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However, not all variants can be
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imputation quality metric poorly

reflects true imputation quality,

particularly for uncommon

variants. We present MagicalRsq, a

machine-learning-based and better

calibrated post-imputation quality

metric, that can rescue 105–106

variants.
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MagicalRsq: Machine-learning-based
genotype imputation quality calibration

Quan Sun,1 Yingxi Yang,2 Jonathan D. Rosen,3 Min-Zhi Jiang,4 Jiawen Chen,1 Weifang Liu,1 Jia Wen,3

Laura M. Raffield,3 Rhonda G. Pace,5 Yi-Hui Zhou,6 Fred A. Wright,6,7 Scott M. Blackman,8

Michael J. Bamshad,9,10 Ronald L. Gibson,9 Garry R. Cutting,11 Michael R. Knowles,5

Daniel R. Schrider,3 Christian Fuchsberger,12,13,* and Yun Li1,3,13,*
Summary
Whole-genome sequencing (WGS) is the gold standard for fully characterizing genetic variation but is still prohibitively expensive for

large samples. To reduce costs, many studies sequence only a subset of individuals or genomic regions, and genotype imputation is used

to infer genotypes for the remaining individuals or regions without sequencing data. However, not all variants can be well imputed, and

the current state-of-the-art imputation quality metric, denoted as standard Rsq, is poorly calibrated for lower-frequency variants. Here,

we proposeMagicalRsq, a machine-learning-based method that integrates variant-level imputation and population genetics statistics, to

provide a better calibrated imputation qualitymetric. LeveragingWGS data from the Cystic Fibrosis Genome Project (CFGP), and whole-

exome sequence data from UK BioBank (UKB), we performed comprehensive experiments to evaluate the performance of MagicalRsq

compared to standard Rsq for partially sequenced studies. We found that MagicalRsq aligns better with true R2 than standard Rsq in

almost every situation evaluated, for both European and African ancestry samples. For example, when applying models trained from

1,992 CFGP sequenced samples to an independent 3,103 samples with no sequencing but TOPMed imputation from array genotypes,

MagicalRsq, compared to standard Rsq, achieved net gains of 1.4 million rare, 117k low-frequency, and 18k common variants, where net

gains were gained numbers of correctly distinguished variants by MagicalRsq over standard Rsq. MagicalRsq can serve as an improved

post-imputation quality metric and will benefit downstream analysis by better distinguishing well-imputed variants from those poorly

imputed. MagicalRsq is freely available on GitHub.
Introduction

Genotype imputation is a process of estimating missing ge-

notypes with the aid of reference panel(s). It can effectively

boost power for detecting associated variants in genome-

wide association studies (GWASs) and narrow down the

most strongly associated variants within a genomic region.

The latest TOPMed freeze 8 reference panel1 encompasses

>300 million variants. However, not all variants that are

available in a reference panel can be well imputed in a

target cohort.2–4 Therefore, post-imputation quality con-

trol (QC) is indispensable and critically important to

distinguish well-imputed variants from poorly imputed

ones. In current standard practice,5–7 variant-level imputa-

tion quality metrics such as IMPUTE’s INFO,8 minimac’s

Rsq,9 or Beagle’s DR210 are adopted to perform such post-

imputation quality filtering. Briefly, minimac’s Rsq and

IMPUTE’s INFO estimate imputation quality by comparing

observed variation in imputed data to expected condi-

tional on allele, genotype, or haplotype frequencies, under
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the rationale that poorly imputedmarkers tend to have less

than expected variation because lack of information will

drag estimated genotype probabilities across individuals

toward population average. Beagle calculates the squared

Pearson correlation between allele dosages and best-guess

genotypes to estimate true imputation quality. These met-

rics, though slightly different, are highly correlated.11

Hereafter we refer to these standard quality metrics directly

from imputation software as Rsq (or standard Rsq). These

standard metrics have been proven to be effective discrim-

inators of imputation quality for common variants (minor

allele frequency [MAF]> 5%) but are less well calibrated for

uncommon (MAF % 5%) variants,12–14 which are increas-

ingly prevalent in continuously expanding reference

panels.

Realizing that standard Rsq is less accurate for low-fre-

quency (MAF in [0.5%, 5%]) and rare (MAF < 0.5%) vari-

ants,12–15 researchers have explored different strategies to

deal with this issue. For example, Liu et al.13 proposed a

simple solution: adoption of more stringent thresholds of
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standard Rsq for variants with lower MAF. Similarly, Cole-

man et al.16 proposed a procedure to assign the standard

Rsq threshold taking MAF into account by using different

inflection points for variants within different MAF bins.

Both attempted to utilize different thresholds of standard

Rsq rather than seeking alternative imputation quality

measures. Lin et al.15 address the well-known effect of

allele frequency on imputation quality by proposing a

new statistic named the imputation quality score (IQS).

This score adjusts the MAF-dependent expected concor-

dance between imputed and true genotypes. However,

the computation of IQS requires true genotypes for the

SNPs of interest, which is impractical in most situations.

In this paper, we propose MagicalRsq, a machine-

learning-based genotype imputation quality calibration,

by using eXtreme Gradient Boosted trees (XGBoost)17 to

effectively incorporate information from various variant-

level summary statistics. MagicalRsq requires true R2 infor-

mation for a subset of individuals and/or a subset of

markers (we hereafter refer to both as additional geno-

types) to train models that can be applied to all target indi-

viduals and all markers. We note that it is rather common

that investigators sequence only a subset of markers

(genome regions) or individuals due to cost considerations.

For example, the NHLBI GO Exome Sequencing Project18

and Exome Aggregation Consortium (ExAC)19 have gener-

ated only whole-exome sequencing (WES) data thus far. In

addition, some WGS efforts, such as the TOPMed project,

have sequenced only subsets of individuals in the constit-

uent cohorts and array-genotyped the remainder.3 With

the availability of additional genotype data and our

MagicalRsq framework, we can leverage the extra informa-

tion to improve the calibration of imputation quality.

Leveraging WGS data generated by the Cystic Fibrosis

Genome Project (CFGP)2 and WES data from UKB,20 we

demonstrate that MagicalRsq substantially outperforms

standard Rsq and is a more informative metric for post-

imputation QC, particularly for lower-frequency variants.

MagicalRsq performs well in the evaluated European and

African ancestry cohorts.We carried out comprehensive ex-

periments tomimic different real-life scenarios and showed

that MagicalRsq is superior to standard Rsq in almost every

scenario. Moreover, as a post-imputation QC metric,

MagicalRsq could achieve net gains of thousands or mil-

lions of variants that are either well imputed but incorrectly

filtered out or poorly imputed but incorrectly retained by

standard Rsq. We anticipate MagicalRsq will benefit

downstreamanalysis bybetter distinguishingwell-imputed

variants from poorly imputed ones.
Materials and methods

Ethics statement
This research has been conducted using the UK Biobank Resource

under Application Number 25953. Furthermore, this study was

reviewed by the Cystic Fibrosis Foundation for the use of CF Foun-

dation Patient Registry data and CFGP WGS data. The procedures
2 The American Journal of Human Genetics 109, 1–12, November 3,
followed for data collection and processing, DNA sequencing, and

analysis were in accordance with the ethical standards of the

responsible human rights committees on human experimenta-

tion, and proper informed consent was obtained from all

individuals.

MagicalRsq model
MagicalRsq adopts the eXtreme Gradient Boosted trees (XGBoost)

method17 for better calibration of imputation quality score, partic-

ularly for uncommon variants. Tree boosting is a commonly used

machine learning approach that has been applied for a wide range

of problems.21–24 MagicalRsq is a supervised learning method

where we build models to predict true imputation quality (true

R2, squared Pearson correlation between imputed and true

genotypes) using a battery of variant-level summary statistics. As

a supervised method, MagicalRsq requires true genotypes at a

reasonable number of variants (>10k) to derive their true imputa-

tion quality scores to train models. For both performance and

computational considerations, we build three models separately

for common (MAF > 5%), low-frequency (MAF in [0.5%, 5%])

and rare (MAF < 0.5%) variants in our model training process.

Note that MAF is estimated based on imputed dosages to better

represent realistic settings where we don’t have true WGS

genotypes to calculate MAF. As shown in Figure 1, starting from

genotype array data in training dataset, minimac imputation is

performed to obtain standard Rsq and estimated MAF from

imputed dosages. After imputation, using true genotypes at

imputed markers not on the initial genotype array, we calculate

true imputation quality, i.e., true R2, at these imputed markers.

The standard Rsq, estimated MAF, and true R2 will then be carried

forward to model training. Note that these statistics are specific for

a given training dataset andwill vary when using different datasets

for model training purposes.

Besides the aforementioned imputation summary statistics in

the training samples, we also consider multiple variant-level

features that are not specific to the training dataset that we use.

We first include multiple population genetics features as they

are known to impact genotype imputation.9,11,25,26 These popu-

lation genetics statistics reflect various aspects encompassing

haplotype structure, linkage disequilibrium (LD) profile, and

the spatial pattern of site frequency spectrum (SFS) structure.

Specifically, we consider 11 population genetics summary statis-

tics (Note S1) for six populations (CEU, GWD, JPT, LWK, PEL, and

YRI) corresponding to diverse continental ancestry groups

including European (EUR), African (AFR), East Asian (EAS), and

American (AMR). These 11 population genetics summary statis-

tics, calculated by the positive selection scan program S/HIC,27

are p,28 bqH ,
29 Tajima’s D,30 Fay and Wu’s H,29 the maximum fre-

quency of derived mutations (MFDM),31 the number of distinct

haplotypes,32 Garud et al.’s32 haplotype homozygosity statistics

(H1, H2, H2/H1), Kim and Nielsen’s u,33 and Kelly’sZnS;
34 all

initially calculated for 100Kb non-overlapping bins.27 We obtain

variant-level statistics by application of their corresponding re-

gion-level statistics. In addition, considering the known effects

of allele frequency on imputation quality reported in previous

studies,13,35 we also incorporate external alternative allele counts

(AC) per 1,000 samples and MAF in four major ancestral groups

(EUR, AFR, EAS, and South Asians [SAS]) derived from TOPMed

WGS data in the TOP-LD project,36 and 2nd–4th moments

(representing variance, skewness, and kurtosis) for the four

ACs. Inclusion of these variant-specific features distinguishes

MagicalRsq from standard Rsq and other imputation quality
2022



Figure 1. MagicalRsq workflow
MagicalRsq starts from ‘‘training dataset
array data’’ (which are data used for imputa-
tion among training individuals) and per-
forms imputation using these data, which
gives us standard Rsq and estimated MAF
for each marker, in the training dataset.
Then we calculate the true R2 by comparing
imputed dosages with truth genotypes (es-
tablished by additional genotype data in
the training set). Combining external MAF
and alternative allele count (AC), as well as
population genetics summary statistics,
with the above three metrics (i.e., standard
Rsq, estimated MAF, and true R2), we train
MagicalRsq models using the XGBoost
method where we build supervised models
to predict true R2 from all the other features.
We then proceed to the testing dataset where
we follow the same imputation workflow
starting again from array genotype data
and obtaining estimated MAF and standard
Rsq after imputation. We then calculate
MagicalRsq in the testing dataset by plug-
ging in the predictor features into the
MagicalRsq models built from the training
dataset. Finally, we evaluate the perfor-
mance of MagicalRsq (and Rsq) by
comparing with true R2 in the testing data-
set. Yellow highlights represent all the in-
struments specific for the training dataset,
light blue highlights represent the instru-
ments specific for the testing dataset, green
highlights represent external information
used in both training and testing, and red
rectangles represent statistics used during
final evaluation and comparison of
MagicalRsq and standard Rsq, using true R2

as the gold standard.
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metrics that utilizes only imputation summary statistics.15 We

then treat each variant as an observation and build XGBoost

models to predict true R2 by leveraging these 79 variant-level

features.

Since the true imputation quality (i.e., true R2) is between 0 and

1, we specify the learning task to be tree-based logistic regression

and evaluation metric to be root mean square error. To control

overfitting, we set early stopping rounds to be 50, i.e., training

would stop if the performance did not improve for 50 rounds in

an independent validation set.

True imputation quality calculation
We quantify the true imputation quality metric using true R2,

which is the squared Pearson correlation between imputed dos-

ages and true genotypes. The true genotypes, coded as 0, 1, and

2, are obtained from the additional genotype data not used for

imputation, for example, the WGS data from CFGP or the WES

data from UKB. Our evaluation was restricted only to samples

with after QCed (QCþ) data from both imputed and additional ge-

notype data. Duplicate samples were dropped. Finally, true R2 was

calculated for each variant, based on overlapping QCþ samples.

Imputation metric evaluation
We evaluate imputation quality metrics (standard Rsq or

MagicalRsq) in testing dataset(s) independent of those used for

training. For evaluation, we treat true R2 as the truth and quantify
The Am
the performance of each quality metric by calculating the squared

Pearson correlation, root mean squared error (RMSE), and mean

absolute error (MAE) with true R2.

We further evaluate theperformanceofMagicalRsq incomparison

to standard Rsq in terms of their effectiveness to distinguish

between well- and poorly imputed variants. Specifically, using a

commonly used 0.8 cutoff,2,3,13,37,38 we compare the numbers

of (1) well-imputed variants saved by MagicalRsq, defined as true

R2 R 0.8, Rsq < 0.8, and MagicalRsq R 0.8; (2) well-imputed

variants missed by MagicalRsq, defined as true R2 R 0.8, Rsq R

0.8, and MagicalRsq < 0.8; (3) poorly imputed variants excluded

by MagicalRsq, defined as true R2 < 0.8, Rsq R 0.8, and

MagicalRsq < 0.8; and (4) poorly imputed variants included by

MagicalRsq, defined as true R2 < 0.8, Rsq < 0.8, and MagicalRsq R

0.8. We then calculate the net gains of variants when applying

MagicalRsq for post-imputation QC compared to Rsq, defined as

(1)� (2)þ (3) � (4).

Data description
The Cystic Fibrosis Genome Project (CFGP) aims to identify ge-

netic modifiers of cystic fibrosis (CF) traits by leveraging WGS

data and rich phenotypic information collected through the

Cystic Fibrosis Foundation Patient Registry (CFFPR).39 CFGP

high-coverage (�303) WGS data are available for 5,109 samples

representing 5,072 unique individuals. The WGS data contain

approximately 90m and 11m high-quality single-nucleotide
erican Journal of Human Genetics 109, 1–12, November 3, 2022 3
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variants and indels, respectively. The resource represents the

largest cohort of CF-affected individuals for which WGS data are

available. 5,095 samples representing 5,058 unique individuals re-

mained after sample identity check.2

The UK Biobank (UKB),40 recruiting �500,000 people aged be-

tween 40 and 69 years in 2006–2010, is a prospective biobank

study to study risk factors for common diseases such as cancer,

heart disease, stroke, diabetes, and dementia. Participants have

been followed up through health records from the UK National

Health Service. UKB has genotype data on all enrolled partici-

pants, as well as extensive baseline questionnaires and physical

measures and stored blood and urine samples. Specifically,

genotyping array data at �800,000 directly genotyped markers

are available for �500,000 UKB participants, among whom

�200,000 also have WES data.20
MagicalRsq experiments
To comprehensively evaluate the performance of MagicalRsq, we

performed 14 experiments (Table S2) with 9 imputations

(Table S1), leveraging CFGP WGS data2 and UKB WES data.41

These experiments can be categorized in two scenarios. In the first

scenario, we have additional directly typed markers (other than

array genotypes) available in all target individuals, while in the

likely more realistic second scenario, we have additional directly

typed markers in only a subset of target individuals.
Imputation overview
For CFGP data, our training dataset contains 1,992 CF samples

(hereafter denoted as the CF 2k samples) who have both Illumina

610-Quad array data with 567,784 variants after QC2 and WGS

data. An independent set of 3,103 CF samples (hereafter denoted

as the CF 3k samples) haveWGS data but no array genotypes avail-

able. To perform imputation for the latter set of 3,103 samples, we

first thinned their WGS data to Illumina 660W array by keeping

only the 551,819 QCþ variants overlapped with the 660W array.

For the UKB samples, we identified 9,354 participants with

significant African ancestry (UKB AFR) and array genotype data

available following our previous work.4 Among them, 3,960

individuals also had WES data in the 200k WES release.

Genotype imputation was then performed by uploading QCþ
array or thinnedWGS data to TOPMed imputation server or Mich-

igan imputation server (web resources), using TOPMed freeze 8 or

the 1000 Genomes phase 3 (1000G) as the reference panel, respec-

tively. Phasing was performed using Eagle 242 and imputation was

performed by Minimac 4.9

Scenario 1: Availability of additional directly typed markers in all

target individuals

We first consider the scenario where all target samples have

additional genotype data in addition to the genotyping array

data used for imputation. Under this scenario, we first imputed

CF 2k samples using their genotypes from Illumina 610-Quad

array2 and the 1000G reference panel (Table S1, imputation 1).

These individuals also have WGS data which we did not use for

imputation but rather used only for obtaining true R2. These

true R2 values were used to build models in training ‘‘samples’’

and to evaluate performance in testing ‘‘samples,’’ where ‘‘sam-

ples’’ here refer to variants. To avoid information leakage, we

trained using variants on even-numbered chromosomes and

tested on odd-numbered chromosomes (Table S2, experiment

1). We then imputed the same individuals with the TOPMed

freeze 8 reference panel (Table S1, imputation 2) and re-built
4 The American Journal of Human Genetics 109, 1–12, November 3,
MagicalRsq models (Table S2, experiment 2) following the same

procedures as described above.

We further attempted to relax theMagicalRsqmodel training re-

quirements to either mix-and-match imputation reference panels

or variants in a region (in contrast to genome- or chromosome-

wide). Usingmix-and-match reference panels, we tried to examine

whether MagicalRsq models trained using imputed data from one

reference panel can be applied to imputed data from a different

reference panel. Specifically, we trained MagicalRsq models using

1000G-imputed variants on odd-numbered autosomes and

applied to TOPMed-imputed variants on even-numbered auto-

somes (Table S2, experiment 3) and vice versa from TOPMed

training to 1000G testing (Table S2, experiment 4), in the same

2k CF samples.

By using variants in a region, we tried to mimic realistic sce-

narios where only some regions (e.g., selected gene(s), selected

loci near GWAS regions, exonic regions) are sequenced. Specif-

ically, we assumed that our 2k CF samples are only additionally

(besides GWAS array) sequenced in the 510 Mb region around

the CFTR (chr7:107480144–127668447, hg38) and explored

training models only using variants in this region, from

TOPMed imputed data (Table S2, experiment 5). Note that muta-

tions in the CFTR on chromosome 7 provide the molecular basis

of CF and thus a region of high importance in this dataset. We

trained MagicalRsq models using 183k variants in this 20 Mb re-

gion and applied the models to all other chromosomes. We simi-

larly separated the variants into three MAF categories, leaving

32k common variants, 24k low-frequency variants, and 127k

rare variants. We also tried training models with variants on

another two regions: chr10:80–100 Mb and chr20:20–40 Mb to

assess whether MagicalRsq is robust to different region choices.

We then performed additional experiments with 1000G imputed

variants on the same three regions (Table S2, experiment 6) to

evaluate whetherMagicalRsqmodels trained from regional (versus

genome- or chromosome-wide) variants are robust to reference

panel choices.

Finally, we trained MagicalRsq models using only exonic vari-

ants to assess whether exome-trained models could be applied to

other genomic regions. We first retained variants from the CF 2k

TOPMed imputed data which are also present in the UKB WES

data, leaving 89k common variants, 82k low frequency variants

and 635k rare variants. We trained models using these WES vari-

ants, and applied to other variants from the same TOPMed

imputed data in the CF 2k samples (Table S2, experiment 7).

Scenario 2: Availability of additional directly typed markers in a sub-

set of target individuals

We next consider the scenario where we have additional markers

directly assayed in only a subset of samples, while the remaining

samples still need imputation. We again leveraged CFGP WGS

data. As previously mentioned, we have the CF 2k samples with

both the Illumina 610-Quad array genotypes and WGS data and

an independent CF 3k samples with WGS data only. We thinned

the WGS data of the CF 3k samples to the Illumina 660W array

density and performed imputation (Table S1, imputation 3), using

TOPMed freeze 8 as reference. We then applied the MagicalRsq

models trained from the CF 2k samples to the 3k samples

(Table S2, experiment 8).

We additionally leveraged theWES data of UKB AFR participants

to assess MagicalRsq’s performance for African-ancestry individ-

uals. We imputed 3,960 UKB AFR samples using both 1000G and

TOPMed reference panels (Table S1, imputation 4–7). All these

3,960 individuals also have WES data available. We randomly
2022
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selected 1,000 samples for MagicalRsq model training and used

the remaining for testing, and again trained models separately

for common, low-frequency, and rare variants (Table S2, experi-

ments 9 and 10). We also investigated mix-and-match reference

panels under this scenario (Table S2, experiments 11 and 12,

Note S2). To assess whether other under-represented populations

can also benefit from MagicalRsq, we also imputed 4,436 UKB

South Asian (SAS)-ancestry individuals using TOPMed freeze 8

reference panel (Table S1, imputation 9). We similarly randomly

selected 1,000 samples for building MagicalRsq models and

applied the models to the remaining individuals for testing, using

genotypes from WES data as truth (Table S2, experiment 13).

We further examined the performance of MagicalRsq when

training models using a small subset of variants, instead of all var-

iants available. Specifically, we trained models in the CF 2k sam-

ples with different numbers of variants on even-numbered chro-

mosomes and applied such models to the independent 3k

samples as described before (Table S2, experiment 14). We

randomly selected 10k, 50k, 100k, 200k, 500k, and 1m variants

in each of the three MAF categories for model training and

repeated five times for more stable inference.
Results

Scenario 1: Availability of additional directly typed

markers in all target individuals

We first consider a simple yet realistic scenario where all

target samples have additional genotype data in addition

to the genotyping array data used for imputation. These

additional data could be from a different genotyping array,

fromWES, or from targeted genotyping or sequencing. We

do not consider the scenario where all individuals already

have deep WGS data because imputation would no longer

be relevant.

Feature importance

We first imputed CF 2k samples using the 1000G reference

panel, trained MagicalRsq models using variants on even-

numbered chromosomes, and tested on odd-numbered

chromosomes (Scenario 1). We performed feature impor-

tance analysis to find out major contributors to the

training models. We found, as expected, that standard

Rsq is by far the most important feature, weighing �80%

among all the features (Figure S1). European AC is the sec-

ond most important feature for common variants, while

for low frequency and rare variants, the second most

important feature is African AC. Because the CF cohorts

are predominantly of European ancestry,2 it is not surpris-

ing that European AC is influencing the training models.

For rarer variants, we suspect the importance of African

AC, likely due to the African allele frequency spectrum bet-

ter capturing rarer variants among individuals with CF.

MagicalRsq outperforms standard Rsq

Compared to standard Rsq, MagicalRsq is more consistent

with the true R2 with respect to all three of the evaluation

metrics (squared Pearson correlation with true R2, RMSE,

and MAE) and for all three MAF categories (Figures 2A
The Am
and S2). For example, when we compare MagicalRsq to

standard Rsq, squared Pearson correlation with true R2 in-

creases by 8.7%–24.1% for common variants, 10.1%–

62.7% for low-frequency variants, and 14.3%–17.2% for

rare variants (Table S4), across different chromosomes.

When using MagicalRsq to replace standard Rsq for post-

imputation QC, we have net gains of 33k common vari-

ants, 34k low-frequency variants, and 200k rare variants

across half of the genome (i.e., even numbered chromo-

somes) (Table S3 experiment 1). We then imputed the

same individuals with the TOPMed freeze 8 reference

panel (Table S1, imputation 2), re-built MagicalRsq models

(Table S2, experiment 2) following the same procedures,

and observed similar improvement (Figures 2B and S3).

For example, MagicalRsq increases squared Pearson corre-

lation with true R2 by 1.7%–34.5% for common variants,

37.6%–71.0% for low-frequency variants, and 10.3%–

14.3% for rare variants (Table S5), and the net gains of

rare variants increase to 411k (Table S3, experiment 2)

due to more rare variants in the TOPMed reference panel.

Comparing across the three MAF categories, we observe

that MagicalRsq shows the most pronounced improve-

ment for low-frequency variants in terms of squared Pear-

son correlation, regardless of the imputation reference

panels.

Impact of reference panel

We further attempted mix-and-match of the imputation

reference panels in training and testing sets to examine

whether MagicalRsq trained using imputed data from

one reference panel can be applied to imputed data from

a different reference panel (Methods). We found that

applying 1000G-trained models to TOPMed data performs

less well for low-frequency and rare variants, while

applying TOPMed-trained models to 1000G data performs

less well for common and low-frequency variants

(Table S3, experiments 3 and 4). We suspected that refer-

ence-panel-specific variants may hinder the prediction

accuracy, and then evaluated the mix-and-match perfor-

mances by restricting to variants shared between the two

reference panels. We found that the mix-and-match

MagicalRsq were better calibrated than standard Rsq for

the shared variants (Note S2), although the improvements

are less pronounced than using the matched reference

panel (Figure 2C, Table S6).

Number of variants needed for training

In the previous experiments MagicalRsq training models

were built on a large subset of markers genome-wide (e.g.,

all even chromosomes, corresponding to 2.6m, 1.9m, and

12.3m common, low-frequency, and rare variants in

TOPMed imputed CF 2k samples). To mimic the scenario

where only some regions (e.g., selected gene(s), selected

loci near GWAS regions, exonic regions) are sequenced, we

trainedMagicalRsqmodels using TOPMed imputed variants

on three�20Mb regions:510Mb region around the CFTR

(chr7:107480144–127668447, hg38), and two randomly
erican Journal of Human Genetics 109, 1–12, November 3, 2022 5
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Figure 2. Scenario 1, experiments 1–4: Training using even-numbered chromosomes and testing on odd-numbered chromosomes
for CF 2k samples
(A and B) Performance comparison between Rsq and MagicalRsq in terms of squared Pearson correlation with true R2 for (A) 1000G-
based imputation; (B) TOPMed-based imputation.
(C) Smooth scatterplot showing Rsq or MagicalRsq (x axis) calculated from both matched- (second row) and mis-matched- (third row)
models against true R2 (y axis) for both 1000G-based (left) and TOPMed-based (right) imputation, for low-frequency variants on chro-
mosome 13.
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selected regions: chr10:80–100 Mb and chr20:20–40 Mb re-

gions (Table S2, experiment 5). We found that the models

performed reasonably well for low-frequency and rare vari-

ants, but not for common variants (Figure S6), likely due to

the larger fluctuation of Rsq performance for common vari-

ants across the genome (Note S2). We then performed addi-

tional experiments with 1000G imputed variants on the

same regions (Table S2, experiment 6), and the results are

highly consistent (Figure S7).

Apply exome-trained models to other genomic regions

As WGS is still not yet available for most studies, many re-

searchers are generating WES data as an alternative.19 We

trained our MagicalRsq models using only variants in

exomes to test whether such models are generalizable to

other genomic regions. Specifically, we trained our models

using exonic variants from TOPMed imputed CF 2k cohort

(Scenario 1) and applied to variants outside of the exomes

(Table S2, experiment 7). The results showed that theWES-

trained models improved squared Pearson correlation with

true R2 by 3.5%–28.4% for common variants, by 17.8%–

68.5% for low-frequency variants, and by 10.1%–13.8%

for rare variants (Table S7, Figure S8). We note that the

observed improvements are similar to experiment 2 where

models were built on half of the genome, indicating that

MagicalRsq models perform similarly well when trained

with only exonic variants.
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Scenario 2: Availability of additional directly typed

markers in a subset of target individuals

The previous scenario assumes that all individuals have

additional genotyping (through other genotyping arrays,

candidate gene sequencing,WES, etc.). A different scenario

where a subset of individuals enjoys higher marker density

has become increasingly common.2,3 The remaining sam-

ples still need imputation and can benefit from better-cali-

brated imputation quality metrics. Therefore, we consider

scenario 2 where we have additional markers directly

assayed in only a subset of individuals. Specifically, we as-

sessed the performance ofMagicalRsq assuming no overlap

of individuals in the training and testing datasets.

CFGP European samples

Under this scenario, we first applied the MagicalRsq

models trained from CF 2k samples using all genome-

wide variants to the 3k samples (Scenario 2). We observed

similar improvements over standard Rsq for all three MAF

categories and every chromosome, again with the most

pronounced gains on low-frequency variants (Figure S9,

Table S8). Specifically, MagicalRsq improves squared Pear-

son correlation with true R2 by 2.0%–56.8% for common

variants, by 3.0%–6.2% for rare variants, and by 16.3%–

91.7% for low-frequency variants, across different chromo-

somes, compared to standard Rsq (Table S8). MagicalRsq

achieves net gains of 18k common variants, 117k
2022
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Figure 3. Scenario 2, experiments 9–12: Training models using 1000 UKB AFR samples and testing on 2,960 independent UKB AFR
samples, for all variants with WES available
(A and B) Performance comparison between Rsq and MagicalRsq in terms of squared Pearson correlation with true R2 for (A) 1000G-
based imputation; (B) TOPMed-based imputation.
(C) Smooth scatterplot showing Rsq or MagicalRsq (x axis) calculated from both matched (second row) and mis-matched (third row)
models against true R2 (y axis) for both 1000G-based (left) and TOPMed-based (right) imputation, for all low-frequency variants with
WES available.
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low-frequency variants, and 1.4m rare variants (Table S3,

experiment 8). MagicalRsq also outperforms Rsq in terms

of RMSE or MAE (Figure S9, Table S8), further supporting

that MagicalRsq provides better calibrated imputation

quality estimation.

UKB African and South Asian samples

We further assessed MagicalRsq’s performance on African-

ancestry individuals, leveraging WES data from the UKB.

We randomly selected 1,000 individuals as training and the

remaining 2,960 as testing (Scenario 2). Consistent with

our results in theCF cohort,we found thatMagicalRsq is bet-

ter calibrated than standardRsq for everyvariant category for

1000G imputed data (Figure 3A), but interestingly is slightly

inferior for TOPMed imputed rare variants (Figure 3B) in

termsof squaredPearsoncorrelationwith trueR2.Oneexpla-

nation is that TOPMed contains more extremely rare

variants which are more challenging to impute. Specifically,

62% (664k/1.1m) of TOPMed imputed variants have

MAF< 0.1%while only 28% (146k/527k) of 1000G imputed

variantshaveMAF< 0.1%.When restricting tovariantswith

MAFbetween0.1%and0.5% (rare variantswithminor allele

count [MAC] R 6), MagicalRsq outperforms standard Rsq

(Figure 3B). Note that the inferiority is observed only when

evaluating using squared Pearson correlation. When

comparingMagicalRsqwithRsqas apost-imputationquality

filter, we would have a net gain of 12k rare variants. More-
The Am
over, though the absolute improvement of squared Pearson

correlation is moderate, MagicalRsq is much better aligned

with true R2 than Rsq. There was a departure of the

45-degree line when comparing true R2 with Rsq

(Figure 3C, top panel), while MagicalRsq correctly rectified

such departure (Figure 3C, middle and bottom panels). We

again also explored the mix-and-match reference and

reached similar conclusions as in scenario 1: MagicalRsq

trained using imputed data from a mis-matched reference

performs better than Rsq but is inferior to that trained from

amatched reference. The performance is substantially better

when evaluating only variants shared between the two refer-

ence panels, suggesting that some reference-panel-specific

variants may hinder the transferability (Note S2, Table S9).

We similarly performed experiments on UKB SAS popula-

tions to evaluate whether MagicalRsq could benefit other

ancestral groups (Scenario 2). We observed that MagicalRsq

improved squared Pearson correlation with true R2 by

7.8%–134.4% for common variants, by 13.8%–22.1% for

low-frequency variants, and by 14.4%–22.4% for rare vari-

ants (Figure S11, Table S10). The results indicate that

MagicalRsq is applicable to these under-represented minor-

ity populations.

Number of variants needed for training

We additionally investigated MagicalRsq’s performance

when using a small subset of variants, with randomly
erican Journal of Human Genetics 109, 1–12, November 3, 2022 7



Figure 4. Scenario 2, experiment 14:
Training models using randomly selected
subsets of variants
The number of variants used for training
varied from 10k to 1m. MagicalRsq models
were built based on CF 2k samples and
tested on the independent CF 3k samples.
We repeated 5 times for each number of var-
iants. Squared Pearson correlation with true
R2 was calculated and served as the evalua-
tion metric. The red dashed line denotes
the performance of standard Rsq. nvar,
number of variants included in model
training.
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selected 10k, 50k, 100k, 200k, 500k, and 1m variants from

CF 2k samples and tested on independent CF 3k samples.

We repeated this experiment five times for reliability (Sce-

nario 2). We found that even when MagicalRsq models

were trained using only 10k variants, they still outper-

formed Rsq (the red dashed line in Figure 4) for all three

MAF categories. When the number of training variants

increases, the advantage of MagicalRsq over Rsq is more

pronounced (Figures 4 and S12). For example, the average

relative increment of squared Pearson correlation with true

R2 for MagicalRsq is 2.3% with 10k variants for common

variants, which increases to 20.5% with 1m variants

contributing to model building (Table S11); the net gains

of variants increase from �6k to �19k for common vari-

ants, from �94k to �123k for low-frequency variants,

and from �787k to �1,085k for rare variants (Table S3,

experiment 14).We again noticed that the largest improve-

ment manifests for the low-frequency variant category. For

example, when trained with 10k (100K) variants, squared

Pearson correlation with true R2 improves by 56.9%

(71.0%) for low-frequency variants, substantially more

pronounced than the relative increases for common and

rare variants, which are 2.3% (13.4%) and 1.9% (9.5%),

respectively (Table S11). In addition, we found minimal

variation across the five repeats, even when training

models with only 10k variants, indicating MagicalRsq is

robust to different selected random subsets of variants.

Moreover, the computational burden is greatly reduced

when using a subset of variants, especially for rare variants.

For example, the CPU time was 47 h when training models

with all rare variants on even number chromosomes (12.3

million), while it reduced to only 30 min when using

randomly selected 50k rare variants (Figure S13, Table S12).
Computation costs

We note that sample size for MagicalRsq models is not the

number of individuals but rather the number of variants,

which affects the computational costs. We evaluated the

CPU time and memory usage, when training from CF 2k

samples and applying to CF 3k samples. The CPU time in-

creases exponentially with the number of variants in

training, for example, ranging from only 8 min (with 10k

variants) to 605 min (with 2.6m variants) for common var-

iants (Figure S13, top panel, Table S12). The memory usage
8 The American Journal of Human Genetics 109, 1–12, November 3,
is rather stable with respect to the number of variants in

training models, with �3 GB for common variants, �2

GB for low-frequency variants, and �10 GB for rare vari-

ants (Figure S13, bottom panel, Table S12).
Discussion

Genotype imputation has become a standard practice in

genomic studies. For post-imputation QC and analysis,

the estimated imputation quality metrics (referred to as

standard Rsq) provided by the various imputation engines

(e.g., Rsq from minimac, INFO from IMPUTE, DR2 from

Beagle) are key. In this work, we demonstrate that those

estimated quality metrics do not always reflect the true

imputation quality, especially for lower-frequency and

rare variants. To provide better-calibrated quality metrics

for these variants, we propose MagicalRsq, a machine

learning enhanced genotype imputation quality estimate,

which incorporates multiple variant-level features to

improve the calibration of imputation quality estimates.

We demonstrate by comprehensive experiments that

MagicalRsq performs better than standard Rsq under

different circumstances: it not only aligns better with

true R2, but can also rescue a substantial number of

misclassified variants when replacing standard Rsq as a

post-imputation QC metric. We leveraged CFGP WGS

data and UKB WES data to show the advantages of

MagicalRsq for both European- and African-ancestry

individuals. We also performed experiments where

MagicalRsq models were built with randomly selected sub-

sets of variants ranging from 10k to 1m variants in each

MAF category. Our results showed that MagicalRsq models

are robust to different subsets of variants used in model

training. We observe slightly better performance with

more variants included, but at the cost of exponentially

increased computational burden. Considering the tradeoff

between computing costs and performance gains, we

recommend using 10k to 1m variants in each MAF cate-

gory when training MagicalRsq models.

We observe that low-frequency variants benefit most

from MagicalRsq, which has meaningful implications for

downstream analysis. For example, in GWASs, recent pub-

lications4,20,43–46 showmultiple examples of GWAS signals

from variants in the low-frequency category across diverse
2022
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populations. Thus, better discerning and including well-

imputed low-frequency variants in GWASs could poten-

tially facilitate new discoveries and aid fine-mapping anal-

ysis. Our MagicalRsq models can handle rare variants well

and we recommend including extremely rare variants

down to singletons in model training, especially when

the training set is derived from much fewer individuals

than the target set. In our experiments, we obtained

net gains of 1 million rare variants using a 0.8 cutoff, and

the number decreased with a more lenient threshold

(Table S14). We note that the squared Pearson correlation

is less informative for rare variants due to their extremely

low MAF, and thus we recommend applying a more

stringent post-imputation QC threshold, which is also

consistent with recommendations from existing litera-

ture.2,3,13,37,38 Some of the rare variants that are rescued

by MagicalRsq have important clinical potentials.

For example, a BRCA1 missense variant rs28897686

(chr17:43091783:C:T, hg38, GenBank: NM_007294.4;

c.3748G>A [p.Glu1250Lys])47–50 was well imputed in our

UKB AFR target samples with true R2 0.99, but the standard

Rsq was only 0.23, which means this variant would have

been missed if Rsq was used to perform post-imputation

QC. In contrast, the MagicalRsq value of this variant is

0.86, which effectively rescues the variant for further in-

vestigations. We also systematically compared the two

quality metrics in the UKB AFR experiments by measuring

the power of including potential clinically important

variants. We downloaded the ClinVar database and

checked for large differences between true R2 and Rsq or

MagicalRsq for each imputed ClinVar exome variant. In

summary, 15 well-imputed variants (true R2 > 0.8) that

have large quality differences using Rsq (Rsq < 0.5) are

saved by MagicalRsq (MagicalRsq > 0.8). Conversely, there

is no well-imputed variant (true R2 > 0.8) that has low

MagicalRsq (MagicalRsq < 0.5) and can be saved by Rsq

(Rsq > 0.8). These findings show clearly that MagicalRsq

is superior to Rsq in association studies and further clinical

applications.

The XGBoost method adopted in our models is widely

used in both classification and regression problems. It is

computationally efficient and requires less tunning pro-

cedures than some other machine learning or deep

learning methods, such as neural networks. We also tried

two deep neural network methods to construct the

prediction models, but the performance was inferior to

XGBoost-trainedmodels (Note S2, Table S13). Our compar-

ison results are consistent with the literature,51–53 showing

the advantage of XGBoost in such regression-like prob-

lems. We also explored the strategy of directly using true

R2 in the training subset with WGS available as a post-

imputation quality metric in the target set in our scenario

2. We found that such a strategy works well for common

variants, but worse for low-frequency variants and

extremely badly for rare variants (Table S15), likely due to

poor representation for lower-frequency variants using a

smaller subset.
The Am
Though we have demonstrated that MagicalRsq per-

formsmuch better than standard Rsq through comprehen-

sive experiments that mimic real-life scenarios, we do note

that there are some limitations and caveats to our study.

First, we didn’t include chromosome X for this study

mainly due to the complexity of chromosome X coding

and imputation and the lack of some key variant-level fea-

tures (S/HIC’s population genetics summary statistics) that

we used for model training. Second, MagicalRsq perfor-

mance was impaired by some reference-specific variants

when applying a model trained with mis-matched

reference imputed data, although it nonetheless typically

performed better than standard Rsq in this scenario. In

practice, we recommend investigators apply MagicalRsq

models with matched reference whenever possible for bet-

ter performance. Third, MagicalRsq performs less well for

common variants when training from variants in a partic-

ular region, which is likely caused by the fluctuation of Rsq

performance across the genome, and such fluctuation was

mainly driven by the spanning range of the imputation

qualities (Note S2), which impeded the generalizability of

such models for common variants.

We note that in our MagicalRsq models, we leverage 79

variant-level features to enhance the imputation quality

prediction, but more features could be added into the

model. We have released our easily generalizable codes,

which allow investigators to incorporate their favorite fea-

tures into the model and choose whether to include the

features we used (i.e., population genetics features summa-

rized by S/HIC or TOP-LD allele-frequency features). We

anticipate MagicalRsq to have even better performance

when more comprehensive and relevant variant-level fea-

tures are included. Another future research direction is

more general applications and evaluations of MagicalRsq.

For the current experiments we performed, rather homoge-

neous training and target cohorts are used. Even under

scenario 2 when training and testing samples are indepen-

dent with no samples overlap, they still come from the

same study (albeit a consortium study involving multiple

cohorts in the case of CFGP). Further efforts are also

warranted to evaluate the transferability of MagicalRsq

models trained on external cohorts, for example, whether

MagicalRsq models trained from CFGP data could be

applied to UKB cohort.

In summary, MagicalRsq clearly showcases its advan-

tages over standard Rsq in realistic settings. We anticipate

that it will benefit the genetic community as a better

post-imputation quality metric and will enhance down-

stream association analysis by rescuing variants.
Data and code availability

MagicalRsq is freely available from https://github.com/quansun98/

MagicalRsq/.

The CFGP WGS data are available for request to the Cystic

Fibrosis Foundation at https://www.cff.org/researchers/whole-genome-

sequencing-project-data-requests#requesting-data.
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UKB genotyping and WES data are available upon request from

the UK Biobank https://www.ukbiobank.ac.uk/.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.09.009.
Acknowledgment

This study is supported by the Cystic Fibrosis Foundation (CUT-

TIN18XX1, BAMSHA18XX0, KNOWLE18XX0). Y.L. was partially

supported by NIH grants U01HG011720, R01HL146500, and

R01MH123724. Q.S. was supported by U24AR076730. L.M.R. is

additionally supported by KL2TR002490. D.R.S. was supported

by U01HG011720 and R35GM138286. C.F. was supported by

R01HG009976.

The authors would like to thank the Cystic Fibrosis Foundation

for the use of CF Foundation Patient Registry data to conduct this

study. Additionally, we would like to thank the patients, care pro-

viders, and clinic coordinators at CF centers throughout the

United States for their contributions to the CF Foundation Patient

Registry.

Furthermore, we acknowledge use of the Trans-Omics in Pre-

cision Medicine (TOPMed) program imputation panel (freeze 8

version) supported by the National Heart, Lung, and Blood

Institute (NHLBI); see www.nhlbiwgs.org. TOPMed study inves-

tigators contributed data to the reference panel, which was ac-

cessed through https://imputation.biodatacatalyst.nhlbi.nih.

gov. The panel was constructed and implemented by the

TOPMed Informatics Research Center at the University of Mich-

igan (3R01HL-117626-02S1; contract HHSN268201800002I).

The TOPMed Data Coordinating Center (R01HL-120393;

U01HL-120393; contract HHSN268201800001I) provided addi-

tional data management, sample identity checks, and overall

program coordination and support. We gratefully acknowledge

the studies and participants who provided biological samples

and data for TOPMed.

Finally, the authors thank the Department of Innovation,

Research University and Museums of the Autonomous Province

of Bozen/Bolzano for covering the Open Access publication costs.
Declaration of interests

The authors declare no competing interests.

Received: June 19, 2022

Accepted: September 16, 2022

Published: October 4, 2022
Web resources

Clinvar, https://www.ncbi.nlm.nih.gov/clinvar/

MagicalRsq GitHub page, https://github.com/quansun98/MagicalRsq/

Michigan imputation server, https://imputationserver.sph.umich.

edu/

TOP-LD, http://topld.genetics.unc.edu

TOPMed imputation server, https://imputation.biodatacatalyst.

nhlbi.nih.gov

True R2 and Rsq calculation scripts, https://yunliweb.its.unc.edu/

software.html
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