

sample-specific FIREs are positioned near cell identity genes

(Tables S8 and S9) at a higher resolution. Collectively, these re-

sults suggest that FIREs are closely associated with cell identity

and tissue function.

FIREs Are Enriched for Active Enhancers
and Super-Enhancers
Because FIREs tend to be positioned near genes related to cell

identity and tissue function, we posited that FIREs may be en-

riched for active enhancers. To test this hypothesis, we analyzed

previously generatedChIP-seq data for six histonemodifications

(H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and

H3K9me3) for these tissues and cell types (Roadmap Epigenom-

ics Consortium et al., 2015). We observed that FIREs display a

high density of active chromatin features (e.g., H3K27ac and

H3K4me1), and overlap with super-enhancers found in the

same tissues (Hnisz et al., 2013) (Figure 4A). We then character-

ized the histone modification signatures across 1-Mb regions
Figure 3. FIREs Are Tissue-type Specific and Enriched Near Genes Inv

(A) At the top is a dendrogram resulting from a hierarchical clustering analysis u

distance between FIRE scores from any two samples. The heat map below shows

FIRE in only one or two samples. For ventricle tissues, brain tissues, IMR90/MSC

sample specific.

(B) Genome browser snapshot showing a GM12878-specific FIRE region (ch

(chr19:6,583,193–6,604,114). Below is a line plot of FIRE scores for each sample

(C) Genome browser snapshot showing a brain-specific FIRE region (chr3:78,92

(chr3:78,646,338–79,068,609). Below is a line plot of FIRE scores for each tissue

(D) GREAT biological process analysis of genes surrounding GM12878-specific FI

functions. Plotted values are the �log10 of the Bonferroni-corrected binomial p

(E) Same as (D), except using genes surrounding brain (CO and HC) specific FIRE

brain functionality. Plotted values are the �log10 of the Bonferroni-corrected bin
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centered at FIREs. FIREs are ubiquitously enriched for two active

enhancer marks, H3K4me1 and H3K27ac, and depleted for the

repressive chromatin mark H3K27me3 (Figure 4B), whereas

enrichment of other marks did not show clear patterns (Fig-

ure S3A). FIREs also overlap with typical enhancers and super-

enhancers (Hnisz et al., 2013) annotated in the cell lines and tis-

sues where such data are available (Figures 4C and 4D). For

example, 35.0% of typical enhancers and 77.8% of super-en-

hancers annotated in GM12878 cells overlap FIREs (Fisher’s

exact test p value < 2.2e�16) (Figures 4C and 4D). Importantly,

we also found significant enrichment for FIREs at typical en-

hancers and super-enhancers (chi-square test p value <

2.2e�16) when analyzing FIREs at 5-kb bin resolution (Table

S6) using previously published high-resolution Hi-C data in

GM12878 and IMR90 (Rao et al., 2014) (Figure S3B). Also, with

respect to previously annotated chromatin loops (Rao et al.,

2014), we find that the aforementioned 90% of FIREs that

do not overlap loop anchors are also significantly enriched

for typical and super-enhancers (chi-square test p value <

2.2e�16). For example, we observed GM12878-specific FIREs

corresponding to a GM12878-specific super-enhancer, whereas

the same locus in IMR90 lacks any enhancer or FIRE, despite

sharing a conserved chromatin loop (Figure S3C). These FIRE

analyses at 5-kb resolution corroborate our findings at 40-kb

resolution, and indicate that FIREs represent distinct structural

entities with differing biochemical properties compared to chro-

matin loops. As anticipated, we also find a significant overlap be-

tween FIREs and super-enhancer domains in mouse embryonic

stem cells (mESCs) at 40-kb resolution (chi-square test p value =

0.0052), but not polycomb domains (Dowen et al., 2014; Ji et al.,

2016), further underscoring the role of FIREs in active gene regu-

lation (Figure S3D).

Because many FIRE bins were found in clusters, we stitched

together adjacent FIRE bins and ranked them by cumulative Z

score, revealing that a small proportion of FIRE clusters (termed

‘‘super-FIREs’’) contain the majority of bins with the most sig-

nificant local interaction frequency (Figure S3E). Strikingly,

compared to all FIREs (Figure S3F), we observed some tissues,

in which nearly 100% of super-FIREs contain either a super-

enhancer or typical enhancer (Figure S3G), suggesting that the

bins with the highest local interaction frequency almost always

mark active enhancer(s). Analysis of super-FIREs not containing

an enhancer revealed a moderate enrichment for H3K27me3

across most testable samples, but no other clear trends (Figures

S3H–S3M). Given this striking relationship, wewondered to what
olved in Tissue Function

sing genome-wide FIRE scores for each sample. The y axis is the Euclidean

a subset of FIRE bins (n = 8,371), corresponding to FIRE bins that are called as

, and H1/MES, FIREs specific to two samples are allowed in the definition of

r19:6,560,000–6,640,000) (top, maroon) in an 800-kb region around CD70

, showing the GM12878-specific FIRE peak (blue).

0,000–78,960,000), shared by CO and HC, in a 760-kb region within ROBO1

showing CO (yellow) and HC (pea green) FIRE peaks.

RE bins (n = 1,464 bins), showing biological processes highly related to immune

values.

bins (n = 912 FIRE bins) showing several significant processes highly related to

omial p values.
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extent FIRE analysis could be used to predict the locations of

typical and super-enhancers in GM12878. By varying the signif-

icance thresholds for FIRE calling and performing a receiver

operating characteristic (ROC) area under curve (AUC) analysis,

we find an impressive predictive power of FIRE analysis to iden-

tify typical enhancers and super-enhancers using Hi-C data

alone (AUC = 0.813 and AUC = 0.906, respectively) (Figures

S3N and S3O). Taken together, the high overlap between

super-enhancers and FIREs, as well as the enrichment of tissue

identity genes near tissue-specific FIREs, implicates a potential

cis-regulatory role for FIREs in facilitating tissue-specific gene

expression.

FIREs Are Near Tissue-Specifically Expressed Genes
Because super-enhancers are known to be tissue-specific and

positioned near cell identity genes, we asked if FIREs are nearby

genes that are more transcriptionally active in the corresponding

tissue/cell types. By re-analyzing publicly available RNA-seq

data (Roadmap Epigenomics Consortium et al., 2015), we

indeed found a strong correlation between cell/tissue-specific

FIREs and cell/tissue-specific expression of nearby genes. For

example, theGRIN2A gene, which encodes an important ligand-

and voltage-gated N-methyl-D-asparate (NMDA) receptor sub-

unit implicated in epilepsy (Kingwell, 2013) and schizophrenia

(Ohi et al., 2016), is predominantly expressed in brain tissues,

and the transcription start site (TSS) is�197 kb from a brain-spe-

cific FIRE (Figure 4E). InGRIN2A, the relative gene expression in

cortex (CO) is the highest among all tissues (Figure 4F; see Sup-

plemental Experimental Procedures). We also calculated the

relative gene expression for each gene within 200 kb of a tis-

sue-specific FIRE across all tissues and found significant corre-

lation between tissue-specific FIREs and tissue-specifically ex-

pressed genes (Figure S3P). For example, we found that the

GM12878-specific FIRE gene set contained genes with signifi-

cantly higher relative expression in GM12878 compared to any
Figure 4. FIREs Are Enriched for Active Enhancers and Positioned Nea

(A) Normalized Hi-C contact matrix in left ventricle tissue showing a 2.76-Mb loc

viously published (Hnisz et al., 2013) LV super-enhancers (red), LV FIRE bins (brow

FIRE score along this locus.

(B) Heat maps showing the local enrichment (see Supplemental Experimental Pro

on FIRE bins for each cell line or adult tissue. H3K27me3 data were not available

(C) Bar plot showing the observed overlap between actual FIRE bins and previou

cell line or tissue that has both Hi-C data and typical enhancer calls. Expected va

FIRE bins within each tissue and calculating the overlap with typical enhancers.

(D) Same as (C), except showing the percentage of super-enhancers overlapped

(E) Genome browser snapshot showing an example of sample-specific gen

(chr16:9,820,000–10,600,000) aroundGRIN2A (chr16:9,852,375–10,276,611). At

(chr16:10,040,000–10,080,000, highlighted in yellow) �197 kb away from GRIN2A

for all samples except OV (blue), showing GRIN2A is mainly expressed in brain t

(F) Bar plot indicating the relative gene expression (see Supplemental Experimen

(G) All-by-all mean-rank enrichment analysis result showing gene expression spe

Experimental Procedures). Each row is a different sample type for which the samp

calculate the relative expression rank of each gene. IMR90/MSC, M1/MES, an

(Figure 3A) and are therefore grouped. The color for each row of the heat map ind

matrix entries for which the sample for the sample-specific FIRE gene set and ex

portrayed in (H).

(H) Line plot illustrating a single mean-rank enrichment analysis. The plot shows

numeric ranking (x axis) in the cortex. Vertical dashed lines show the position o

expected mean rank based on size-matched randomly selected non-FIRE bins i
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other FIRE gene set (two-sample t test p value < 9.26e�6)

(Figure S3P).

Intrigued by these observations in brain tissue and lympho-

blast cells, we applied a more systematic mean-rank gene set

enrichment test (see Supplemental Experimental Procedures)

to further understand the relationship between FIREs and gene

expression patterns. For example, in cortex tissue, there is a

clear difference between the mean ranks of genes neighboring

brain-specific FIREs compared to random FIRE positioning (Fig-

ures 4G and 4H). Importantly, this type of analysis can be used to

study the extent to which tissue-specific FIRE genes are ex-

pressed by testing all combinations of relative expression rank

lists and tissue-specific FIRE gene sets (Figure 4G). In other

words, if tissue-specific FIRE genes are primarily expressed in

that same sample, the enrichment signal should track the diago-

nal of an all by all comparison (Figure 4G) and generally lower

enrichment off the diagonal where the sample for the rank list

and FIRE gene set are different. Indeed, we observed this trend,

although the neural progenitor cell (NPC)-specific FIRE gene set

is ranked higher in the cortex and hippocampus, which may be

expected, given that they prominently consist of neural cells or

neural progenitors. Taken together, our results suggest that tis-

sue-specific FIREs are likely involved in tissue-specific gene

expression.

FIREs Are Conserved in Humans and Mice
If FIREs play a role in gene regulation and developmental pro-

grams, one would expect that such chromatin features would

be conserved evolutionarily (Dixon et al., 2012, 2015; Vietri Ru-

dan et al., 2015). To test this hypothesis, we compared FIREs be-

tween humans and mice in three different sample types (embry-

onic stem cells, neural progenitor cells, and cortex tissue) (Dixon

et al., 2012, 2015; Fraser et al., 2015; Shen et al., 2012). We

found that FIREs are significantly conserved in these compari-

sons (Figure 5A). Specifically, 33.0% of human cortex FIREs
r Tissue-Type-Specific Genes

us (chr2:40,000,000–42,760,000). Below are genome browser tracks for pre-

n), and UCSC genes, including isoforms (blue). To the right is the continuous LV

cedures) of H3K27me3 (left), H3K4me1 (middle), and H3K27ac (right), centered

for CO or HC.

sly characterized typical enhancers (blue) (Hnisz et al., 2013) for each available

lues are also shown (green), which are calculated by permuting the location of

The y axis shows the percentage of typical enhancers overlapped by FIREs.

by FIRE bins for each testable cell line or tissue.

e expression near sample-specific FIREs. Shown here is a 780-kb locus

the top, FIRE tracks (maroon) for each sample, showing the brain-specific FIRE

TSS. Below, RNA-seq data (Roadmap Epigenomics Consortium et al., 2015)

issues.

tal Procedures) of GRIN2A across 20 samples.

cificity of genes within 200 kb of sample-specific FIRE bins (see Supplemental

le-specific FIRE gene set is collected, and columns are the sample type used to

d brain tissues were previously shown to have highly overlapped FIRE bins

icates the enrichment. Outlined in thick black boxes along the diagonal are the

pression rank list are the same. Highlighted in a thin yellow box is the analysis

the relative gene expression values (y axis) in the cortex as a function of their

f the observed mean rank of cortex-specific FIRE genes (red dash), and the

n the cortex (gray dash). The inset is the calculation of the enrichment score.



Figure 5. FIREs Are Conserved across Evolution and Mediated by Cohesin

(A) Venn diagrams showing the significant number of conserved FIRE bins when lifting over mouse FIREs onto the human genome (left column) or lifting over

human FIREs onto the mouse genome (right column) in either embryonic stem cells (top row, p value < 5.0e�16), neural progenitor cells (middle row, p value <

2.2e�16), and cortex tissue (bottom row, p value < 2.2e�16). Significance evaluated using a Fisher’s exact test (see Supplemental Experimental Procedures).

(B) Normalized Hi-C contact matrix in human cortex (left) and mouse cortex (right) for a 2-Mb syntenic region (human chr3:78,000,000–80,000,000; mouse

chr16:71,520,000–73,520,000) showing a conserved FIRE (connected black lines) within the same tissue type but across species. Below is a UCSC gene track,

and to the right of the contact matrix is the continuous FIRE score across the locus. For the human data, the Hi-C contact matrix, gene track, and FIRE score plot

have been inverted to show synteny with the mouse data.

(C) Normalized Hi-C contact matrices (red and white) or delta matrix (green and blue) for the 1.96-Mb locus (chr1:55,400,000–57,360,000) illustrating the change

of interaction frequency between TEV and HRV. Directly below the delta matrix are binding profiles of CTCF and the Cohesin subunit SMC3 in wild-type HEK cells

(Zuin et al., 2014) as well as TAD boundary annotations. To the right of the Hi-C delta matrices is the continuous FIRE Z score difference between TEV and HRV.

Below is a delta matrix at a zoomed-in 800-kb region (chr1:55,560,000–56,360,000) for TEV-HRV, showing the greatest reduction of FIRE score occurs at the bin

with co-binding of CTCF and SMC3. The FIRE Z score difference is plotted to the right of the subtraction matrices.

(D) Box plots showing the change in Z score at FIREs overlapping bins bound by CTCF but not SMC3 ‘‘CTCF-only’’ (left plot), all CTCF peaks (middle plot), and

CTCF and SMC3 co-binding (right plot) for the comparison of TEV and HRV. The red boxes show distributions of FIRE score change at FIRE bins called in wild-

type cells minus the mutant cells, whereas the blue boxes are distributions for FIRE score change at FIRE bins called in wild-type cells but between biological

replicates of wild-type cells. These comparisons show the significant reduction of FIRE score at all CTCF peaks, and especially at CTCF SMC3 co-bound peaks

overlapping FIRE bins (*p = 1.0e�4; **p = 4.04e�5; two-sample t test).

(E) Similar to (D), except analysis of Z score change was done considering FIREs overlapping the Cohesin subunit Rad21 peaks using previously published Hi-C

data and Rad21 ChIP-seq data in mouse neural stem cells (left plot) andmouse post-mitotic astrocytes (middle plot) (Sofueva et al., 2013). Comparison of Z score

change upon deletion of Rad21 shows a significant decrease compared to changes observed between biological replicates (*p < 0.01; **p < 2.2e�16; two-sample

t test).

(F) Similar to (E), except analysis of Z score change was conducted on previously published Hi-C data and Rad21 ChIP-seq data in mouse thymocytes (Seitan

et al., 2013). Comparing the distributions of Z score changes at FIRE bins bound by Rad21 shows a significant reduction in Z score between the wild-type and

Rad21 knockout cells compared to changes between wild-type biological replicates (**p < 2.2e�16; two-sample t test).
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are also FIREs in the mouse cortex, whereas only 8.7% is ex-

pected by chance (Fisher’s exact test p value < 2.2e�16). For

example, returning to the ROBO1 locus, we found that both

the mouse and human cortex have only one FIRE bin in the

2-Mb region around ROBO1, and the single FIRE position is

conserved across species (Figure 5B). Interestingly, the degree

of FIRE conservation between a human andmouse is the highest

in cortex tissue and less, although statistically significant, in em-

bryonic stem cells and neural progenitor cells (ESC p value <

5.0e�16; NPCp value < 2.2e�16, Fisher’s exact test) (Figure 5A).

More generally, by randomly sampling syntenic bins across a

range of FIRE scores, we find amodest yet significant correlation

of FIRE score between a human and a mouse in each cell

type (Pearson correlation coefficient = 0.20–0.42; p value <

2.2e�16) (Figures S4A–S4F). These data indicate a tendency

for the local contact frequency to be conserved in syntenic re-

gions throughout the human and mouse genome as well as con-

servation of the strongest locally interacting hotspots.

CTCF and Cohesin Complex Contribute to
Establishment of FIREs
We posited that FIREs might be mediated by the Cohesin com-

plex, which has been previously shown to modulate enhancer/

promoter interactions in mammalian cells (Kagey et al., 2010).

To test this hypothesis, we re-analyzed three previously pub-

lishedHi-C datasets, in which a Cohesin subunit was experimen-

tally depleted in human or mouse cells (Seitan et al., 2013; So-

fueva et al., 2013; Zuin et al., 2014), and investigated FIRE

scores upon loss of a Cohesin subunit. We began by systemat-

ically examining the Hi-C datasets generated in HEK293 cells

before and after depletion of the Cohesin subunit SMC3 (Fig-

ure 5C). Because the Cohesin complex is frequently bound

together with CTCF throughout the genome, we focused our

analysis to CTCF-only binding sites and CTCF/SMC3 co-bound

peaks. SMC3-only peaks were ignored because only �0.7% of

SMC3 peaks overlapping FIREs were not co-occupied with

CTCF (Figure S4G). We then compared FIRE score changes at

FIRE bins upon loss of SMC3. We observed a significant

decrease of the FIRE score at CTCF/SMC3 co-bound sites

(two-sample t test p value = 6.78e�6 for TEV-HRV) (Figures 5C

and 5D). By contrast, there is no statistically significant FIRE

score decrease at FIRE bins that hadCTCF bindingwithout bind-

ing of SMC3 (Figure 5D). Quantitatively similar results were seen

in mouse neural stem cells, post-mitotic astrocytes, and thymo-

cytes in the case of Rad21 deletion (two-sample t test p value =

0.0011 for post-mitotic astrocytes; two-sample t test p value <

2.2e�16 for both neural stem cells and thymocytes) (Figures

5E and 5F) (Seitan et al., 2013; Sofueva et al., 2013). Importantly,

the significant decrease of the FIRE score was only observed at

FIRE bins. Cohesin loss did not systemically affect FIRE scores

at randomly selected and size-matched (5%of the genome) con-

trol regions (Figures S4H and S4I). We also re-analyzed Hi-C

data in HEK293 cells, in which CTCF had been experimental

knocked down (Zuin et al., 2014), and again observed that

FIRE score is most significantly reduced at FIRE bins occupied

by CTCF/SMC co-binding in wild-type cells (Figure S4J). Collec-

tively, these results, as well as the significant enrichment of

Cohesin at FIRE bins (Figure S4K), suggest that both CTCF
2052 Cell Reports 17, 2042–2059, November 15, 2016
and the Cohesin complex contribute to the formation of FIREs,

and such a mechanism is likely conserved across the human

and mouse.

FIREs Are Enriched for Disease-Associated SNPs
Our analyses have indicated that FIREs are enriched for active

enhancers and super-enhancers (Figures 4A–4D; Figures S3B,

S3C, S3F, S3G, S3N, and S3O). Because typical and super-en-

hancers contain a significant proportion of disease-associated

SNPs (Hnisz et al., 2013), we further investigated the overlap be-

tween FIREs and disease-associated SNPs. First, we mapped

4,327 previously annotated disease-associated non-coding

SNPs to FIREs defined in each cell line and tissue (see Supple-

mental Experimental Procedures) (Hnisz et al., 2013). Consistent

with previous results (Hnisz et al., 2013), we observed 7.06 and

3.76 SNPs per megabase, and among 354 GM12878 FIREs

overlapped with super-enhancers and 2,800 GM12878 FIREs

overlapped with typical enhancers, respectively (Figure S5A).

Surprisingly, among 1,615 GM12878 FIREs that do not overlap

an annotated enhancer, we also observed 3.33 SNPs per mega-

base, which is�2.3-fold higher than the genome-wide SNP den-

sity (1.42 SNPs per megabase) (Figure S5A). Importantly, these

SNPs would not be captured by directly overlapping super-en-

hancers or typical enhancers with disease-associated SNPs

(Hnisz et al., 2013).

Next, we examined the overlap between disease-associated

SNPs and FIREs for 456 diseases and quantitative traits (Hnisz

et al., 2013). We defined the enrichment score for each disease

as the ratio between the proportion of SNPs overlapped with

FIREs and the proportion of FIRE bins in the genome. Strikingly,

numerous immune-related diseases exhibit strong SNP en-

richment in GM12878, but mild or weak enrichment in the

other cell lines or tissues (Figure 6A). In fact, the vast majority

of the top enrichment scores come from diseases previously

implicated with immune pathology (Jostins et al., 2012) (Fig-

ure 6A). Motivated by these observations, we closely examined

genes near FIREs harboring disease-associated SNPs, and

found many genes associated with that type of disease. For

example, two SNPs associated with acute lymphoblastic leuke-

mia (ALL), rs6683977 and rs546784, are within a GM12878-spe-

cific super-FIRE (Figure 6B) and within PDE4B, a gene associ-

ated with ALL (Yang et al., 2011).

We then conducted an SNP enrichment analysis for the tissue

datasets and observed similar results for some diseases and

quantitative traits, with the most striking findings in the brain

and liver (Figures 6C and 6D; Figures S5C and S5D). A careful ex-

amination of SNP and FIRE overlap also revealed disease candi-

date genes. For example, two Alzheimer’s disease-associated

SNPs, rs3851179 and rs536841, are within a brain FIRE (Fig-

ure S5B). Here, rs3851179 is within a brain-specific super-

enhancer, whereas rs536841 is outside the super-enhancer.

Interestingly, this brain-specific FIRE overlaps with PICALM,

which contains the SNP (rs3851179) previously related to the

incidence of late-onset Alzheimer’s disease (Liu et al., 2016).

The presence of deleterious variants has been shown to

mediate the expression of distal genes and confer pathology

through DNA looping (Smemo et al., 2014). Therefore, we

posited that significantly interacting bin pairs (i.e., ‘‘peaks’’)



(legend on next page)
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anchored at SNP-bearing FIREs (termed ‘‘FIRE peaks’’) may be

enriched for SNP-gene pairs, relative to peaks anchored at non-

FIRE bins (termed ‘‘non-FIRE peaks’’). To explore this, we first

used Fit-Hi-C (Ay et al., 2014) (see Supplemental Experimental

Procedures) and a stringent statistical significance (FDR <

1e�6) cutoff to obtain the most confident peak calls within a

2-Mb genomic distance for all samples in our primary cohort

(Supplemental Information). We found that this significance cut-

off corresponds well to previously published total peak counts

(Jin et al., 2013) and can also be used to link disease-associated

SNPs to genes previously implicated in a particular disease. For

example, Fit-Hi-C peak-calling analysis in GM12878 lympho-

blasts reveals a highly significant (FDR = 6.29e�83) pairwise

Hi-C contact between a bin containing a SNP associated with

ALL (rs6964969) and a distal (�130 kb) TSS of IKZF1, a gene pre-

viously implicated in ALL (Mullighan et al., 2009) (Figures 6E and

6F). To further explore SNP-gene-pair linkages in our tissue da-

tasets, we collected statistically associated SNP-gene pairs

from the GTEx eQTL database in tissues matching our Hi-C da-

tasets (GTEx Consortium, 2015; Lonsdale et al., 2013). We then

selected six of our higher resolution tissue Hi-C datasets that

were also present in GTEx for further analysis and found that

FIRE peaks were indeed significantly enriched for SNP-gene

pairs compared to non-FIRE peaks (Table S4). However, this

may be expected because FIREs are enriched for disease-asso-

ciated SNPs, and FIREs are likely to have more local peaks than

non-FIREs based on the definition of FIRE. Therefore, we

analyzed the enrichment of GTEx SNP-gene pairs in subsets of

the most significant FIRE peaks (i.e., the lowest FDR bin pairs).

We found that the most statistically significant FIRE peaks ex-

hibited the strongest enrichment of SNP-gene pairs, and relaxing

the FDR for peak calling results in statistically significant, but less

enriched, SNP-gene pairs (Figures 6G–6J; Table S4).
Figure 6. FIREs Are Enriched with Disease-Associated GWAS SNPs

(A) Heat map showing the enrichment of disease-associated GWAS SNPs (see S

(columns). Rows represent the enrichment of disease-associated SNPs for one dis

on enrichment score in GM12878 (lymphoblast cell line). Only diseases with >15

associated SNPs are most enriched in GM12878 FIREs, showing the high enrichm

noted immune-mediated pathology (Jostins et al., 2012).

(B) Normalized Hi-C contact matrix of a 2.16-Mb locus (chr1:65,120,000–67,280

associated with acute lymphoblastic leukemia (rs546784 and rs6683977) located

GM12878-specific super-enhancer (red) and also within the PDE4B gene sequen

(C) Bar plots showing the enrichment of Parkinson’s disease-associated SNPs a

enrichment in FIREs from both brain tissues (CO and HC).

(D) Bar plots showing the enrichment of SNPs associated with the quantitative trig

the highest enrichment in liver FIREs.

(E) Normalized Hi-C contact matrix (top) in GM12878 for a 4.04-Mb locus (chr7:48,

from the 15th to 99th percentile normalized contact frequencies within this locus.

within 2-Mb genomic distance across the locus. Only bin pairs with FDR< 1e�6 ar

(blue, top), RNA-seq data (red), H3K27Ac data (black), typical enhancer annot

calls (blue), and an SNP that is statistically linked to the IKZF1 TSS (green). T

shown in (F).

(F) Same as (E), except a zoomed-in snapshot of a 440-kb locus (chr7:50,24

50,480,000) containing the 30 UTR of IKZF1 and the SNP rs6964969. The blue box

SNP-gene pairs.

(G) Bar plots showing the enrichment of liver GTEx eQTLs in FIRE peak bin pairs

discovery rate) determined by Fit-Hi-C.

(H) Same as (G), except using aorta GTEx eQTLs, FIREs, and FIRE peaks.

(I) Same as (G), except using left ventricle GTEx eQTLs, FIREs, and FIRE peaks.

(J) Same as (G), except using cortex GTEx eQTLs, FIREs, and FIRE peaks.
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FIREs Display Promiscuous Local Chromatin
Interactions
Although FIREs are identified on the basis of their cumulative

local contact frequency, this could result from FIREs either hav-

ing a single local target with exquisitely high contact frequency or

numerous local targets with moderate to high contact frequency.

Because FIREs and super-FIREs are highly enriched for active

enhancers, exploring the interaction patterns of FIRE regions

may provide further insight into the interaction behavior of active

cis-regulatory loci. First, as expected, we find that FIREs are

highly enriched for local interactions compared to non-FIREs,

but, unexpectedly, this contact enrichment extends in many

cases to an �500-kb genomic distance (Figure 7A). Because

FIREs tend to be positioned near the TAD center, it’s likely that

FIREs are highly interactive with all loci within the confines of

their respective TADs. Next, using the most statistically con-

fident (FDR < 1e�6) Hi-C contacts determined by Fit-Hi-C, we

find that FIREs have significantly more local (%200 kb) peaks

compared to non-FIREs (Figures 7B and 7C; Table S4) (two-

sample t test p value < 0.01 for ovary (OV) and small bowel

(SB); < 2.2e�16 for remaining samples), with an average of three

to seven local peaks per FIRE bin, depending on the sample and

sequencing depth (Figures 7B and 7C; Table S4). One example

is the BCL11A locus in GM12878 lymphoblast cells, where

numerous enhancer-bearing FIRE bins significantly interact

with each other and with the bin containing the promoter for

BCL11A (Figure 7D). Interesting, BCL11A is also known to be

involved in numerous lymphoid pathologies (Satterwhite et al.,

2001).

To further quantify the contacts between FIREs, we examined

the contact frequencies of FIREs and non-FIRE bins across a

spectrum of genomic distances within 2 Mb. We find a signifi-

cantly high contact frequency between FIREs beyond 200 kb
upplemental Experimental Procedures) in FIRE bins for each cell line or tissue

ease, and all rows in the presented heat map are sorted from high to low based

SNPs are shown. Noted to the right are the top 15 diseases for which disease-

ent of several diseases (all except mean corpuscular volume) with previously

,000) in GM12878 cells. The tracks below depict the presence of two SNPs

within a FIRE bin (brown, chr1:66,760,000–66,800,000), �30 kb outside of a

ce. To the right of the Hi-C contact matrix is the FIRE score.

cross 14 primary adult tissue FIRE annotations, also highlighting the highest

lycerides trait across 14 primary adult tissue FIRE annotations, also highlighting

440,000–52,480,000) centered on IKZF1 (red text). The Hi-C color scale ranges

The reflected matrix shows the statistically significant (FDR < 1e�6) bin-pairs

e yellow; the rest are black. Between thematrices are aUCSC gene annotations

ations (Hnisz et al., 2013) (purple), FIRE annotations (brown), TAD boundary

he blue lines outline the 440-kb locus (chr7:50,240,000–50,680,000) that is

0,000–50,680,000) centered on a SNP-bearing FIRE bin (chr7:50,440,000–

outlines the bin pair that is the significant interaction between previously known

as a function of the subset of top liver FIRE peaks (based on the lowest false



Figure 7. FIREs Have Several Targets and Are Self-Interactive

(A) Heat map showing the relationship between the mean observed contact frequencies at FIREs compared to the mean observed contact frequency

at non-FIREs. Enrichment is shown as the ratio between the two contact observed mean contact frequencies (FIRE:non-FIRE) per unit genomic distance, from ±

40 kb to ± 2 Mb, centered on FIRE bins. Each row represents the analysis of a different sample, and the color intensity corresponds to the enrichment value.

(legend continued on next page)
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(Figures 7E and 7F), often up to �500 kb and even up to 2 Mb in

some cell lines and tissues (Figure S5E; Table S4). Furthermore,

we find a significant proportion of FIREs are targets of other

FIREs (chi-square test p value < 1e�5 for OV and < 2.2e�16

for the rest of the samples) (Figures 6, 7E, 7G, 7H, and S5E; Table

S4). Taken together, these data support the notion that FIREs

represent spatially active regions in the genome.

DISCUSSION

3C and related technologies have been instrumental for under-

standing the hierarchical organization of mammalian genomes.

Comparative analyses across cell types or species have thus

far revealed a number of organizational features, including dy-

namic chromosomal compartments (Dixon et al., 2015; Lieber-

man-Aiden et al., 2009), TADs (Dixon et al., 2012; Nora et al.,

2012; Sexton et al., 2012), sub-TADs (Phillips-Cremins et al.,

2013), insulated neighborhoods (Dowen et al., 2014), and chro-

matin loops (Rao et al., 2014). Here, through a comprehensive

survey of chromatin organization in 21 human tissues and cell

types, we report the finding of a previously under-appreciated

feature of chromatin organization, FIRE, defined as regions

that show substantial levels of local chromatin interactions.

FIREs are distinct structural features compared to the previously

described 3D genome features, such as TADs, chromatin loops,

and compartments. FIREs are enriched in compartment A and

display strong tissue-type specificity, with nearly 60% of the

FIREs found in two or fewer tissues and cell types out of 21 sur-

veyed. Perhaps most surprisingly, FIREs appear to engage in

promiscuous chromatin interactions within their local chromatin

neighborhood. The majority of the FIREs identified interact with

multiple partners, while the reported chromatin loops typically

connect two genomic regions together. Thus, FIREs are hot-

spots of local chromatin interactions. Finally, FIREs likely repre-

sent genomic regions actively engaged in gene regulation.

Indeed, they reside near cell-identity genes, harbor significant

levels of active chromatin marks, and are enriched for active en-

hancers, especially super-enhancers.

Further analysis reveals FIREs are closely related to previously

reported super-enhancers (Hnisz et al., 2013). In GM12878 cells,

in which deeply sequenced Hi-C data were available, nearly

100% of the super-enhancers are FIREs. Such an observation

sheds light on the spatial architecture of super-enhancers and

other active enhancers. Specifically, our results suggest that in

addition to the high density of transcription factor binding and
(B) Box plot for GM12878 showing the distributions of a number of statistically si

(blue box) or FIRE (yellow box) bins (two-sample t test p value < 2.2e�16).

(C) Same as (B), except analysis of liver data.

(D) Comparison of the normalized contact matrix (top triangle) to statistically con

440-kb locus centered on BLC11A. Between the matrices are the UCSC gene ann

(purple) (Hnisz et al., 2013), and FIRE annotations (brown). Color bar values of the

across this locus. In the lower triangle matrix, only the most confident bin pairs (

(E) Line plots in GM12878 showing the normalized Hi-C contact frequency (y ax

interactions: FIRE-FIRE interactions (red line), FIRE-non-FIRE interactions (pink l

(F) Same as (E), except analysis is in bladder tissue.

(G) Venn diagram showing the overlap between all annotated FIRE bins (red circ

1e�6) pairwise contacts (blue circle).

(H) Same as (G), except analysis is in liver tissue.
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active chromatin modification, these long-range control ele-

ments also share a unique spatial feature: a high level of local

chromatin interactions. Three additional properties about FIREs

carry implications for the understanding of chromatin organiza-

tion of enhancers. First, FIREs are not only highly interactive

within 200 kb, but also highly interactive beyond 200 kb.

Because FIREs are often positioned toward the TAD center,

this likely means these FIREs are free to explore and interact

with a substantial fraction of the TAD structure. Second, we

find that FIREs often have numerous significant local interaction

partners. Coupled with the observation that FIREs and super-

FIREs are highly enriched for enhancers, this uncovers the pro-

miscuously interactive behavior of active enhancer sequences.

This could mean that enhancers are likely to explore and physi-

cally engage with several loci in their local neighborhood in

search for compatible targets. Lastly, we find that FIREs are

highly self-interactive, even beyond the local (±200 kb) neigh-

borhood. This underscores the significant degree of active

cis-regulatory element spatial clustering occurring within the

topological framework of larger domains. These observations,

in conjunction with the notion that FIREs exhibit a high degree

of tissue-specificity, reveal the degree to which tissues contain

unique chromatin folding signatures at their active cis-regulatory

elements. Through their heightened local contact frequency,

FIREs are likely to engage with several cis-regulatory elements

in their TADs and cooperatively regulate gene expression.

By analyzing the effects of Cohesin depletion in three indepen-

dent studies involving both mouse and human cells, we found

that the Cohesin complex is a key mediator of FIREs, and this

mechanism is conserved across species. Previous analyses of

chromatin architecture in mammalian cells indicated that loss

of Cohesin results in a reduction of interaction frequency within

TADs (‘‘intra-TAD’’), whereas knockdown of CTCF results in

both loss of intra-TAD contact frequency and an increase in in-

ter-TAD contact frequency (Zuin et al., 2014). Our re-analysis

of these data in the context of very local chromatin interaction

frequency indicates that upon loss of Cohesin or CTCF, the

most dramatic reduction in FIRE score at FIRE bins was

observed at loci containing CTCF/Cohesin co-bound peaks

but not CTCF-only sites. We further demonstrate the Cohesin

dependence of FIREs in murine neural progenitor cells, astro-

cytes, and thymocytes, supporting a conserved mechanism of

FIRE establishment.

In sum, by generating a rich resource of chromatin contact

maps across 21 human tissues and cell types and exploring
gnificant (FDR < 1e�6) Hi-C contacts within 200 kb emanating from non-FIRE

fident (FDR < 1e�6) pairwise contacts (bottom triangle) in GM12878 across a

otations (blue), RNA-seq (red), H3K27Ac (black), typical enhancer annotations

Hi-C contact matrix correspond to the 15th and 99th percentiles, respectively,

FDR < 1e�6) are colored yellow.

is) as a function of genomic distance (x axis) for three categories of pairwise

ine), and non-FIRE-non-FIRE interactions (gray line).

le) in GM12878 and all bins that are involved in statistically significant (FDR <



with integrative analytic methods, we have cataloged 3D

genome interactions at various hierarchical levels and uncov-

ered the highly dynamic nature of local interaction hotspots.

These results provide insights into the chromatin organization

in mammalian cells.

EXPERIMENTAL PROCEDURES

Hi-C

Hi-C experiments on all human tissues were performed as previously

described using the HindIII restriction enzyme (Lieberman-Aiden et al.,

2009), with minor modifications pertaining to handling flash frozen primary

tissues (Leung et al., 2015). All previously published Hi-C datasets

analyzed in this study were generated using the original ‘‘dilution’’ Hi-C

protocol (Lieberman-Aiden et al., 2009) and HindIII, unless otherwise noted

(Table S1).

Hi-C Data Processing

Newly generated Hi-C datasets were sequenced on either the Illumina

HiSeq2000 or HiSeq2500 instrument. Published datasets were obtained

from the SRA and converted to fastq files. Data were then processed using

a custom pipeline, beginning with aligning each read end to the mm9 or

hg19 reference genomes using BWA –mem. Chimeric read ends were filtered

to keep only 50 alignments with MAPQ > 10, and then read ends were paired

and de-duplicated. Raw contact matrices were constructed using in-house

scripts, and then further processed using HiCNormCis (described below) or

using HiCNorm (Hu et al., 2012), Vanilla Coverage (Rao et al., 2014), or ICE

(Imakaev et al., 2012), where indicated.

Compartment A/B Identification

Compartment A/B analysis was performed at 1-Mb resolution, as previously

described (Lieberman-Aiden et al., 2009), using the ‘‘prcomp’’ function in R

on the Pearson correlation matrix.

Identification of Topological Domains

Topological domain boundaries were identified at 40-kb bin resolution using

the previously described insulation score analysis approach, with two minor

modifications (Crane et al., 2015). Because mammalian TAD have been previ-

ously identified to be �1 Mb, a 1-Mb genomic region was used rather than

500 kb. Additionally, a 200-kb window, rather than 100 kb, was used for

calculation of the delta vector.

Identifying Frequently Interacting Regions

We developed a Poisson-regression-based normalization approach, named

‘‘HiCNormCis,’’ to identify FIRE bins. Specifically, we first partitioned the entire

genome into bins, and calculated the total number of intra-chromosomal

(‘‘cis’’) interactions in the contact distance range of 15–200 kb for each bin.

Bins with low mappability (<0.9) around HindIII cut sites were removed.

HiCNormCis then takes into account biases from three known factors known

to bias observed Hi-C contact counts, including effective fragment length, GC

content, andmappability (Yaffe and Tanay, 2011) (related to Figures 2 and S2).

Let Yi represent the total cis interactions (15–200 kb) for the ith bin. Addition-

ally, let Fi , GCi, and Mi represent the effective fragment length and GC repre-

sent content and mappability in the ith bin, respectively. The detailed calcula-

tion of Fi, GCi, and Mi is described in our previous work (Hu et al., 2012).

Assume Yi follows a Poisson distribution, with amean of qi. We fitted a Poisson

regression model as follows: log qi = b0 + bFFi + bGCGCi + bMMi, and defined

the residual Ri =Yi=expðbb0 + bbFFi + bbGCGCi + bbMMiÞ as the normalized total

cis interaction. Noticeably, expðbb0Þ is proportional to the overall sequencing

depth, and the residual Ri has a mean of 1. Therefore, the normalized total

cis interactions are robust to different sequencing depths, and are directly

comparable among different samples. Visual inspection revealed that Ri fol-

lows a Gaussian distribution (related to Figure S2). Therefore, we converted

Ri to the corresponding Z score and �ln(p value). The same approach can

theoretically be applied to any Hi-C dataset generated using a restriction

enzyme and at any bin size.
Identification of Significant Hi-C Contacts

Statistically significant contacts in Hi-C datawere identified at 40-kb resolution

using Fit-Hi-C, as previously described (Ay et al., 2014) (see Supplemental

Experimental Procedures). We used the default Fit-Hi-C code to calculate a

p value and q value for each bin pair within a 2-Mb genomic distance. For all

analyses in this study, we used a conservative peak-calling threshold of

FDR < 1e�6.
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1. Supplemental figures.

 

 



	
	

Figure S1. Hi-C data reproducibility and compartment A/B conservation, related to Figure 1. 

A) Scatter plots from replicates of LG, showing the genome-wide of the PC1 values used for the Compartment A/B 
analysis. The plot title contains the Pearson correlation coefficient of all 1Mb bin-pairs. The x- and y-axes are 
labeled according to their tissue type and donor. For example, LG2 corresponds to Lung tissue from donor 2. 

B) Same as Panel A, except analysis of biological replicates for PO. 
C) Same as Panel A, except analysis of biological replicates for PA. 
D) Same as Panel A, except analysis of biological replicates for SX. 
E) Bar plots showing the statistically significant fraction of overlapping TAD boundaries in LG, PO, PA, and SX (Chi 

squarest test p value < 2.2e-16). 
F) Bar plots showing the observed (top) and expected (bottom) distributions of compartment A/B conservation. Labels 

on the x-axis indicate the number of samples and compartment label for which there is conservation and the Y-axis 
indicates the total genome fraction that corresponds to that compartment label. For example, 16A/5B indicates the 
total number of 1Mb bins for which 16 human cell lines or tissues had an A compartment label and 5 samples had a 
B compartment label. In the bottom table, the ‘Compartment’ column indicates the how many samples are shared for 
each compartment label, while the ‘Expected’ and ‘Observed’ columns indicate how many 1Mb bins fall into 
‘Compartment’ category. Statistical analysis comparing the observed and expected distributions are done with Chi-
square test, and statistical analysis of having complete conservation across all samples (i.e. 21A or 21B) was done 
with a binomial test. 

G) Table showing the total number of topological domain boundaries detected using the insulation square method 
(Crane et al., Nature, 2015) applied to downsampled Hi-C from H1 cells. The left column indicates what fraction of 
the full H1 dataset was obtained from downsampling, and the right column indicates the total number of TAD 
boundaries detected. 

H) Table showing the absolute number of TAD boundary regions overlapping all putative boundaries identified across 
all downsampling samples (middle column). The right column indicates the corresponding fraction out of all 
putative boundaries identified across all downsampling samples. The left column indicates what fraction of the full 
H1 dataset was obtained from downsampling. 

I) Table showing the percentages of TAD boundaries that were unique to subsets of the downsampled H1 datasets. The 
left column indicates how many of the 7 degrees of sampling share a particular TAD boundary region. The middle 
column indicates how many TAD boundaries regions were common to a particular subset denoted in the left column. 
The right column is the corresponding fraction the common TAD boundary regions are of the total putative 
boundaries in downsampled H1. 
 

 

 



	
	



	
	

Figure S2. FIRE calling methodology, related to Figure 2. 

A) Box plot showing the distribution of the total raw 15-200kb cis interactions per bin in each sample. Box plots for 
various degrees of downsampling of H1 rep2 (Dixon .., 2015) are shown in green, cell lines are shown in blue, and 
primary tissue Hi-C data is shown in yellow.  

B) Table showing the Pearson correlation coefficient (PCC) between local contact summation of each bin with their 
respective effective restriction fragment length, GC content, and mappability (as rows). The normalization method 
(or lack thereof for raw matrix) to prepare the Hi-C contact data is listed as column headers. PCC values are rounded 
to the nearest hundredth. 

C) Density plots showing the distribution of HiCNormCis outputs for each sample. The y-axes show the density and the 
x-axes are the HiCNormCis output values. The sample name is indicated in the title of each plot.  

D) Scatterplots showing the genome-wide pairwise correlation of FIRE score between two biological replicates for H1, 
MES, MSC, NPC, TRO, LG, PA, PO, and SX. Inset is the Pearson correlation coefficient.  

E) Pie charts showing the overlapping FIRE calls in 9 pairs of biological replicates from cell lines or tissues. Same 9 
samples as Panel D. (Chi-square test p value < 2.2e-16). 

F) Left, table showing the number of long-range cis interactions in a downsampled replicate of H1 (H1 rep2 from 
Dixon et al., 2015) Hi-C data. The ‘Sample’ column indicates what fraction of the full dataset was extracted during 
downsampling, and ‘cis>15kb’ is the total number of long-range cis interactions from the downsampled data. To the 
right, a table showing the Pearson correlation coefficient (PCC) of the genome-wide FIRE scores for downsampled 
H1 data. Each row/column corresponds to what downsampled fraction of the Hi-C data was used for the correlation 
analysis. Each table entry is the PCC. 

G) Scatter plots showing the genome-wide Pearson correlation coefficient (PCC) between 3 different samples, 
including two biological replicates of mES cells prepared using HindIII and 1 sample of mES cells prepared using 
NcoI (data from Dixon et al., 2012). Inset is the genome-wide PCC value. 

H) Pie chart showing the significant FIRE bin overlap between two biological replicates of mES cells prepared with 
HindIII (left), or mES HindIII rep1 and mES NcoI (middle), or mES HindIII rep2 and mES NcoI (right). (Chi-
square test p value < 2.2e-16). 

I) Pie charts showing the significant FIRE bin overlap between samples either prepared using the in situ ligation 
procedure (right) or the “dilution ligation” procedure (left). (Chi-square test p value < 2.2e-16).  

J) Table showing the Pearson correlation coefficient (PCC) for total cis interactions counts (within 15-200kb distance) 
and fragment length of a given bin (column ‘F’), GC content (column ‘GC’), and mappability (column ‘M’), either 
before (group ‘Before HiCNormCis’), or after normalization (group ‘After HiCNormCis’), and for each sample 
(rows).  

 

 



	
	



	
	

Figure S3. Analysis of chromatin biochemical features at FIREs and super-FIREs, related to Figure 4. 

A) Heatmaps showing the local enrichment (see Supplemental Methods) of H3K36me3 (left), H3K9me3 (middle), and 
H3K4me3 (right), centered on FIRE bins for each cell line or tissue. Local enrichment is calculated relative to the 
peaks per bin for H3K4me3, and RPKM values for H3K36me3 and H3K9me3. H3K36me3 and H3K9me3 data 
were not available for CO or HC. 

B) Bar plots showing the fraction of typical or super-enhancers overlapped by observed FIRE calls (blue bars) in 
GM12878 (left plot) and IMR90 (right plot) at 5kb resolution (Rao et al., 2014), or size-matched randomly permuted 
FIRE calls (green bars). Within each plot, analysis of typical enhancers is on the left, analysis of super-enhancers is 
on the right. 

C) Genome browser snapshot of the PREX1 locus (chr20:47,263,536-47,534,527) in GM12878 (top set of tracks) and 
IMR90 (bottom set of tracks). Shown for each cell line are previously annotated (Rao et al., 2014) chromatin loops 
(blue; square is loop anchor, dash to loop), H3K27Ac signal (black), FIREs defined at 5kb resolution (brown), and 
previously annotated (Hnisz et al., 2013) super-enhancers (red). The bottom of the snapshot shows the positioning of 
UCSC genes at this locus.  

D) Table showing the overlap between FIREs, super-enhancer domains, polycomb domains in mESCs (Dowen et al., 
2014) (top section) and insulated neighborhoods in H1 cells (Ji et al., 2016) (bottom section). Tabulated are the total 
number of domains or insulated neighborhoods, how many are overlapped by a FIRE, and how many are expected 
to overlap based on random permutation of FIRE positioning in that respective cell type. The Chi-square test p-value 
is reported in the right column.  

E) Line plots showing the cumulative FIRE scores (y-axis) of ranked stitched FIRE bins (x-axis) from the FIREs with 
the lowest cumulative FIRE scores (left side) to the highest FIRE scores (right side). The red vertical line indicates 
the inflection point, whereby stitched FIRE bins to the right of this line are called as super-FIREs. 

F) Stacked bar plots showing the fraction of FIREs containing at least 1 super-enhancer (SE, blue bars), typical 
enhancer (TE, green bars), or no SE or TE (yellow bars). Each row is the analysis of a different cell or tissue type. 

G) Same as Panel F, except analysis of super-FIREs. 
H) Bar plots showing the enrichment (y-axis) of H3K27me3 at super-FIREs that do not contain any annotated typical 

enhancer or super-enhancers. Each bar represents the analysis of a different tissue, which has been previously 
annotated for super-enhancers (Hnisz et al., 2013). Hippocampus (HC) tissue is not shown because there is no 
H3K27me3 ChIP-seq data in HC. 

I) Same as Panel H, except analysis of H3K4me1. 
J) Same as Panel H, except analysis of H3K27ac. 
K) Same as Panel H, except analysis of H3K36me3. No ChIP-seq data available for HC. 
L) Same as Panel H, except analysis of H3K9me3. No ChIP-seq data available for HC. 
M) Same as Panel H, except analysis of H3K4me3. 
N) Line plot showing the relationship between the True Positive rate, defined as the fraction of FIRE bins overlapping 

typical enhancers (Hnisz et al., 2013), and the False Positive rate, defined as the fraction of FIRE bins not 
overlapping a typical enhancer, as a function of the significance threshold using to define FIREs in GM12878 cells. 
(AUC=0.813). 

O) Same as Panel N, except for super-enhancers (Hnisz et al., 2013). (AUC=0.906). 
P) Genome-wide analysis showing the relative gene expression levels for genes within 200kb of GM12878-specific 

FIREs. Genes within 200kb of GM12878-specific FIREs were collected, and then for each sample, the relative gene 
expression levels are calculated. Shown are the box plots of the distribution of relative gene expression levels for 
each sample indicating that GM12878 relative gene expression levels are higher than any other sample (Two-sample 
t-test p-value < 2.2e-16 compared to brain, OV, LI, SB, SX, PA, LG, AD, NPC, ventricle, and IMR90/MSC; p-value 
< 5.66e-7 compared to PO; p-value < 2.93e-8 compared to BL; p-value < 1.04e-9 compared to TRO; p-value < 
4.84e-10 compared to H1/MES; p-value < 9.26e-6 compared to AO). Boxplots show the median (black line) and 
interquartile range. 

 

 

 

 

 



	
	



	
	

Figure S4. FIRE score species conservation and reduction upon loss of Cohesin, related to Figure 5. 

A) Scatterplot showing the correlation between randomly selected non-FIRE bins in mouse ES cells that liftover to the 
hg19 reference genome. Shown on the x-axis are the FIRE scores from the randomly selected mouse bins that can be 
liftover to hg19. Shown on the y-axis are the FIRE scores in the corresponding human bins. The PCC value is shown 
in the bottom right corner.  

B) Scatterplot showing the correlation between randomly selected non-FIRE bins in human ES cells that liftover to the 
mm9 reference genome. Shown on the x-axis are the FIRE scores from the randomly selected human bins that can 
be liftover to mm9. Shown on the y-axis are the FIRE scores in the corresponding mouse bins. The PCC value is 
shown in the bottom right corner.  

C) Same as Panel A, expect using NPC cell data. 
D) Same as Panel B, except using NPC cell data. 
E) Same as Panel A and C, except using cortex tissue data. 
F) Same as Panel B and D, except using cortex tissue data. 
G) Pie charts showing the overlap between FIRE bins called in the TEV sample and bins bound by CTCF only (blue 

shading, left), SMC3 only (pink shading, right), or co-bound peaks (blue+pink overlap, center). 
H) Box plots depicting the change in Z-score in a random sampling of 5% of bins in TEV and HRV cells. There is no 

significant change in FIRE score in either comparison. Change in Z-score is used for comparison, rather than change 
in FIRE score (-ln(p-value)), since Z-score has approximate Gaussian distribution. 

I) Same as Panel H, except for comparing mAST (floxed – deleted, left boxplot), mNSC (floxed-deleted, middle 
boxplot), and T-cells (WT-Knockout). In all cases, there is not significant change in FIRE score at a random 
sampling of FIRE bins. Change in Z-score is used for comparison, rather than change in FIRE score (-ln(p-value)), 
since Z-score has approximate Gaussian distribution. 

J) Box plots showing the change in Z-score at FIREs overlapping bins bound by CTCF but not SMC3 “CTCF-only” 
(left column), all CTCF peaks (middle column), and CTCF and SMC3 co-binding (right column) for the comparison 
of siCONTROL and siCTCF samples. The red boxes show distributions of FIRE score change at FIRE bins called in 
wild type cells minus the mutant cells, while the blue boxes are distributions for FIRE score change at FIRE bins 
called in wild type cells but between biological replicates of wild type cells. These comparisons show the significant 
reduction of FIRE score at all CTCF peaks, and especially at CTCF SMC3 co-bound peaks overlapping FIRE bins 
(*p=4.88e-5, **p=3.89e-9; two sample t-test). Change in Z-score is used for comparison, rather than change in FIRE 
score (-ln(p-value)), since Z-score has approximate Gaussian distribution. 

K) Bar plots showing the significant enrichment of CTCF, SMC3, or Rad21 in FIREs from control samples in 3 
different studies (From left to right - One-sample t-test p value < 1.11e-15, < 6.54e-14, < 1.71e-10, < 1.33e-13, and 
< 2.2e-16). The sample name is indicated across the x-axis, and the log2(O/E) values are plotted on the y-axis. 



	
	



	
	

Figure S5. Analysis of non-coding disease-associated SNPs in FIREs and FIRE-FIRE contacts, related to Figure 6. 

A) Bar plot showing the number of non-coding GWAS SNPs per megabase in FIRE overlapping super-enhancers (SE), 
FIREs overlapping typical enhancers (TE), and FIREs not overlapping either TE or SE. The horizontal line indicates 
the genome-wide SNP frequency. All analysis was done using GM12878 FIRE data. 

B) Normalized Hi-C contact matrix of a 920kb locus (chr11:85,280,000-86,200,000) in human hippocampus tissue 
(HC). The tracks below show the presence of two Alzheimer’s disease associated SNPs (rs536841 and rs3851179) 
located within a broad FIRE region (brown, chr11:85,840,000-85,880,000). One SNP resides within a HC super-
enhancer (red) and the other SNP resides outside of the super-enhancer but within the FIRE region. Both SNPs 
reside in close proximity to PICALM, as shown in the bottom UCSC gene track. Right of the Hi-C contact matrix is 
the continuous FIRE score across this locus. 

C) Enrichment of Alzheimer’s disease-associated SNPs across 14 primary tissue FIRE annotations, showing the highest 
enrichment in FIREs from both brain tissues (CO and HC). 

D) Enrichment of SNPs associated with quantitative HDL cholesterol metrics across 14 primary tissue FIRE 
annotations, showing the highest enrichment in liver FIREs. 

E) Normalized Hi-C contact matrix (top) in GM12878 for a 5.14Mb locus (chr2:60,900,000-66,040,000) illustrating the 
extent of statistically significant FIRE-FIRE interactions. Hi-C color scale ranges from low to high, corresponding to 
the 15th and 99th percentile contact frequencies within this locus. The reflected matrix shows the statistically 
significant (FDR<1e-6) Hi-C contacts within 2Mb genomic distance across the locus. Only bin-pairs with FDR<1e-
6 are yellow, and the rest are black. Between the matrices are UCSC gene annotations (blue, top), RNA-seq data 
(red), H3K27Ac data (black), typical enhancer annotations (Hnisz et al., 2013) (purple), super-enhancer annotations 
(Hnisz et al., 2013) (red), FIRE annotations (brown), super-FIRE annotations (cyan), and TAD boundary calls (blue).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
	

2. Supplemental tables. 
 
Table S1. Hi-C Data Manifest and Quality Metrics, Related to Figure 1 
 
Table S2. Compartment A/B Patterns and PC1 values, Related to Figure 1, 2 
 
Table S3. TAD boundary annotations, Related to Figure 1, 2 
 
Table S4. Fit-Hi-C peak calling summary, and related analyses, Related to Figure 6, 7 
 
Table S5. Genome-wide FIRE scores, Related to Figure 2 
 
Table S6. FIRE calls and sample-specific FIRE calls in the primary cohort, Related to Figure 2, 3 
 
Table S7. Observed and Expected Values of FIREs in Compartment A and B, Related to Figure 2 
 
Table S8. Gene Ontology (GO) analysis of genes near sample-specific FIREs; top biological process terms, Related 
to Figure 3 
 
Table S9. Gene Ontology (GO) analysis of genes near sample-specific FIREs; top disease ontologies, related to 
Figure 3 
 
 
  



	
	

3. Supplemental experimental protocols. 

 

Tissue Collection 

For all human tissues except for dorsolateral prefrontal cortex (CO) and hippocampus (HC), samples were collected 
as previous described as part of the Epigenome Roadmap Consortium collection (The Roadmap Epigenomics 
Consortium, 2015). Human dorsolateral prefrontal cortex (CO) and hippocampus (HC) tissue were obtained from 
the National Institute of Child Health and Human Development (NICHD) Brain Bank for Developmental Disorders. 
Ethics approval was obtained from the University Health Network and The Hospital for Sick Children for use of the 
tissues. The two specimens used here were from a single male donor, age 31, who was classified as healthy.  

 

4. Computational methods. 

 

Histone ChIP-Seq data processing and peak-calling 

Published single- or paired-end ChIP-Seq raw data were downloaded for H3K4me1, H3K4me3, H3K27ac, 
H3K9me3, H3K27me3, and H3K36me3 from GEO database under accession number GSE16256 and from SRA 
database under accession umber SRP000941 (Roadmap Epigenomics Consortium et al., 2015). The raw data were 
aligned to hg19 human reference genome using BWA-mem. Unmapped, non-uniquely mapped, and low quality 
(less than 10 quality score) reads were removed. We also removed PCR duplicate reads with PicardTools. ChIP-seq 
peaks were identified using MACS2 with the following parameters (--format=BAM -g mm -m 5 50 -p 1e-5) with 
corresponding input ChIP-Seq data as a background model. We also calculated input normalized RPKM values for 
H3K9me3, H3K27me3, and H3K36me3 in each 40kb bin. 

 

RNA-Seq data processing 

Published RNA-Seq raw sequencing data were downloaded from GEO database under accession number GSE16256 
SRP000941 (Roadmap Epigenomics Consortium et al., 2015). RNA-Seq raw reads were aligned to hg19 human 
reference genome using BWA-mem. Unmapped and non-uniquely mapped reads were removed. Transcription 
levels were obtained based on GENCODE annotation v19 and normalized to FPKM values using Cufflinks. FPKM 
values from multiple replicates or multiple donors were combined together and the mean FPKM value was 
calculated for each gene.    

 

Hi-C data processing  

Unpublished Hi-C libraries described in this manuscript were sequenced on either Illumina HiSeq2000 or 
HiSeq2500 instrument. All other published Hi-C data were downloaded from SRA and converted to paired-end 
FASTQ files. Paired-end reads were then aligned independently to either the hg19 human reference genome or mm9 
mouse reference genome using BWA-mem. As BWA-mem retains multiple alignments for a single read-end if it 
maps in two locations (i.e. a chimeric read), we kept only the 5’ alignments for each read-end. Read-pairs in which 
both read-ends had mapping quality greater than 10 were paired using in-house scripts and converted into BAM files 
using Samtools. PCR duplicates were then removed using PicardTools. If downsampling was performed, we then 
used PicardTools ‘DownsampleSam’ function to downsample this final processed BAM file. Then, raw contact 
matrices were constructed using in-house scripts, and then further processed using HiCNormCis (described below) 
for the FIRE analysis. For all other Hi-C analyses not pertaining to FIRE scores, Hi-C data were normalized using 
HiCNorm (Hu et al., 2012), Vanilla Coverage (Rao et al., 2014), or ICE (Imakaev et al., 2012), where indicated. For 
all datasets of similar nature [such as the main cell lines in this study (GM12878, IMR90, H1, H1-derived) or the 
primary tissue collection, or the samples from each respective publication], we performed quantile normalization on 
HiCNorm matrices to normalize for differences in sequencing depth between samples within each group. This was 
done prior to any downstream comparative analyses.  

 

Compartment A/B Calling 



	
	

Compartment A/B analysis was performed at 1Mb resolution as previously described (Lieberman-Aiden et al., 
2009). First of all, we calculated the average read count for each 1Mb bin in each sample. For cell line data, we 
removed 1Mb bins with average read count <=100. For tissue data, we removed 1Mb bins with average read count 
<=10. We used different thresholds for cell line data and tissue data, since tissue data have generally lower 
sequencing depth than the cell line datasets. Such filtering step has removed around 10% low coverage regions in 
the entire genome. Due to varying sequencing depths, the filtered regions are slightly different in each sample, and 
only bins which had a numeric value across all samples were used for downstream compartment analysis. After 
generating the first three principle components using the ‘prcomp’ function in R on the Pearson correlation matrix, 
we visually examined the first principle component (PC1) in each of 7 cell lines and 14 tissues, and found that for a 
few tissues the PC1 vectors of chr3 and chrX correspond to two chromosome arms, instead of A/B compartment. In 
specific, these outliers are PC1 vector of chr3 in bladder (BL), dorsolateral prefrontal cortex (CO), hippocampus 
(HC), lung (LG), psoas muscle (PO), aorta (AO), left ventricle (LV), right ventricle (RV), and PC1 vector of chrX in 
adrenal gland (AD), dorsolateral prefrontal cortex (CO), hippocampus (HC), pancreas (PA), psoas muscle (PO), left 
ventricle (LV), right ventricle (RV). For those outliers, the second principle component (PC2) was used to call A/B 
compartment. Visual examination of those PC2 vectors confirmed they match to the plaid-pattern observed in the 
normalized Hi-C contact matrices, instead of two chromosome arms. 

 

Compartment A/B Conservation Analysis 

To estimate the degree of compartment label conservation (related to Figure 1b, c; Figure S1f), we first scanned 
every 1Mb bin across the genome and counted the number of cell lines or tissue types that shared the same 
compartment label, and recorded which label was shared. By performing this at genome-wide scale, we obtained an 
observed distribution of A/B compartment conservation (Figure 1c, Figure S1f). To statistically determine if this 
distribution deviates from expectation, or to statistically test the significance of ubiquitous conservation (same label 
in all cell lines and tissue types), we first created an expected distribution of compartment conservation. First, for 
each cell line or tissue type, we randomly permuted the compartment label for each bin, while preserving the total 
number of A or B compartments on each chromosome. We then conducted the same conservation enumeration 
described for the observed data, and obtained an expected distribution of conservation (Figure S1f). This distribution 
was compared to the observed distribution using a Chi-square test. Testing the significance of observing the same 
compartment label (“ubiquitous conservation”) across all cell lines or tissue types was done by comparing to the 
expected values using a binomial test.  

 

TAD Boundary Reproducibility and Conservation Analyses 

To estimate the degree of TAD boundary region conservation across samples in the primary cohort (related to Figure 
1d, e; Figure S1e), we first identified TAD boundaries at 40Kb bin resolution for each sample independently, and 
then concatenated unique boundary bins across all samples into a single putative boundary region reference file. 
Consecutive TAD boundaries within 200Kb distance were also merged into a TAD boundary “region”. Merging of 
adjacent boundary bins was performed because often times larger TAD boundaries (up to 400Kb) may result in 
slightly shifted (by a few bins) boundary calls between samples, and though they do not directly overlap, then both 
are a bin within the same boundary region. Moreover, in previous reports, TAD boundaries have been defined as 40-
400Kb (Dixon et al., 2012) while regions >400kb are characterized as regions of “disorganized chromatin”. Given 
this, and after defining boundary “regions” using our approach, the final list of unique TAD boundary regions 
ranged in size from 40-400Kb, consistent with previous definitions (Dixon et al., 2012). Using the cumulative list of 
TAD boundary regions, we evaluated the fraction of the total number of cell lines and tissues that had a boundary 
bin overlap with the given boundary region. To evaluate the overlap of TAD boundaries between tissue Hi-C 
biological replicates (LG, PA, PO, SX), boundaries within 80kb of each other were considered overlapping, which 
may underestimate the true boundary overlap since TAD boundaries have been previously defined as up to 400kb, 
and large boundaries regions are subject to technical variation in TAD calling at 40kb resolution. A chi-square test 
was used to evaluate statistical significance of TAD boundary overlap between replicates.  

 

TAD Boundary Reproducibility and Conservation Analyses 



	
	

To understand if our TAD identification method is robust across the sequencing depths used in this manuscript, we 
downsampled H1 rep2 Hi-C data (Dixon et al., 2015) as described above, and constructed HiCNorm contact maps. 
We then applied the insulation square method (Crane et al., 2015) to identify TAD boundaries. To determine what 
fraction of TAD boundaries within a given downsampled dataset overlap other putative TAD boundaries in H1 
downsampled data, we first collected all putative TAD boundary regions from each of the 7 samples and made a 
reference putative boundary file (approximately 2,700 putative TAD boundary regions). For each downsampled 
dataset, we then asked what fraction of TAD boundary regions overlaps the boundaries in the reference putative 
boundary list (related to Figure S2h). To understand what fraction of TAD boundary regions are shared across all 
downsampled datasets we calculated the percentage of TAD boundaries that were unique to subsets of the 
downsampled files, including TAD boundaries that were shared across all downsampling datasets (related to Figure 
S2i).  

 

Comparison of FIREs and chromatin loops and insulated neighborhoods 

To explore the relationship between FIREs and chromatin loops, we called FIREs using the methods described in 
this manuscript, except at 5kb resolution using in situ Hi-C data in GM12878 and IMR90 (Rao et al., 2014). To 
compute the enrichment of chromatin loops in FIREs, we first assigned each chromatin loop anchor to a 5kb bin 
using the previously published loop annotations. We then computed the observed overlap between 5kb FIREs and 
5kb loop anchors, and the expected overlap by permuting the FIRE positioning. Statistical significance was 
computed using Chi-square test. Conversely, to analyze the enrichment for FIREs at chromatin loop anchors, we 
conducted the same type of analysis, except asking what fraction of loop anchors are overlapped by a FIRE.  

 To explore the relationship between FIREs and insulated neighborhoods, super-enhancer domains and 
polycomb domains, we computed the enrichment (observed overlap / expected overlap) of 40kb FIREs at insulated 
neighborhoods defined in H1 cells (Ji et al., 2016), and the enrichment of 40kb FIREs at super-enhancer domains 
and polycomb domains in mESCs (Dowen et al., 2014). Statistical significance was computed using Chi-square test. 

 

Identifying super-FIREs 

To identify super-FIREs, we used a similar approach of that used to identify super-enhancers (Hnisz et al., 2013). 
First we merged all book-ended FIRE bins into large continuous FIRE regions. We then ranked the merged FIRE 
regions by their cumulative Z-score, and plotted the ranked FIRE regions as a function of their cumulative Z-score 
(related to Figure S3c). We then found the inflection point of the line plot, and defined the FIRE regions to the right 
of the inflection point as super-FIREs. The same procedure can be done for 5kb bin resolution FIREs, but by 
stitching FIRE bins within 15kb of one another. 

 

Enrichment of FIRE in compartment A or compartment B 

Using the compartment A/B calls at 1Mb resolution for each sample, observed FIRE bins were categorized into 
either compartment A or compartment B, depending on which compartment the FIRE bin resided. For all observed 
FIRE calls, the total compartment A overlap and compartment B overlap were enumerated (OFIRE(A) or OFIRE(B)). To 
generate expected values, FIRE bins were randomly permuted while preserving the total number of FIREs per 
sample and per chromosome, and then re-categorized into either compartment A or compartment B (EFIRE(A) or 
EFIRE(B)). Enrichment for compartment A or compartment B was calculated as either log2(OFIRE(A)/ EFIRE(A)) and 
log2(OFIRE(B)/ EFIRE(B)), respectively. To statistically evaluate the significance of enrichment of FIREs in 
compartment A or compartment B, for we created a two by two table using total compartment A overlap and 
compartment B overlap in observed FIRE calls (OFIRE(A) or OFIRE(B)) and expected FIRE calls (EFIRE(A) or EFIRE(B)), 
respectively. Chi-square test was performed to access the statistical significance (related to Table S7) and the 
process was performed independently for each sample.   

 

FIRE positioning relative to TAD 

For each sample and each FIRE bin, we found the TAD for which the FIRE bin resides using TAD calls for that 
given sample (related to Figure 2e, f). For each FIRE bin within a given TAD, we set the center position of the TAD 



	
	

to 0.5 relative distance units, corresponding to ‘halfway’ between each adjacent TAD boundary. We then computed 
the distance from the TAD center to the boundary (Dcenter), as well as the distance of the FIRE bin to the nearest 
boundary (DFIRE). Selecting the nearest boundary ensures the DFIRE will always be less than or equal to DCenter. The 
relative distance units of the FIRE within a TAD are then computed as (DFIRE/DCenter)/2.  

 

FIRE clustering analysis 

We performed hierarchical clustering analysis using all samples in our primary cohort. Specifically, we first used the 
normalized total cis interaction (HiCNormCis) value for each 40Kb bin, and calculated the Euclidean distance of 
two genome-wide FIRE score vectors between any two samples, using the R function “dist”. We then used the R 
function “hclust” with option “single linkage” to perform the hierarchical clustering analysis (related to Figure 3a). 
Next, we selected 40Kb bins which are cell line or tissue specific FIREs, and visualized their HiCNormCis scores 
using software JAVA TreeView (Saldanha, 2004). 

 

Genomic Regions Enrichment of Annotations Tool (GREAT) analysis 

We performed the GREAT analysis (McLean et al., 2010) to investigate the biological processes and disease 
ontologies for genes in the neighborhood of cell line or tissue specific FIRE bins (related to Figure 3d, e; Table S8-
9). Specifically, we input our list of cell- or tissue-specific FIRE bins for each sample into the GREAT software 
(http://bejerano.stanford.edu/great/public/html/), and allowed the software to test neighboring genes for biological 
process and disease ontology enrichment. GREAT then evaluates the statistical significance of enrichment for each 
biological process, compared to the whole genome background. A Bonferroni-corrected Binomial test was used to 
obtain the p-value. Reported are the top fifteen biological processes ranked by the most significant p-values, in 
GM12878-specific FIREs and brain-specific FIREs, respectively (related to Figure 3e, f) and top terms for all 
samples as well as top disease ontologies are found in Tables S8-9.     

 

Histone Local Enrichment Analysis  

For each 40Kb FIRE bin in each sample, we calculated either the number of peaks per bin (for narrow peaks 
H3K27ac, H3K4me1 and H3K4me3) or the RPKM values per bin (for broad peaks H3K27me3, H3K9me3 and 
H3K36me3) and then calculated these values for each of the 12 bins upstream and 12 bins downstream of the FIRE 
bin, creating a vector of 25 values, centered on the FIRE bin (related to Figure 4b; Figure S3a). Those 25 values 
represent the histone mark profile in 1Mb region centered at each FIRE bin. As a control, to generate an expected 
histone mark profile, we randomly permuted the location of FIRE bins ten times within each sample, and calculated 
the averaged peak count or RPKM value at each position across ten random permutations. To calculate the local 
enrichment, we first calculated the ratio between observed value and expected value for each of the 25 positions 
around a FIRE bin, creating an enrichment score profile. Then, to assess the magnitude of local enrichment, we 
normalized each enrichment score relative to the local minima, by taking the log2 of the position enrichment divided 
by the minimum local enrichment. This converts the data to have a local enrichment of 0 at the local minima and 
specifically allows one to appreciate the enrichment of FIRE bins relative to the local neighboring bins, rather than 
relative to genome-wide levels.  

 

Mean-rank Gene Set Test 

To determine if genes near sample-specific FIREs tend to be expressed predominantly in the same tissue, we 
adapted the Mean-rank Gene Set Test concept, originally described in the ‘Limma’ R package (Ritchie et al., 2015) 
(https://bioconductor.org/packages/release/bioc/html/limma.html). Conceptually, the mean-rank gene set test 
evaluates whether a particular subset of genes is highly ranked relative to other genes in terms of a given statistic. 
Then using the Wilcoxon test, evaluates the null hypothesis that the mean rank of a subset of genes is not different 
than the expected mean ranking. A ‘p-value’ is generated by using the ‘WilcoxGST’ function in the Limma R 
package whereby the statistic parameter is a ranked list of relative gene expression values (with 1 being the gene 
with the highest relative expression, defined more below), and the index parameter is the positional indices of the 
genes within 200kb of a sample-specific FIRE set. However, the Wilcoxon test only evaluates if the mean rank of 
the test genes are different from the expected ranking, therefore not specifically addressing whether the mean rank is 



	
	

more towards 1 compared to the expected ranking. Therefore, we present the results as the difference between the 
expected rank and actual mean rank, whereby a positive value indicates that the mean ranking is closer to 1 than the 
expected ranking.  

In more detail, for each cell line or tissue, we first collected genes whose transcription start site (TSS) is 
within 200kb of a sample-specific FIRE. The collection of these genes within 200kb of sample-specific FIREs make 
up the sample-specific FIRE gene set, termed “FIRE genes”. To prepare the Relative Expression rank file for each 
cell line or tissue, we used RNA-Seq data to first filter out genes with zero FPKM in all 21 samples, and then 
transformed the expression values into Log2(FPKM+1) values. Next, we divided each gene expression value by its 
cumulative gene expression sum across all 21 samples, to create the relative gene expression value (related to Figure 
4f). For each sample, we then sorted all genes by their relative gene expression to assign each gene an expression 
rank, with 1 being the gene with the highest relative gene expression in that sample. Using these ranks for each 
sample, we calculated the mean expression rank for genes from a sample-specific FIRE gene set (related to Figure 
4h), and then across all sample-specific FIRE gene sets (related to Figure 4g). A gene set enriched for sample-
specific expression is expected to have a lower numeric mean rank (towards 1). By random chance, the mean rank 
will be approximately half of the total number of expressed genes. Therefore, we defined the enrichment score as the 
expected mean rank – observed mean rank. A large positive enrichment score indicates that genes within 200kb of 
sample-specific FIREs are primarily expressed in that sample relative to others, whereas a large negative enrichment 
score indicates that genes within 200kb of sample-specific FIREs are lowly expressed in that sample relative to other 
samples.    

 

FIRE bin conservation 

To investigate the degree of conservation of FIRE bins between human and mouse in three difference cell types 
(related to Figure 5a, b), we first identified FIRE bins using our HiCNormCis approach in the human and mouse 
samples. Next we identified breakpoints of major genomic rearrangements between human and mouse based on 
UCSC "net" alignments (Chiaromonte et al., 2001; Kent et al., 2003; Schwartz et al., 2003). To identify breakpoints 
in hg19, we used the alignment where hg19 is the target genome and mm9 is the query genome 
(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/vsMm9/hg19.mm9.net.gz). To identify breakpoints in mm9, we 
used the alignment where mm9 is the target and hg19 is the query 
(http://hgdownload.soe.ucsc.edu/goldenPath/mm9/vsHg19/mm9.hg19.net.gz). From each alignment, we calculated 
the genomic coordinates of the boundaries of all "fill" and "gap" blocks of size >50kb. We sorted these coordinates 
and then recursively merged those that are separated within 25kb into a single genomic interval. The resulting set of 
merged intervals defined our breakpoints. Any FIRE bins containing human<->mouse synteny breakpoints as 
defined above were removed from downstream analyses. UCSC liftover tool was then used to convert the genomic 
location of FIREs between hg19 human reference genome and mm9 mouse reference genome. Since in many cases 
the a 40kb bin in one species lifts over to a region that is part of 2 40kb bins in the other species, we considered a 
“conserved FIRE” if 1 of the 2 bins was a FIRE call. As a control, we also lifted over the genomic location of 
randomly permuted FIREs (that don’t contain a breakpoint) between human and mouse, and calculated the number 
of FIREs that are conserved. For each of the six comparisons in Figure 6a, we also obtained the expected level of 
conservation. A Chi-square test was used to evaluate the statistical significance of FIRE conservation between 
human and mouse.    

 

FIRE score conservation 

To estimate the FIRE score conservation between human and mouse across a range of FIRE scores (related to Figure 
S4a-f), we randomly selected 4,000 40Kb bins, and used UCSC liftover tool to convert the genomic location of the 
randomly selected 40Kb bins between hg19 human reference genome and mm9 mouse reference genome. Since in 
many cases the a 40kb in one species lifts over to a region that is part of 2 40kb bins in the other species, we took the 
average FIRE score of the 2 40kb bins when conducting the correlation analysis. We then made a scatter plot of 
FIRE scores between the paired human and mouse datasets at the syntenic 40Kb bins, and calculated the Pearson 
correlation coefficient.  

 

Change in FIRE score upon loss of Cohesin or CTCF 



	
	

To investigate the impact of Cohesin loss on local interaction frequency (i.e. on FIRE tendency), we evaluated the 
change in local interaction frequency (as ‘Change in Z-score’) upon loss of Cohesin (related to Figure 5c-e) or 
CTCF (related to Figure S4j). In these analysis, we used the Z-score for each FIRE bin, instead of negative -ln(p-
value), since Z-scores has approximate Gaussian distribution. For comparison of Z-score change between “control 
cells” (defined within each experiment as the condition without Cohesin manipulation or CTCF knockdown) and 
experimental cells (defined within each experiment as the condition with Cohesin depletion or knockout, or CTCF 
knockdown), we first identified the most confident FIRE bins in control cells, defined as FIRE bins in both control 
biological replicates. Next, we calculated the change of Z-score between control and experimental, at those selected 
most confident FIRE bins. As an analysis control, we also calculated the change of Z-score between two control 
biological replicates at the same set of high confidence FIRE bins. A two sample t-test was used to evaluate the 
statistical significance of the difference in Z-scores between control vs. experimental, as well as between two 
biological replicates of control samples. Since two WT biological replicates are symmetric, we took the absolute 
value of the difference in Z-score between the biological replicates. Therefore, the Z-score difference between two 
control biological replicates is always positive, and is a fair comparison to the Z-score difference between control 
and experimental.   

 

CTCF and SMC3/Rad21 Enrichment Analysis 

To determine if FIREs are enriched for CTCF or SMC3 (in TEV sample) or Rad21 (in mAST_floxed mNSC_floxed 
or Tcell_WT samples), we calculated how many CTCF or Cohesin subunit peaks are present in FIREs. We also 
permuted FIRE positioning 10 times, and asked the same question to obtain a distribution of expected values. To 
determine statistical significance, we compared this observed value to the expected distribution using a one-sample 
t-test. 

 

FIRE and disease-associated SNP analyses 

We collected the 4,378 non-coding disease associated GWAS SNPs (referred to hereafter as “SNPs”) used in a 
previous study (Hnisz et al., 2013), and converted each SNP ID to its genomic location in hg19 human reference 
genome, using NCBI dbSNP online tool (http://www.ncbi.nlm.nih.gov/projects/SNP/dbSNP.cgi?list=rslist), 
resulting in 4,327 SNPs. Next, we mapped each SNP to FIRE bins identified from each of 7 cell lines and 14 tissues, 
and calculated the SNP density, defined as the number of mapped SNPs per 1Mb of FIRE bins. We further divided 
FIRE bins based on their overlap with typical enhancers and super-enhancers, and calculated the SNP density within 
each sub FIRE groups. Additionally, we performed disease-based FIRE SNP overlap analysis. For each of 456 
diseases, we defined the enrichment score as the ratio between the proportion of SNPs overlapped with FIRE bins 
and the proportion of FIRE bins in the genome. Higher enrichment score indicates stronger overlap between SNPs 
and FIRE bins.  

 

Calling Significant Interaction Pairs in Hi-C data 

Statistically significant contacts in Hi-C data were identified using Fit-Hi-C, as previously described (Ay et al., 
2014). First, Fit-Hi-C assumes that the expected contact frequency is a function of genomic distance. Fit-Hi-C also 
assumes the observed contact counts follow a Poisson model for non-peak Hi-C bin-pairs, (i.e. 
𝑂!"~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 𝑑!" )), and assumes an observed contact count is significantly higher than this Poisson variable for 
a peak bin-pairs (i.e. a statistically significant Hi-C contact). Fit-Hi-C conducts fitting and removing outliers 
iteratively. Fit-Hi-C requires the user to specify the range of genomic distance to assess for statistical significance. 
Based on this genomic distance input and for each iteration, Fit-Hi-C first bins the specific genomic distance into B 
bins (by default B=100), then estimates the mean observed contact count of currently labeled non-peak bin-pairs 
from each bin and then fits a spline curve 𝜆 𝑑!"  based on average observed count at each distance determined by B 
and the user-input distance cutoff. For example, if one were to input B=50 and 2Mb genomic distance, then the 
spline curve will fit the mean contact count across 50 distance data points. Then, Fit-Hi-C tests each observed count 
𝑂!" against the calibrated Poisson distribution 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 𝑑!" ). Fit-Hi-C rejects the null hypothesis when p value is 
small and labels this observation as a significant bin-pair “peak” (a significant Hi-C contact). In the next iteration, 
Fit-Hi-C conducts the same processes of calibrating the background distribution and significance testing.  After 
converting our Hi-C contact matrix into the correct input format for Fit-Hi-C, we used the default Fit-Hi-C code to 



	
	

calculate a p value and q value (a false discovery rate, FDR) for each bin-pair within 2Mb genomic distance. The 
generic example code for Fit-Hi-C can be found here: (https://noble.gs.washington.edu/proj/Fit-Hi-C/). For all 
analyses in this study (except where noted) we used a conservative peak-calling threshold of FDR<1e-6. This is 
based on the observation that more relaxed peak calls (FDR<0.05, the Fit-Hi-C default parameter) seemed to 
overcall peaks, and, FDR<1e-6 corresponds to ~1 million total peaks in IMR90, very similar to previous reports (Jin 
et al., 2013). 

 

eQTL Enrichment Analyses 

Statistically significant SNP-gene pairs were downloaded from the GTEx Portal (http://www.gtexportal.org/home/), 
using Version 6 (filed called GTEx_Analysis_V6_eQTLs.zip). Since only a subset of our tissue types can be found 
in the GTEx dataset, we extracted 6 GTEx datasets corresponding to 6 of our higher depth tissue Hi-C datasets. The 
following files were used from the GTEx datasets: Adrenal_Gland_Analysis.snpgenes, Liver_Analysis.snpgenes, 
Brain_Frontal_Cortex_BA9_Analysis.snpgenes, Artery_Aorta_Analysis.snpgenes, 
Heart_Left_Ventricle_Analysis.snpgenes, Heart_Left_Ventricle_Analysis.snpgenes. 

 To evaluate whether statistically significant contacts emanating from FIRE bins are enriched for SNP-gene 
pairs, and also to address whether the most significant Hi-C peaks are further enriched for SNP-gene pairs compared 
to less significant Hi-C peaks, we first used Fit-Hi-C to generate q values (i.e. FDRs) for all bin-pairs within 2Mb 
genomic distance for each tissue type and sub-selected higher depth tissue datasets in which we also obtained GTEx 
information (i.e. 6 tissues listed above). For the analysis of each sample, we first ranked significant bin-pairs by their 
FDR, from most significant pairwise contact to contacts with FDR approaching 0.05 (default Fit-Hi-C significance 
cutoff). This generates a genome-wide ranked list of significant pairwise contacts. We then divided significant bin-
pairs into two groups depending on whether the anchor bin is a FIRE bin or non-FIRE bin, creating two groups 
termed “FIRE bin peaks” and “non-FIRE bin peaks”. In order to evaluate whether there is a difference in the 
presence of known SNP-gene pairs emanating from FIRE bins compared to non-FIRE bins, we selected the top 1K-
20K significant FIRE peaks at 1K step size. As a control, we randomly selected a size-matched statistically 
significant bin-pairs emanating from non-FIRE bins. To evaluate whether FIRE peaks contained more SNP-gene 
pairs than non-FIRE bin peaks, we tested whether the average number of SNP-gene pairs captured by the top set of 
FIRE peaks is significantly higher than the size-matched control set (from non-FIRE bin peaks), using a one-side 
two-sample t test. Due to the random nature of selecting the size-matched control set, we generated 10 control 
datasets for each comparison (i.e. 1k, 2k…20k). To assess if the most significant FIRE bin peaks are more enriched 
for SNP-gene pairs than less significant FIRE bin peaks, we have plotted the log2(O/E) values for the top 
1k,2k,3,4k,5k,10k,15k FDR groups (related to Figure g-j). Using a p value here is not entirely appropriate to address 
this analysis since p values for two-sample t tests are sensitive to sample size.  

 

FIRE peak analyses 

To evaluate whether FIREs have more local peaks than non-FIREs, we used Fit-Hi-C peak-calling results at 
stringent statistical significance (FDR<1e-6) to obtain distributions of the number of peaks emanating from FIRE 
bins or size-matched randomly permuted non-FIRE bins. To determine if the observed number of peaks from FIREs 
is greater than non-FIREs, we used a two-sample t-test. 

 To determine if FIREs self-interact at higher frequency than FIREs with non-FIREs or non-FIREs with 
non-FIREs, we first collected all FIRE bins, and then for each distance (d) from 40kb to 2Mb, we calculated the 
mean interaction frequency in which a FIRE bin was contacting another FIRE bin. Therefore, for each distance 
increment, we obtain a mean FIRE-FIRE interaction frequency. We then repeated the same procedure, but this time 
calculating the interaction frequency of FIREs with non-FIREs at each distance increment. Lastly, we randomly 
permuted FIRE bin locations to obtain a set of random non-FIRE bins and then calculated the interaction frequency 
with other non-FIRE bins for each distance increment. Then, for each genomic distance increment, we compared the 
FIRE-FIRE frequency with either the FIRE-nonFIRE or nonFIRE-nonFIRE using a two-sample t-test (related to 
Figure 7e; Table S4). This process was done independently for each sample. 

 To evaluate if FIREs are often the significant contact target of other FIREs we first collected all significant 
(FDR<1e-6) FIRE target bins determined by Fit-Hi-C, as well as all FIRE bins. We then intersected the FIRE target 
bins and FIRE bin annotations, creating three groups: FIRE targets that are non FIREs, FIRE targets that are FIREs, 



	
	

and FIRE bins that are not targets of other FIREs (related to Figure 7g, h). The statistical significance of whether a 
FIRE bin is more likely a target of another FIRE bin was evaluated using a chi-square test. 
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