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Despite the dramatic underrepresentation of non-European populations in human genetics studies, researchers continue to
exclude participants of non-European ancestry, as well as variants rare in European populations, even when these data are
available. This practice perpetuates existing research disparities and can lead to important and large effect size associations being
missed. Here, we conducted genome-wide association studies (GWAS) of 31 serum and urine biomarker quantitative traits in
African (n= 9354), East Asian (n= 2559), and South Asian (n= 9823) ancestry UK Biobank (UKBB) participants. We adjusted for all
known GWAS catalog variants for each trait, as well as novel signals identified in a recent European ancestry-focused analysis of
UKBB participants. We identify 7 novel signals in African ancestry and 2 novel signals in South Asian ancestry participants (p < 1.61E
−10). Many of these signals are highly plausible, including a cis pQTL for the gene encoding gamma-glutamyl transferase and
PIEZO1 and G6PD variants with impacts on HbA1c through likely erythrocytic mechanisms. This work illustrates the importance of
using the genetic data we already have in diverse populations, with novel discoveries possible in even modest sample sizes.
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INTRODUCTION
Lack of representation of diverse global populations is a major
problem in human genetics research. As recently reviewed, 78% of
genome-wide association study (GWAS) participants are of
European ancestry, with an additional 9% East Asian participants
[1]. All other populations (as well as multi-ethnic studies) make up
less than 13% of subjects but account for 38% of significant
associations in the GWAS catalog, demonstrating the scientific
importance of including diverse populations for understanding
the biology of complex traits. For example, only 2.4% of GWAS
participants are of predominantly African ancestry, but 7% of
GWAS catalog associations were found in these participants.
Inclusion of diverse populations is also essential for risk prediction;
polygenic risk score (PRS) instruments often perform poorly when
trained using European only summary statistics and then applied
to non-European populations [2]. As PRSs move into clinical use,
this lack of representation risks perpetuating existing health
disparities. Lack of inclusion of diverse populations could also
result in missing many of the important insights into disease
biology possible through human genetics.

However, as recently reviewed [3], we are still failing to use the
data we have in ancestrally diverse populations. Even when non-
European data are available, many researchers tend to focus only on
large European sample sizes and do not perform appropriate trans-
ethnic or ancestry stratified analyses in participants with substantial
non-European genetic ancestry. For example, the UK Biobank (UKBB)
data, which is widely used due to its large sample size, broad data
availability for qualified researchers, and variety of measured
phenotypes and electronic health record data, includes >20,000
participants with non-European genetic ancestry. However, all 29 of
the first papers indexed on the GWAS catalog that include UKBB
participants included only the European ancestry sample (>400,000
individuals), likely for reasons of analytical convenience. Only
recently, efforts such as the Pan-UK Biobank project [4] have made
available summary statistics across UKBB participants with sub-
stantial non-European ancestry, and some efforts have been made
to more extensively study whether additional variants and pathways
are identified versus European ancestry participants only.
These existing studies support the value of including even small

numbers of non-European ancestry participants, especially for
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biomarkers and endophenotypes for which a larger percentage of
variance is often explained by a small number of genetic signals.
Notably, in recent trans-ethnic analyses of blood cell traits
including the UKBB data and other cohorts (total n= 746,667),
an IL7 coding variant associated with lymphocyte counts was
identified in South Asian UKBB participants only (n= 8189) [5]. The
lymphocyte increasing allele of this variant increased secretion of
IL7 by 83% in follow-up in vitro analyses. We here assess the
genetic contributors to the UKBB serum and urine biomarker
panel in non-European ancestry populations. We chose these
quantitative traits based on a higher probability of previously
undetected large effect size loci and improved statistical power
versus dichotomous disease endpoints. Initial analyses of these
serum and urine biomarkers have, similar to many other analyses
in the UKBB, focused predominantly on European ancestry
individuals [6]; while all ancestry populations were included in
the final published meta-analyses of these traits by Sinnott-
Armstrong et al. (in contrast to the preprint version, which
included European ancestry participants only [7]), the posted
meta-analysis results and subsequent follow-up analyses were
limited to variants with a minor allele frequency (MAF) >1% in
White British populations. This prior work on UKBB serum and
urine biomarkers revealed important relationships, such as
improved prediction of disease in the independent FinnGenn
cohort for multi-biomarker PRS versus single-disease PRS,
particularly for liver and renal disease, and novel signals, for
example, low-frequency coding variants with impacts on kidney
biomarkers and outcomes. However, we hypothesized that
important novel variant-trait associations were missed by the
focus only on variants common in British individuals. Mendelian
randomization analyses suggest causal roles for a number of these
biomarkers, including IGF-1 [8], urine albumin [9], urate [10], so
such ancestry differentiated variants may have important health
consequences, as well as point to key genes and biological
mechanisms relevant across populations and improve PRS
prediction.

MATERIALS AND METHODS
UK Biobank serum and urine biomarkers
The UK Biobank resource includes genetic and phenotypic data on nearly
500,000 individuals aged 40–69 at the time of recruitment (2006–2010)
[11]. All participants gave informed consent. UKBB released data on
34 serum and urine biomarkers, chosen based on their role as established
risk factors or diagnostic measures for a wide range of diseases, with an
emphasis on renal and liver health [12]. We excluded three biomarkers
with a high percentage of values below the reportable range (oestradiol,
microalbumin in urine, and rheumatoid factor, with missingness >70%)
and generated inverse normalized values for the remaining 31 biomarkers
for genetic analysis (Table S1).

Derivation of ancestry clusters
We used a combination of self-reported ethnicity and k-means clustering
of genetic principal components to derive lists of individuals to include in
the African, South Asian, and East Asian clusters. First, we calculated
principal components (PC) and their loadings for all 488,377 genotyped
UKBB participants using high-quality variants in the UKBB data set that
overlapped with the participants in the 1000 G Phase 3 v5 (1KG) reference
panel (Fig. S1). Reference ancestries used included 504 European (EUR),
347 American Admixed (AMR), 661 African (AFR), 504 East Asian (EAS), and
489 South Asian (SAS) samples (overall 2504). We projected the 1KG
reference panel dataset on the calculated PC loadings from UKBB. We then
used k-means clustering with four dimensions, defined by the first four
PCs, to identify the individuals that clustered with the majority of
individuals in each 1KG ancestry specific reference panel (PC1, PC2, PC3,
and PC4 are displayed in Fig. S1, those who are not in any k-means cluster
(UKBB_other) are shown in gray).
We used self-reported ethnicity (variable “ethnic_background”, 21000-

0.0 of the UKBB data, as reported by participants during the initial
Assessment Center visit) to assign individuals who fell outside of any 1KG

cluster to a genetic analysis subset. For the African ancestry subset used in
our analysis, we included all individuals that cluster with the 1KG AFR
samples by k-means clustering, except n= 7 individuals whose self-
reported ethnicity was White, British, Irish, Any other White background,
Indian, Pakistani, Bangladeshi, Any other Asian background, or Chinese. For
individuals who did not cluster with the 1KG AFR population (or any other
1KG cluster) but self-reported White and Black Caribbean, White and Black
African, Black or Black British, Caribbean, African, or Any other Black
background, we assigned them to the African genetic ancestry analysis
group (n= 660). For the South Asian subset used in our analysis, we
included all individuals that cluster with the 1KG SAS samples by k-means
clustering, except 117 individuals with self-reported ethnicity as follows:
White, British, Irish, Any other White background, White and Black
Caribbean, White and Black African, Black or Black British, Black Caribbean,
African, Any other Black background, or Chinese. 55 individuals with self-
reported Indian, Pakistani, or Bangladeshi ethnicity (who did not cluster
with any 1KG ancestry group) were also assigned to the South Asian subset
(n= 55). Finally, our East Asian ancestry subset is comprised of individuals
that cluster with 1KG East Asians (EAS) by k-means clustering, removing
eight individuals with self-reported White, British, Irish, Any other White
background, White and Black Caribbean, White and Black African, Indian,
Pakistani, Bangladeshi, Black or Black British, Black Caribbean, African, or
Any other Black background. Nineteen individuals with self-reported
Chinese ethnicity (who did not cluster with any 1KG ancestry group) were
also included in the East Asian subset. After clustering and exclusion of
extreme outliers/potential sample swaps, we included n= 9354 African,
n= 2559 East Asian, and n= 9823 South Asian ancestry participants; these
sample sizes are larger than those reported in Sinnott-Armstrong et al. [6],
largely due to the inclusion of individuals which cluster based on principal
components with a particular genetic ancestry group but have missing,
“Mixed”, or “Other” for their self-report ethnicity data. For ease of
comparison to reference allele frequencies (notably those from 1KG), we
stratified analyses by these ancestry clusters.

Medication adjustment for lipids and diabetes traits
For subjects on lipid medications, we divided total cholesterol by 0.8 to
approximate pre-medication values, and we divided directly assessed LDL
by 0.7, as previously recommended [13]. For analysis of both diabetes-
related traits (HbA1c and glucose), we excluded individuals with diabetes
diagnosed by a doctor (UKBB variable 2443-0.0), those taking insulin (UKBB
variable 6153-0.0), and those with HbA1c ≥ 48mmol/mol or glucose ≥ 7
mmol/L.

Genotype imputation and association
Imputation was performed using 97,256 deeply sequenced reference
genomes (freeze 8) from diverse populations from the National Heart,
Lung, and Blood Institute’s Trans-Omics for Precision Medicine (TOPMed)
Initiative (https://imputation.biodatacatalyst.nhlbi.nih.gov/#!), in order to
better capture ancestry-specific rare variation (particularly in African
ancestry populations) compared to the UK10K panel used for the public
UKBB release. All listed positions are on build 38. We filtered to individuals
and SNPs with a call rate >90% prior to imputation. For our analyses, we
included only well-imputed variants in each cluster. For common (MAF >
0.5%) variants, we defined well-imputed as those with estimated r2 > 0.3,
and for rare variants (MAF < 0.5%), those with estimated r2 > 0.8 were
considered well-imputed. Association analyses were performed using the
EMMAX test implemented in EPACTS 3.3.0, which accounts for population
structure. Genotyped variants with MAF > 1% and missing rate < 1% were
used in kinship matrix derivation. We removed variants with an estimated
minor allele count (MAC) < 5 when running EPACTS to improve model
stability. X chromosome analyses were conducted stratified by sex and
then meta-analyzed using GWAMA, alleviating problems with inflation for
some sex-differentiated biomarkers and allowing us to assess evidence of
heterogeneity by sex. We assessed testosterone stratified by sex for both
autosomes and the X chromosome due to the dramatic difference in trait
distribution between males and females (see Table S1).
For our association analyses of serum and urine biomarkers, we first

regressed out covariates (age, sex, first 10 PCs (provided by UKBB),
genotyping array, centers) before inverse normalizing the resultant
residuals. In our conditional GWAS analyses, we also included known
variants from the GWAS catalog (accessed Spring 2020) as covariates in our
association models (any variant previously identified on each tested
chromosome, Table S2), as our primary aim was to identify novel signals
missed in previous predominantly European analyses. For our identified
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signals, we checked if UKBB European focused analyses (as described in
Sinnott-Armstrong et al. [6, 7], Table S3) had identified genome-wide
significant variants (p < 5E−8) within 1MB of our sentinel signal. We then
included these nearby associated variants as covariates in the final
conditional analyses reported here, to see whether our sentinel variants
from non-European ancestry-focused analyses were still genome-wide
significant. Chromosome X was not included in previous European-focused
analyses from Sinnott-Armstrong et al., so this does not apply to those
variants. We also assessed if any genome-wide significant signals remained
after adjustment for significant novel variants in Table 1 to assess if there
were multiple distinct novel signals at the locus.
We adopted a significance threshold of 5E−9/31 traits, or p < 1.61E−10,

based on reasonable estimates of the number of independent tests for
testing all common and low-frequency variants genome-wide [14].

Inclusion of rs334
Our initial analyses identified several putative novel signals at the HBB
locus; however, these results were difficult to interpret as the sickle cell
trait variant rs334, which is known to have impacts on numerous traits
including kidney function [15] and HbA1c [16], were excluded from the
TOPMed freeze 8 reference panel. We extracted this variant from the
UK10K imputation provided by UKBB (imputation info score 0.899) for
additional conditional analyses at these loci.

Replication analyses
We conducted a replication of our novel signals in African American
women from the Women’s Health Initiative with Affymetrix 6.0 data from
the WHI [17] SHARe resource (dbGaP phs000386.v7.p3). Imputation was
performed using the TOPMed imputation server (https://imputation.
biodatacatalyst.nhlbi.nih.gov) with the TOPMed freeze 8 reference panel.
We adopted the same analysis plan described above. Due to the limited
availability of serum and urine biomarkers with adequate sample sizes

(>100 individuals with phenotype data), we only performed replication
analyses for APOB (n= 186) and LPA (n= 1599) associated variants in WHI
(Table S5). Where adequate sample sizes were available, we also pursued
replication analyses in African Americans from the BioVU biobank at
Vanderbilt University Medical Center, which is comprised of >100,000
individuals who have DNA samples linked to their de-identified electronic
health record (EHR) information [18] and includes both cleaned and
harmonized diagnosis codes and clinical laboratory values. Genotyping in
BioVU was performed using the Multi-Ethnic Global (MEGA) array. Genetic
ancestry clusters were determined using principal component analysis on
the imputed data combined with 1KG reference panels, for a total of
15,123 African ancestry participants with at least some EHR-based lab data.
Imputation was performed using the TOPMed imputation server using
TOPMed freeze 8 for rs1050828 and the Haplotype Reference Consortium
(HRC) panel for rs334. Analyses for urine creatine (n= 2522) and total
bilirubin in serum or plasma (n= 11960) were adjusted for age, sex, and 10
PCs; other biomarker trait associations in African ancestry individuals were
not able to be replicated due to limited phenotype data.
Most of our serum and urine biomarker traits are not widely assayed in

publicly available databases; however, multiple analyses of HbA1c are
available as part of the AMP T2D portal (https://t2d.hugeamp.org/,
accessed February 2, 2021). Replication results were also available from
the Singapore Indian Eye Study (SINDI) [19] population-based cohort of
Indian ancestry individuals (n= 1512) with measured HbA1c and imputa-
tion to TOPMed freeze 8 using the TOPMed imputation server.

RESULTS
All genome-wide significant variants are displayed in Table 1, Fig. S2
(LocusZoom [20] plots), Fig. S3 (allele frequency spectrum plot for
1KG reference populations), and Table S5. We picked two traits as
examples to show the genome-wide mirror Manhattan plots (Figs. 1
and 2) and all the other plots are available in Fig. S4, with

Table 1. Novel association signals in African (AFR) and South Asian (SAS) ancestry participants in UK Biobank

Unconditioned
Results

Conditional
Analysis

rsID Effect allele Trait Cohort EAF p-value β p-value β Nearest Gene Annotation

rs28362286 A APOB AFR 0.9% 3.14E−20 −0.75 9.49E−16 −0.85 PCSK9 coding, p.
Cys679Ter

rs3211938 G ALP AFR 10.3% 9.80E−15 −0.20 8.00E−15 −0.20 CD36 coding, p.
Tyr325Ter

rs1050828 T BRB total AFR female 14.4% 4.19E−38 0.31 1.61E−33 0.30 G6PD coding, p.
Val98MetAFR male 7.6% 3.91E−33 0.65 8.85E−32 0.66

AFR meta 11.5% 3.16E−63 0.36 8.52E−57 0.36

BRB direct AFR female 14.4% 8.04E−19 0.23 4.13E−15 0.21

AFR male 7.6% 4.86E−20 0.50 3.31E−20 0.53

AFR meta 11.5% 5.76E−33 0.28 2.28E−28 0.27

rs334 A Creatinine AFR 6.3% 2.62E−38 −0.43 2.62E−38 −0.43 HBB coding, p.Glu7Ala

Potassium AFR 2.84E−32 −0.39 2.84E−32 −0.39

Sodium AFR 5.43E−36 −0.42 5.43E−36 −0.42

rs112902560 T CysC AFR 4.7% 1.92E−11 0.25 1.92E−11 0.25 MMP26/HBB noncoding

rs57719575 C GGT AFR 14.9% 3.97E−38 −0.28 9.18E−13 −0.35 GGT1 noncoding

rs556126054 G HbA1c SAS 2.4% 1.02E−27 −0.59 2.40E−12 −0.53 PIEZO1 noncoding

rs5030868 A HbA1c SAS female 1.7% 6.98E−22 −0.82 1.56E−21 −0.82 G6PD coding, p.
Ser218PheSAS male 0.7% 1.09E−33 −1.77 8.79E−34 −1.77

SAS meta 1.2% 7.51E−48 −1.06 1.90E−47 −1.06

rs115739169 A LPA AFR 1.27% 6.15E−62 1.22 5.00E−12 1.05 LPA noncoding

All biomarkers are measured in serum, except creatinine, potassium, and sodium, which were measured in urine. The conditional analysis p-value for our novel
signals displayed is, along with GWAS catalog variants, adjusted for any variants within 1MB on each side of the sentinel variant which were genome-wide
significant in analyses of serum and urine biomarkers in UK Biobank Europeans [7], to ensure the signals we identify could not be found in European ancestry
participants alone
EAF effect allele frequency, APOA apolipoprotein A, APOB apolipoprotein B, ALP alkaline phosphatase, ALT alanine aminotransferase, BRB bilirubin, CysC cystatin
C, GGT gamma-glutamyltransferase, HbA1c glycated hemoglobin, IGF-1 Insulin-like growth factor 1, LPA lipoprotein-A
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unconditional results (bottom) and results conditioned on previously
reported genome-wide significant variants (top). We did not observe
evidence of significant genome-wide inflation (Table S4).

We identify two novel findings in South Asians (n= 9823), both
for HbA1c (a non-coding variant near PIEZO1 rs556126054 and a
G6PD missense variant rs5030868). In the AMP T2D portal,
rs5030868 was reported to be associated with lower HbA1c in
1774 multi-ethnic individuals from AMP T2D-GENES quantitative
trait exome sequence analysis (p= 4.29E−8), a multi-ethnic meta-
analysis of 10,338 individuals with whole-genome sequencing
data (p= 8.39E−6) and 7159 European ancestry participants from
the Exeter EXTEND Biobank (p= 0.04). rs556126054 near PIEZ01
was not available in the AMP T2D portal. For rs556126054, we
replicated the association in SINDI (p= 1.84E−3, Table S5).

We identify 7 novel findings in African ancestry individuals (n=
9354), including coding variants (for example, a CD36 loss of
function variant, rs3211938, with ALP) and cis pQTLs (rs57719575 at
GGT1 for liver enzyme gamma-glutamyl transferase (GGT)). We did
not have access to appropriate replication datasets for all findings;
however, all tested SNP-trait pairs did replicate. G6PD coding variant
rs1050828’s association with bilirubin replicated in African Amer-
icans from BioVU (p= 2.24E−9), as did sickle cell trait (rs334) with
creatinine in urine (p= 4.81E−18). We note that the rs334
associations could not be replicated in European ancestry
individuals in BioVU due to very low allele frequency, which is
consistent with the exclusion of this variant from published
European-focused analysis results [6]. In WHI African Americans
we replicated the association of noncoding LPA locus variant

Fig. 1 Genome-wide mirror Manhattan plot of association statistics for total bilirubin in African ancestry participants, with unconditional
results (bottom) and results conditioned on previously reported genome-wide significant variants (top)

Fig. 2 Genome-wide mirror Manhattan plot of association statistics for HbA1c in South Asian ancestry participants, with unconditional results
(bottom) and results conditioned on previously reported genome-wide significant variants (top)
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rs115739169 with LPA (p= 4.01E−32, Table S5) and stop variant
rs28362286 at PCSK9 with APOB (p= 5.36E−3). We do not identify
any novel findings in East Asians (n= 2559), the smallest of the
three samples. As shown in Table S5 and Figure S3, all novel
variants are rare or low frequency in Europeans. At each locus, we
also assessed if any genome-wide significant signals remained after
adjusting for the sentinel variant in Table S5; none were identified,
suggesting no additional novel distinct signals at these loci.

Novel G6PD locus associations with bilirubin (African ancestry)
and HbA1c (South Asian ancestry)
The X chromosome is left out of the majority of GWAS analyses,
with only around a third of GWAS including chromosome X [3, 21].
We here identify a strong association of a G6PD coding variant
(rs1050828), located on chromosome X, with total and direct
bilirubin in African ancestry individuals, which has not yet been
reported in the GWAS catalog despite the strong effect size. Direct
bilirubin assesses bilirubin conjugated with glucuronic acid, which
is secreted into bile. Indirect bilirubin (unconjugated) in plasma is
usually low in healthy individuals, as this conjugation process is
quite efficient, but can be elevated in many forms of hyperbilir-
ubinemia, such as those caused by hemolysis, Gilbert syndrome,
or in response to some medications [22]. This G6PD signal is also
associated with indirect bilirubin (calculated as total minus direct
bilirubin, βfemale= 0.22, pfemale= 1.39E−16; βmale= 0.58, pmale=
3.57E−24; βmeta= 0.29, pmeta = 1.71E−32), concordant with the
known risk of hemolytic anemia in those with G6PD deficiency. This
association is concordant with existing literature that males with
G6PD deficiency (including deficiency caused by rs1050828) are at
elevated risk of neonatal hyperbilirubinemia and jaundice [23],
though the strong association with bilirubin in adults and in females
as well as in males is less expected. Bilirubin is commonly measured
in clinical settings to assess liver function or diagnose hemolytic
anemia (which can occur upon exposure to triggers such as
oxidative drugs or acute infections in individuals with G6PD
deficiency); if used to assess liver function, it is possible that
variation at G6PD, as well as alpha thalassemia copy number
variation, which was recently reported to be associated with
bilirubin [24] and is also more common in African versus European
ancestry populations, could interfere with accurate clinical inference.
We also identify a different G6PD coding variant strongly

associated with HbA1c in South Asians (rs5030868, 1.1% MAF in
UKBB South Asians, noted in ClinVar for G6PD deficiency, known
as the G6PD Mediterranean variant in previous literature). Unlike
the G6PD deficiency variant common in African Americans
(rs1050828, reported here for bilirubin), which has been reported
to strongly influence HbA1c [25], this variant is not previously
reported in the GWAS catalog for HbA1c. Other G6PD coding
variants (rs76723693 in African Americans [26], rs72554665, and
rs72554664 in East Asians [27]) have also been reported to
influence HbA1c. Our results are concordant with this previous
literature and add to concerns that the use of HbA1c as a
laboratory test in populations with a high prevalence of G6PD
deficiency may lead to underdiagnosis of diabetes and poor
management and prevention of complications in those with
diagnosed diabetes [28]. There is some literature to suggest that
G6PD-deficient patients may have an increased risk of diabetes
[29] and its complications [30]; more study is needed to
disentangle impacts of G6PD deficiency on diabetes diagnosis
and monitoring (due to the use of HbA1c) from potential impacts
on disease pathogenesis.

PIEZO1 locus association with HbA1c in South Asian ancestry
individuals
In addition to the signals described above at G6PD, we identify an
additional novel signal for HbA1c which likely impedes the
accurate assessment of glycemic control in South Asians. A
conserved non-coding variant near PIEZO1 (rs556126054, CADD

score 9.72) more common in South Asian populations (4.7% in
1KG South Asians versus 0.8% in Europeans and 0.6% in admixed
Americans, not found East Asian or African populations) was
associated with HbA1c. PIEZO1 encodes an erythrocyte membrane
protein, and African-specific variants in this protein have been
associated with red blood cell dehydration and lower malaria
infection risk [31]. In recent analyses of UK Biobank blood cell trait
data [5], there is a strong signal in South Asians for PIEZO1
missense variant rs563555492 (p.Leu2277Met) for higher hema-
tocrit (p= 6.09E−14), hemoglobin (p= 4.69E−22), and red blood
cell count (p= 1.50E−11), suggesting this locus acts through an
erythrocytic pathway on HbA1c. This variant is also significant in
our results (p= 3.63E−21, LD r2= 0.25 in UKBB South Asians) for
HbA1c, but there is only one statistically distinct genome-wide
significant signal at the locus upon iterative conditional analysis.
Like the G6PD coding variants discussed above, this noncoding
signal at PIEZO1 also likely acts through erythrocytic mechanisms
(as suggested by prior red blood cell-related trait associations for
its LD buddy rs5635554925) and will interfere with how accurately
HbA1c assess glycemic control, potentially leading to disparities in
diabetes diagnosis and treatment.

Additional associations for known variants
We identified an association with ALP with African ancestry
specific CD36 nonsense variant rs3211938, which has been
previously associated with HDL cholesterol levels [32, 33], ECG
traits [34], red cell distribution width [35], platelet count [36], and
C-reactive protein [37]. This locus is under selective pressure [38],
potentially from malaria, though relationships are unclear, with
this nonsense variant associated with risk of cerebral malaria and
higher overall malaria incidence, but lower risk of severe anemia
[39]. While this association with ALP was not anticipated from
previous literature, our findings confirm evidence of pleiotropy at
this locus. We also identified an association of an African ancestry-
specific PCSK9 stop variant already known to be associated with
LDL and total cholesterol [24, 32] with apolipoprotein B, an
unsurprising extension of the existing literature.
We further extend the literature linking sickle cell trait (or rs334)

to kidney function [15, 40], including albumin to creatinine ratio in
urine, with strong associations observed for urine potassium,
sodium, and creatinine (Tables 1 and S5 and Fig. S2). These
associations are robust to adjustment for hemoglobin and
estimated glomerular filtration rate (eGFR) (Table S6). A noncoding
variant (rs112902560) in LD with rs334 (r2= 0.41 in UKBB African
ancestry participants) was also newly identified as associated with
cystatin C, another kidney function measure.

Additional novel findings in African ancestry individuals
Our results also include two additional cis pQTL signals or pQTLs
near the encoding genes for our serum biomarkers. For example,
we identify a novel cis pQTL, rs57719575, at GGT1, the encoding
gene for liver enzyme GGT. Our results further include the
identification of a novel signal at the LPA locus for lipoprotein A,
adding to the already extensive evidence of multiple distinct cis
pQTL signals at this locus [41–43]. We were not able to adjust for
KIV2-CN (copy number) in the Lp(a) region with our imputed
single nucleotide variant data, which makes novel distinct signals
somewhat difficult to interpret. Local ancestry has also been
shown to be an important covariate at the LPA locus in analyses
of African Americans and maybe a confounder of results at this
locus [42]. However, these highly interpretable and biologically
relevant cis pQTL signals echo the results from recently focused
analyses of urate, IGF-1, and testosterone in European popula-
tions [44]. Many lead signals for these serum biomarkers were
near genes involved in biosynthesis, transport, or signaling
pathways relevant to the target trait, in contrast to the often
difficult to interpret lead association signals for more complex
phenotypes.
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DISCUSSION
Even in the relatively small number of African and South Asian
ancestry individuals in UKBB, we identified novel and clinically
relevant associations. These associations could not be found or
tagged by any variants in close LD if we only restrict to European
individuals for analysis, even in the very large UKBB sample size
[6]. While it is possible these variants could be identified in even
larger European ancestry cohorts, or cohorts recruited in countries
other than the UK, identification of these signals in less than
10,000 individuals of African or South Asian ancestry demonstrates
the importance of inclusion of non-European ancestry populations
in genetic analysis of serum and urine biomarkers. Several
associations replicate in external cohorts and biobanks such as
WHI and BioVU. These novel findings also highlight the
importance of X chromosome analysis, ancestry differentiated
cis pQTLs and variants which impact HbA1c through likely
erythrocytic mechanisms, and coding variant associations for
urine and serum biomarker traits.
Some novel findings would not have been possible without

TOPMed imputation, which has been demonstrated in previous
analyses to have dramatically improved imputation quality for rare
variants, particularly in Hispanic/Latino and African ancestry
individuals [45], including identification of novel rare variant
association signals in African [45] and European ancestry [46]
UKBB participants. For many of our identified signals, imputation
quality was similar to the Haplotype Reference Consortium (HRC)
and UK10K haplotype imputation provided by UKBB. However,
improvements were observed for most variants, with noticeable
improvement particularly for G6PD coding variant rs5030868
(previously imputed with an info score <0.3, imputed with an r2 of
0.86 using the TOPMed reference panel in South Asian ancestry
individuals). We do note that due to stringent variant filtering in
TOPMed some important known signals (like sickle cell trait) were
not included in the reference panel; this is an important limitation
for users of this reference panel.
Given the very large sample size now available for all of these

biomarkers through the European focused analyses in UKBB [6],
as well as in many cases other large GWAS meta-analyses, it is
striking that a number of functionally plausible and novel signals
could be identified in analyses of <10,000 African and South
Asian individuals, a sample size much smaller than most current
GWAS analyses. Our results highlight the potential impact of
ancestry-differentiated results on the accuracy of clinical
biomarker measures. Issues with the use of HbA1c in non-
European populations due to G6PD variants, sickle cell trait, and
other ancestry differentiated variants are recognized, but other
clinical assays are also likely influenced by ancestry differen-
tiated variants unrelated to disease risk. This bias may cause
even more systematic problems as novel biomarkers and large-
scale proteomics panels move into clinical risk prediction, as the
largest training datasets for risk prediction and determination of
reference ranges are composed of European ancestry
individuals.
We note that a limitation of our results is our failure to provide

replication for some of our putative novel findings, due to a lack
of readily available replication datasets, especially for less
frequently measured serum biomarkers (for example the
association of the CD36 loss of function variant with ALP, which
is not available in most cohort datasets). However, for the
associations we have reasonably sized datasets to replicate
findings in, we identified consistent replication. In addition, the
number of variants identified with strong functional annotation
near relevant genes suggests that these preliminary results
include findings worthy of future exploration in larger datasets
of diverse ancestry backgrounds, and clearly demonstrate the
value of using genetic data from UKBB non-European ancestry
participants.

Web resources
Summary statistics are available at https://yunliweb.its.unc.edu/
serum_biomarker/index.php.

DATA AVAILABILITY
Data are available upon request from the UK Biobank https://www.ukbiobank.ac.uk/.
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