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Abstract
Cystic fibrosis (CF) is a severe genetic disorder that can cause multiple comorbidities affecting the lungs, the pancreas, the luminal diges-

tive system and beyond. In our previous genome-wide association studies (GWAS), we genotyped approximately 8,000 CF samples using

a mixture of different genotyping platforms. More recently, the Cystic Fibrosis Genome Project (CFGP) performed deep (approximately

303) whole genome sequencing (WGS) of 5,095 samples to better understand the geneticmechanisms underlying clinical heterogeneity

among patients with CF. For mixtures of GWAS array and WGS data, genotype imputation has proven effective in increasing effective

sample size. Therefore, we first performed imputation for the approximately 8,000 CF samples with GWAS array genotype using the

Trans-Omics for Precision Medicine (TOPMed) freeze 8 reference panel. Our results demonstrate that TOPMed can provide high-quality

imputation for patients with CF, boosting genomic coverage from approximately 0.3–4.2 million genotyped markers to approximately

11–43million well-imputedmarkers, and significantly improving polygenic risk score (PRS) prediction accuracy. Furthermore, we built a

CF-specific CFGP reference panel based on WGS data of patients with CF. We demonstrate that despite having approximately 3% the

sample size of TOPMed, our CFGP reference panel can still outperform TOPMedwhen imputing some CF disease-causing variants, likely

owing to allele and haplotype differences between patients with CF and general populations. We anticipate our imputed data for 4,656

samples without WGS data will benefit our subsequent genetic association studies, and the CFGP reference panel built from CF WGS

samples will benefit other investigators studying CF.
Introduction

Cystic fibrosis (CF) is an autosomal recessive genetic disor-

der caused bymutations in the cystic fibrosis transmembrane

conductance regulatory (CFTR) gene. CF affects the lungs,

pancreas, and other organs, but the major cause of

morbidity andmortality is progressive obstructive lung dis-

ease and lung injury owing to inflammation and infection.

We previously have conducted genome-wide association

studies (GWAS) for CF and related traits,1–4 where we gen-

otyped approximately 8,000 CF samples at approximately

half a million common genetic variants, imputed up to 8.5
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millionmarkers using haplotypes combined from the 1000

Genomes Project and deep (approximately 303) sequence

from 101 Canadian patients with CF as a reference, and

evaluated the association between each genotyped or

imputed marker with CF or related traits.

Recently, our Cystic Fibrosis Genome Project (CFGP)

generated high-coverage (approximately 303) whole

genomesequence (WGS)data for5,095CFsamples.Together

with our previous GWAS efforts, we have 1,880 CF samples

with WGS data alone, 4,656 samples with GWAS

data alone, and 3,215 patients with both WGS (3,215 sam-

ples) and GWAS data (3,314 samples, owing to sample
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duplicates/triplicates). In this work, we set out to ask two

questions. First, would the latest imputation reference panel

from the NHLBI Trans-Omics for Precision Medicine

(TOPMed) project aid imputation among patients with CF?

TOPMed has demonstrated its value in further boosting

imputation quality and rescuing lower frequency and rare

variants owing to its large sample size representing diverse

ancestries.5,6 We hypothesize that patients with CF may

similarly benefit from the TOPMed imputation reference

panel. Second, is there any value in building a CF-specific

reference panel based on WGS data from patients with CF?

For example, the CF-causing 3bp deletion

c.1521_1523delCTT [p.Phe508del; legacy name: F508del]

in CFTR has a frequency of 69.7% among patients with CF

(CFTR2)butmerely0.8%–1.0%ingeneralpopulationsacross

continental groups (Bravo). We hypothesize that a CF-spe-

cific reference panel may better recover CF-associated re-

gions, even though the TOPMed sample size (n ¼ 97,256)

is approximately 203 that in CFGP (n ¼ 5,095), given the

presumablymore drastic allele and haplotype pattern differ-

ences at CF related loci. For the second question, Panjwani

et al.7 showed the value of including patients with CF in

imputation reference panel,where they includedhaplotypes

from a much smaller set (n ¼ 101) of patients with CF. Sys-

tematic comparisonswith larger sample sizes are still lacking.

In this article, we first performed imputation of different

CF datasets starting from array genotype only, leveraging

the TOPMed freeze 8 reference panel. We then systemati-

cally evaluated the imputed data using the WGS data as

the working truth. Evaluations included quantifying the

number of well-imputed variants, assessing the true impu-

tation quality, gauging heterozygous concordance for

extremely rare variants, and evaluating imputation quality

for the CFTR F508del variant in comparison with previous

work.7 We then constructed a reduced-CFGP reference

panel to evaluate if the WGS data of patients with CF

would provide additional insights beyond TOPMed-based

imputation. Finally, we constructed polygenic risk score

(PRS) for KNoRMA, a lung functionmeasurement, to assess

the impact of imputation on PRS construction.

In this article, we refer to observed genotypes derived

fromWGS data as ‘‘true genotypes,’’ although in reality ge-

notype calls fromWGS data are not 100% accurate. We use

‘‘true R2’’ method to refer to the squared Pearson correla-

tion between imputed dosages and true genotypes from

WGS data, and use ‘‘Rsq’’ output from imputation software

to denote the estimated imputation quality. Note that the

calculation of the true R2 entails true genotypes, which we

do not have in typical imputation, while Rsq is available

whenever imputation is performed.
Methods

Genotype array data and pre-imputation quality control
There are in total 7,988 samples genotyped on seven different ar-

rays before quality control (QC) (Table S1). Note that there are
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some duplicates or triplicates, and thus the 7,988 samples repre-

sent less than 7,988 unique patients. We will not get into the pa-

tient level in this article, because one patient can contribute to

more than one sample, either through recruitment by more

than one study site or by being genotyped more than once. All

the imputation metrics reported were calculated at the sample

level.

We performed both sample- and variant-level QC prior to impu-

tation. We removed samples with a genotype missing rate of more

than 10% using plink v.1.90. Eighteen samples in the arrays were

excluded owing to this low call rate criterion. We further removed

unexpected alleles (e.g., N), monomorphic sites, ambiguous SNPs

(A/T or C/G SNPs) and then lifted over from hg19 to hg38. The

final numbers of QC þ variants in each GWAS array ranged from

263,660 to 3,379,381 (Table S1).
TOPMed imputation
We first performed strand flipping according to our reference

panel (TOPMed Freeze 8) to improve imputation accuracy. Ambig-

uous SNPs (i.e., A/T or C/G SNPs) had already been dropped in the

pre-imputation QC step above. For non-ambiguous SNPs, the al-

leles in our cohort were flipped if they appear in the minus strand,

when compared with the reference panel (e.g., the alleles in our

cohort are A/G, while they are T/C or C/T in the reference panel).

We used the TOPMed Imputation Server (https://imputation.

biodatacatalyst.nhlbi.nih.gov/#!) for phasing (via eagle16) and

imputation (via minimac417), using the TOPMed freeze 8 as the

reference panel. This reference panel, built from 97,256 deeply

sequenced human genomes, contains 308,107,085 genetic vari-

ants. After imputation, we retained only variants with imputation

quality (Rsq or estimated R2) of 0.3 or greater.
True imputation quality metric (trueR2)
We calculated the true imputation quality metric (true R2; the

squared Pearson correlation between imputed dosages and true ge-

notypes with the latter coded as 0, 1, and 2) to evaluate our impu-

tation quality. The true genotypes were derived from the CFGP

WGS data. We first intersected our imputed variants with WGS

PASS variants by minor allele frequency (MAF) bins (here, the

true MAF as defined by genotypes derived from WGS data).

Then, we extracted the genotypes for overlapped samples between

GWAS and WGS to evaluate the concordance. Our evaluation was

restricted only to samples withQC and data fromGWAS andWGS.

Duplicate samples were also dropped. Finally, the squared Pearson

correlation was calculated for each variant, which is the true R2.

Note that this true R2 is different from estimated R2 or Rsq above

in that the estimated R2 or Rsq is part of the imputation output

and is obtained in the absence of true genotypes. By contrast,

the true R2 can only be calculated when the true genotypes are

available, which is not realistic except for evaluation purposes; if

we had true genotypes, we would not have bothered with

imputation.
Imputation based on a reduced CFGP reference panel
As a proof-of-concept experiment, we constructed a reduced CFGP

imputation reference panel usingWGS data of 2,850 samples from

the CFGP. Such reference construction has been commonly adop-

ted, particularly when target samples (i.e., samples to be imputed)

do not match well with those in standard imputation reference

panels. We started with QC þ WGS data and performed phasing
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using eagle16 with default parameters to generate the reduced

CFGP reference panel.

Using our self-constructed reduced CFGP reference panel, we

imputed chromosome 7, where CFTR, the CF-causing gene, is

located, in 1,992 samples, independent of the 2,850 samples

contributing the reduced CFGP reference panel. These 1,992 sam-

ples have WGS data and have also previously been genotyped on

the 610-Quad array with 30,853 QC þ GWAS markers on chromo-

some 7. We assessed the relatedness between this target sample of

1,992 samples and the 2,850 samples in the reduced CFGP refer-

ence panel using plink –genome. Distribution of the PI_HAT is

shown in (Figure S1) with the maximum PI_HAT of less than

0.1. With the low level of relatedness between target and refer-

ence, we proceeded with imputation in the target sample using

minimac417 with default parameters and compared the imputed

dosages with true genotypes derived from their WGS data.

To evaluate the value of the CFGP reference panel in comparison

with commonly used imputation reference panels, we also

compared the performance of the CFGP reference panel relative

to the state-of-the-art TOPMed freeze8 reference panel.
Construction of a CFGP reference panel
Similar to the reduced CFGP reference panel, the CFGP reference

panel was constructed from CFGP WGS data. Different from the

reduced CFGP reference, where a subset of 2,850 samples were

used, the CFGP reference was built from all 5,095 samples in

CFGP. We similarly started with QC þ WGS and constructed the

CFGP reference by phasing with eagle with default parameters.
Generating genome-wide association statistics for PRS

construction
GWAS were performed separately for different subsets of samples

using the EMMAX test implemented in EPACTS v3.3.0,18 which

accounts for genetic relatedness via a mixed model approach. Spe-

cifically, themodel adjusts for a kinshipmatrix that was calculated

using genotyped variants with missing rate of less than 1% and a

MAF of greater than 1%.When performing the association testing,

we restricted to variants with a MAF of greater than 0.1% and

imputation Rsq of greater than 0.3 when running EPACTS to

improve model stability. In each subset GWAS analysis, we

adjusted for age, sex, study, and first 6 PCs. We then used

METAL19 for meta-analysis to enhance the discovery sample size

for improved power.

We note that the PRS construction seems complicated. The pri-

mary reason is the complicated data structure we have (several

different genotype array datasets, and the mixture of array data,

imputed data with two different reference panels, and WGS

data). The idea in the section is rather straightforward: since PRS

construction involves both training samples (where GWAS are per-

formed and weights for PRS are derived) and independent target

samples (where the PRS formula is applied to and evaluated), we

hypothesize that imputation in either target samples (Figure 4A)

or training samples (Figure 4B) would improve the PRS perfor-

mance in target samples. Figure 4A is the scenario where the

only difference is the genetics data of target samples used when

applying the PRS formula.We used array-only genotypes, TOPMed

imputed data, CFGP imputed data, and/orWGS data in target sam-

ples, and evaluated the PRS calculated with the four different types

of genetics data. Figure 4B is the scenario where the only difference

is the genetics data of (part of the) training samples used when per-

forming GWAS and to derive variant-specific weights for con-
Hum
structing the PRS formula. We used array-only genotypes,

TOPMed imputed data, and or CFGP imputed data in (part of

the) training samples when deriving the PRS weights. We say

‘‘part of the’’ training samples because for all three settings in

Figure 4B, we used WGS for the 3,071 samples with WGS data.

Section A

For experiments where the 1992 610-Quad samples with both

array and WGS data are used as target samples, the discovery co-

horts include the following four sets of 5,417 samples, all indepen-

dent of the target 1992 samples: (1) 610-Quad samples (n ¼ 1551,

TOPMed imputed); (2) FR.660K samples (n ¼ 928, TOPMed

imputed); (3) 660W-set1 samples (n ¼ 562, TOPMed imputed);

and (4) WGS samples (n ¼ 2376, WGS data).

Section B

For experiments where the 1,397 independent samples with WGS

data only are used as target, the discovery cohorts include the

following four sets of sample, similarly all independent of the

target 1397 UW samples (1) 610-Quad samples (n ¼ 1551, geno-

typed or TOPMed/CFGP imputed); (2) FR.660K samples (n ¼
928, genotyped or TOPMed/CFGP imputed); (3) 660W-set1 sam-

ples (n ¼ 562, genotyped or TOPMed/CFGP imputed); and (4)

WGS samples other than UW (n ¼ 3071, WGS data). The sum-

mary statistics without imputation refers to (1)–(3) with array ge-

notype þ (4) when conducting associations (Figure 3B (a)), the

summary statistics with TOPMed imputation refers to (1)–(3)

with TOPMed imputed data þ (4) when conducting associations

(Figure 3B (b)), and the summary statistics with CFGP imputed re-

fers (1)–(3) with CFGP imputed data þ (4) when conducting asso-

ciations (Figure 3B (c)).
PRS construction
We constructed PRS with the common PþT method performed

with plink v1.90. We performed a grid search over different MAF

(R0.1%, R0.5%, R1%, R5%) and p value thresholds (%1, %0.5,

%0.1, %0.05, %0.01, %5 3 10�3, %1 3 10�3, %5 3 10�4, %1 3

10�4, %5 3 10�5, %1 3 10�5) combinations to determine the

best performance under each different target or discovery marker

sets. For chromosome X, males were coded as 0 or 2.
Results

Imputation with TOPMed freeze 8 reference panel and

quality evaluation

To answer how the TOPMed reference panel would aid

imputation in CF, we imputed 7,970 CF samples with gen-

otyping array data, leveraging the imputation reference

panel built from 97,256 deeply sequenced human ge-

nomes in the TOPMed project. These 7,970 samples were

genotyped using various commercial genotyping plat-

forms directly examining 263,660–4,389,087 variants, in

various projects including the CF Twin and Sibling Study,

the CF-related Diabetes Study, the Gene Modifier Study

(GMS), and the GMS CF Liver Disease Study.1–4 For a subset

of 2,933 samples with WGS data from the CFGP, we then

assessed the imputation quality by comparing imputed

dosages with observed genotypes in the WGS data, with

the latter treated as the gold standard.

We focused on two metrics in our imputation quality

evaluation: the number of well-imputed variants and
an Genetics and Genomics Advances 3, 100090, April 14, 2022 3



Table 1. Numbers of well-imputed variants by different MAF categories for the seven GWAS arrays (genome wide)

Illumina
panela

Number
of
samplesa

Number of
samples-by-sitea

Number (%)b of
SNPs RsqR0.3

Number (%)b of
SNPs RsqR0.8

Number (%)c of
SNPs RsqR0.8
and MAF<0.5%

Number (%)d of
SNPs RsqR0.8
and MAF<5%

Number (%)e of
SNPs RsqR0.8
and MAFR5%

300 K 144 FrGMC 1,300 17,603,215 (5.73%) 12,248,616 (3.99%) 3,897,584 (1.31%) 6,738,025 (2.24%) 5,510,591 (88.02%)

370 K 145 14,471,514 (4.71%) 11,156,390 (3.63%) 2,533,058 (0.85%) 5,519,937 (1.83%) 5,636,453 (90.49%)

660 K 1,011 30,661,930 (9.99%) 20,830,921 (6.79%) 11,883,847 (4.01%) 15,138,988 (5.03%) 5,691,933 (93.95%)

610-Quad 3,840 CGS 1,533;
GMS 1467;
TSS 840

58,672,809 (19.12%) 43,095,581 (14.04%) 33,399,492 (11.26%) 37,276,108 (12.39%) 5,819,473 (96.22%)

660W-set1 2,012 CGS 342;
GMS 808;
TSS 862;

43,832,169 (14.28%) 34,503,481 (11.24%) 24,694,173 (8.33%) 28,669,926 (9.53%) 5,833,555 (96.33%)

660W-set2 444 TSS 444 23,814,328 (7.76%) 20,792,798 (6.77%) 10,176,358 (3.43%) 14,916,691 (4.96%) 5,876,107 (96.98%)

Omni5 374 CGS 73;
GMS 170
TSS 131;

20,774,826 (6.83%) 18,862,492 (6.20%) 10,530,015 (3.55%) 14,053,383 (4.68%) 4,809,109 (97.65%)

aCorvol et al 2015.1
bPercentage taken over total number of imputed variants from TOPMed freeze 8 reference panel.
cPercentage taken over imputed variants with MAF of <0.5%.
dPercentage taken over imputed variants with MAF of <5%.
ePercentage taken over imputed variants with MAF of R5%.
average imputation quality for these well-imputed vari-

ants. We first assessed the numbers of well-imputed vari-

ants by MAF separately for the seven GWAS arrays. We

applied post-imputation quality filtering, based on esti-

mate R2 (or Rsq), using two different thresholds (Rsq R

0.3 or Rsq R 0.8, with the latter being the more stringent

or aggressive filtering). Both thresholds are commonly

adopted for post-imputation quality filtering.8–10 Using

the TOPMed reference panel, we obtained 11,156,390–

43,095,581 well-imputed variants (Rsq R 0.8) including

2,533,058–33,399,492 low-frequency or rare variants

(LFRV; MAF % 0.5%) (Table 1). For example, for the

3,840 samples genotyped with the Illumina 610-Quad

array, we observed 43,095,581 well-imputed (Rsq R 0.8)

variants with 33,399,492 being LFRV.

We then calculated the average imputation quality for

these well-imputed variants. Specifically, we calculated

true R2 by comparing imputed dosages with WGS data

which again serves as the gold standard (Methods). We eval-

uated two GWAS arrays with the largest sample sizes, Illu-

mina 610-Quad and 660W-set1, to obtain a more stable

imputation quality estimate for LFRV, and took chromo-

some 20 as an example. For samples genotyped with the

610-Quad array and 660W-set1, 1,992 and 941, respectively,

also hadWGS performed in the CFGP. Based on these 1,992

and 941 samples, we observed that average true R2 values for

variants across allMAF categories are greater than 0.93, indi-

cating that imputed dosages recover more than 93% of the

information in the true genotypes (Table 2).

We also gauged heterozygous concordance for extremely

rare variants (defined as a minor allele count [MAC] of

<10). Even for those extremely rare variants, the average

heterozygous concordances are greater than 0.97 (Table

3), indicating that the TOPMed reference panel can impute
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those rare variants well. We specifically checked the impu-

tation quality for the CFTR F508del variant on chromo-

some 7 that, as mentioned, has a drastic allele frequency

difference between patients with CF (69.7%) and general

populations (0.8%). The estimated R2s for 610-Quad and

660W-set1 arrays are 0.89 and 0.93 respectively; and the

true R2s are 0.83 and 0.87, suggesting that the imputation

quality for this variant is rather decent, rescuing 83% and

87% of the information content. However, the TOPMed

reference panel tends to call the homozygote deletion ge-

notype (1/1) as heterozygotes (0/1) (Figure 1), showing

there is still room for improvement.

Comparing with other imputation reference panels, we

found the TOPMed reference panel provides much

enhanced genome coverage. For example, for 610-Quad

and 660W-set1 panels, TOPMed resulted in a 2.1–3.03 in-

crease (Table S2) in genome coverage for LFRV compared

with previous imputation using the Haplotype Reference

Consortium reference panel.7 Overall, TOPMed-based

imputation in patients with CF is of satisfying quality, sug-

gesting the value of TOPMed imputation reference panel

for patients with CF.

Evidence showing the value of constructing a CFGP

reference panel

Although publicly available genotype imputation refer-

ence panels from general populations (e.g., TOPMed freeze

8 reference panel) perform reasonably well for patients

with CF, we hypothesize that we may attain even better

imputation quality for CFTR or other CF-associated loci

by leveraging haplotype and linkage disequilibrium infor-

mation among patients with CF, given the rather drastic

allele and haplotype differences in these regions between

patients with CF and general populations.
2



Table 2. True R2 for the two arrays with the largest sample sizes (chr20)

Illumina panel MAC/MAF Number of non-NA-R2 variantsa Mean true R2 Median true R2
Total number of
variants

610-Quad (n ¼ 1992) MAC <10 311,625 0.93 1.00 377,397

MAF <0.5% 440,489 0.93 1.00 508,198

MAF <0.5%–5% 85,270 0.93 0.96 85,278

MAF >5% 120,991 0.98 1.00 120,998

660W-set1 (n ¼ 941) MAC <10 229,286 0.96 1.00 299,329

MAF <0.5% 356,643 0.95 1.00 430,073

MAF <0.5%–5% 85,195 0.94 0.97 85,201

MAF >5% 121,013 0.98 1.00 121,019

MAC, minor allele count; MAF, minor allele frequency.
aNA true R2 emerged owing to being monomorphic (either true or imputed). Some variants may be monomorphic in the 1992 subset, but not in the 3840 sam-
ples. The Pearson correlation between a constant and a vector is not defined.
We performed Fisher’s exact test for each overlapped

variant between CF WGS and TOPMed to compare the

allele frequency differences between patients with CF

and general populations of more than 13,000 TOPMed

participants of European ancestry from the TOP-LD proj-

ect,11 since more than 95% of our patients with CF are pri-

marily of European ancestry (defined by principle compo-

nent analysis combining with 1000G participants as

ancestry anchors). We found that CFTR gene and the re-

gion nearby is significantly enriched (p < 2.2 3 10�16, Ta-

ble S3) with variants with differential allele frequency

(defined by Fisher’s exact test, p value < 2.5 3 10�8 after

Bonferroni correction) compared with other variants on

chromosome 7. Previous work has also shown the benefit

of cohort-specific reference panels,12,13 including a study

specifically targeted to patients with CF.7 With our WGS

data with more than 5,000 samples, it is highly warranted

to re-evaluate the utility of a CF-specific reference panel. To

save some samples with WGS data for imputation quality

evaluation, we constructed a reduced CFGP reference

panel built from WGS data of 2,850 samples to impute

another 1,992 unrelated samples to assess the value of a

cohort-specific imputation reference panel.

Imputation with reduced CFGP reference panel and

quality evaluation

For the 1,992 samples, we compared their imputed data

from the reduced CFGP reference panel (n ¼ 2,850) with

that from the TOPMed freeze 8 reference panel (n ¼
97,256). Note that TOPMed reference sample size is more

than 343 that of the reduced CFGP reference. Not surpris-

ingly, across all variants on chromosome 7 imputed by

both reference panels, TOPMed clearly outperforms the

reduced CFGP reference panel (Figure 2A), but the advan-

tage becomes less pronounced when restricted only to

the CFTR region (Figure 2B). Among the 544 CFTR vari-

ants, 138 are better imputed using the reduced CFGP refer-

ence panel, where 11 of the 138 are highly damaging

(CADD phred score14 of >20). This 8% (11/138) of highly
Hum
damaging variants implies an 83 enrichment, because,

genome wide, we expect 1% of variants to be highly

damaging based on the definition of a CADD phred score

where a score of 20 means among the 1% most damaging.

Most of the CFTR variants that are much better imputed

using the reduced CFGP reference panel are much rarer in

TOPMed freeze 8 than among patients with CF, explaining

why the CF-specific reference panel leads to better perfor-

mance. For example, for variant rs1244070394 (chr7:

117480621:T:C, [GRCh38]), among the 132,345 TOPMed

freeze 8 samples, we observe a MAC of 3 (MAF ¼ 1.1 3

10�5), while the MAC in our much smaller CFGP WGS

samples (n ¼ 5,095) is larger than that of TOPMed freeze

8: specifically, MAC ¼ 6, MAF ¼ 5.9 3 10�4. Although

rare, some of these variants play important functional

roles, with a few examples listed in Table 4. For instance,

rs77284892 (chr7:117509047:G:T, [GRCh38], c.178G >

A, p.Glu60Lys; legacy name E60K), with a MAF of 2.1 3

10�3 in CFGP and a MAF of 1.1 3 10�5 in TOPMed freeze

8, has a CADD phred score of 38 (meaning the variant is

among the 0.016%most deleterious variants in the human

genome), is a stop-gain variant and is classified as a CF-

causing variant according to CFTR2. For the CFTR

F508del variant, although the reduced CFGP imputation

shows slightly larger bias than TOPMed imputation, it

has a shorter tail and smaller variance, and is more consis-

tent with true genotypes (Figure 1). The squared Pearson

correlation between WGS true genotypes and reduced

CFGP imputed dosages is 0.93, while that for TOPMed

imputed dosages is 0.83. The long tail distribution of

TOPMed imputed dosages for 1/1 homozygotes (i.e., ho-

mozygote deletion genotype) impedes its performance.

We also broke down these variants by functional cate-

gories (simply coding and non-coding) to see whether the

reduced CFGP reference panel performs better for function-

ally important variants. Owing to the small number of cod-

ing variants, we did not further split the coding category. As

expected, the reduced CFGP reference panel performs better

for coding variants than non-coding variants, but less well
an Genetics and Genomics Advances 3, 100090, April 14, 2022 5



Table 3. Heterozygous concordance for extremely rare variants (chr20)

Illumina
panel

Number
of
samples

Number of
non-NA het
concordant variants

Mean het
concordant
(freq)

Median het
concordant
(freq)

Total number
of variants

610-Quad 1992 212,759 0.98 1.00 296,088

660W-set1 941 289,811 0.97 1.00 374,166
compared with TOPMed (Table S5). However, the c2 test

shows variants that were better imputed with reduced

CFGP is significantly enriched with coding variants (p ¼
5.5 3 10�3, odds ratio ¼ 2.61). We also found the reduced

CFGP reference panel performs better for less common var-

iants compared with common variants, but TOPMed still

outperforms the reduced CFGP for the vast majority owing

to the large sample size difference (Table S6).

We then systematically compared the performances of

the two reference panels across the whole genome to see

whether the reduced CFGP reference panel performs better

in any genome regions other than the CFTR region on

chromosome 7. Specifically, we calculated the difference

of reduced CFGP imputed true R2 and TOPMed imputed

true R2 (the former minus the latter) for each variant,

and then summarized variant level true R2 difference at

1MB non-overlapping region level. We used two statistics

for the region-level summary: mean true R2 difference of

variants (d) and the proportion of variants whose true R2

difference is greater than 0 (p) indicating that the reduced

CFGP performs better than TOPMed, in the corresponding

1-MB region. To increase stability, we only considered re-

gions harboring more than 100 variants for evaluations.

For the whole genome, d < �0.2 and p < 8% for most of

the 1-MB regions (Figure 3). As a positive control, for the

CFTR region, d ranges from �0.2 to �0.13, and p ranges

from 12% to 20%, with each statistic falling in the 1% of

its distribution. Interestingly, some other regions show

even stronger evidence that the relative (to TOPMed) per-

formance of the reduced CFGP reference panel is substan-

tially better than the genome average, including the 60- to

66-MB region on chromosome 9 (d ranges from �0.17 to

�0.09, p ranges from 28% to 33%), the 19- to 23-MB region

on chromosome 15 (d ranges from �0.06 to �0.03, p

ranges from 21% to 29%), as well as the HLA region (d

ranges from �0.15 to �0.10, p ranges from 11% to 18%)

(Table S7). We currently do not fully understand why the

relative performance of the reduced CFGP reference panel

over TOPMed in these regions are better than the genome

average. The regions do not seem to colocalize with known

GWAS loci; these outlier regions we identified are not close

to reported GWAS signals and regions harboring known

GWAS variants do not show large d or p compared with

the genome average. The region-level summary statistics

are tabulated in Table S7 for other researchers to further

investigate.

This proof-of-concept experiment showcases the value

of a CF-specific reference panel for imputing data for pa-
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tients with CF, particularly in some specific regions (e.g.,

the CFTR region), on top of the state-of-the-art TOPMed

reference panel. Thus, we constructed a CFGP reference

panel using the full set of 5,095 WGS samples in the

CFGP. We anticipate this CFGP reference panel to be valu-

able for other investigators studying CF, but having only

array density genotype data instead of WGS data.

Imputation improves PRS performance

We further constructed the PRS for KNoRMA15 to assess

whether imputation, particularly TOPMed-based imputa-

tion, would help to construct a PRS with higher prediction

accuracy. KNoRMA is a quantitative lung trait of FEV1 data

over 3 years adjusted for survival15 measuring lung func-

tion and is one of the main focused traits in the CFGP con-

sortium. PRS are usually constructed as a weighted summa-

tion of genetic markers, where the weights are derived

fromGWAS in independent training samples. Here, we hy-

pothesize that imputation would improve PRS perfor-

mance, either by imputing target samples where PRS for-

mula is applied to, or by imputing training samples

where a GWAS is performed to construct the PRS formula.

We performed two experiments to mimic two realistic sce-

narios: (1) whether imputation is performed in the target

cohorts where PRS is applied to (Figure 4A); (2) whether

imputation is performed in the discovery cohorts where

the PRS is constructed (Figure 4B). In the second scenario,

we have some samples WGS and others only genotyped

with some genotyping array to start with. We then

compared the accuracy of PRS constructed with or without

imputation.

To test the benefit of imputation for PRS target cohorts,

we applied the same PRS to the 1992 samples for whom

we have 610-Quad array, TOPMed-based imputation, and

reduced CFGP-based imputation (both starting from 610-

Quad array), and WGS data available. The PRS was con-

structed based on GWAS summary statistics from meta-

analysis of samples independent of the 1992 test samples

(Figure 4A, Methods Section A). Four different marker

sets (genotype array data only, TOPMed imputed data

with Rsq of >0.3, reduced CFGP imputed data with Rsq

of >0.3, and WGS data) were adopted for the application

of PRS. We performed a grid search over MAF and p value

threshold (Methods) and reported the best one (largest cor-

relation with true KNoRMA values after adjusting for age,

sex, study, and first 6 PCs) to compare the four different

marker sets. We found that with TOPMed imputation, we

can nearly achieve the same performance as WGS (Table
2



Figure 1. Imputation concordance for
F508del using TOPMed and reduced CFGP
reference panels. The true R2 for TOPMed
and reduced CFGP imputed results are
0.835 and 0.926, and the sumof squared er-
ror for TOPMed and reduced CFGP are
117.58 and 82.42, respectively. The main
reason that TOPMed is slightly worse is
that it tends to underestimate the deletion
frequency.
S4). The PRS correlation improves by 37.2% with TOPMed

imputation compared with genotype array data only, while

only 0.99% inferior to WGS data. The reduced CFGP

imputed data also perform satisfactorily, especially consid-

ering the much smaller reference panel size. It improves

the PRS correlation by 32.1% compared with genotype

array data only, while only 4.7% inferior to WGS data.

To evaluate thebenefitof imputation inPRSdiscovery and

construction cohorts, we tookUWsamples (n¼ 1,397)with

only WGS data as the target cohort and applied three

different sets of PRSs (Figure 4B). The three different sets of

PRSs differ by the marker density in the same discovery co-

horts consisting of 6,112 samples independent of the UW

samples (Figure 4B,Methods Section B). Specifically, the first

set of PRS was constructed based on association summary

statistics from meta-analyzing 3,041 patients with array

data and 3,071 patients with WGS data (Figure 4B (a)). The

second and the third setswere constructed similarly, only re-

placing the 3,041 patients from array data to TOPMed-

imputed (Figure 4B (b)) or CFGP-imputed data (Figure 4B

(c)). We similarly compared the best PRS searched over

different MAF and p value threshold grids under the three

different sets of GWAS summary statistics, finding the

TOPMed-imputation-aided PRS results in a 71.2% higher

correlation, while the CFGP-imputation-aided PRS results

in only 9.0% higher correlation, compared with that

without imputation (Table 5). We further performed a two-
Human Genetics and Gen
sample t test to compare the KNoRMA

values of samples from top and bottom

5% of predicted PRS, to test the power

of the three PRS sets in stratifying pa-

tients in terms of lung function gauged

by KNoRMA values. We found signifi-

cant difference inKNoRMAvalue for pa-

tients from two extreme tails predicted

by the imputation-aided PRS (p value ¼
0.038 for TOPMed-based imputation

and p value ¼ 0.0065 for CFGP-based

imputation), while no significant differ-

ence in the PRS without imputation

counterpart (p value ¼ 0.712) (Table 5).

Discussion

Even for patients affected with a Men-

delian disease such as CF, the TOPMed
reference panel leads to satisfactory genome-wide imputa-

tion quality and a better PRS prediction accuracy. We

further demonstrate the value of a CF-specific reference

panel, which can outperform TOPMed for some variants

owing to better match with target (also CF) samples in

terms of allele and haplotype frequencies. Although at

the 1-Mb region level, a CF-specific reference panel never

outperformed the TOPMed reference panel, in some re-

gions, it offers substantially more complementary infor-

mation to TOPMed. These regions include the CFTR region

harboring the gene causing this Mendelian disease, and

several other genome regions including HLA. Our CFGP

reference panel consisting of more than 10,000 haplotypes

developed from WGS data from patients with CF should

benefit other investigators in their genetic studies of CF.

We note that the value demonstrated in our experiments

with a reduced CFGP reference panel is not simply owing

to samples from the same recruitment sites between refer-

ences and targets. The 1,992 samples as targets were from

three different studies (CGS, GMS, TSS), and the 2,850

samples as reference were from four different studies,

including an independent study, EPIC, in addition to the

three studies. In order to show that the performance of dis-

ease-specific CF panel is not due to overlapping of samples

from the same recruitment sites, we additionally per-

formed imputation for the same 1,992 target samples using

EPIC-only samples as reference. In this case, samples in
omics Advances 3, 100090, April 14, 2022 7



Figure 2. Histograms of differences be-
tween reduced CFGP true R2 and TOPMed
true R2 to compare the imputation quality
of the two reference panels. (A) For overall
chr7. Almost all variants are located to the
left half, which means TOPMed is predom-
inantly better than the reduced CFGP refer-
ence panel. (B) For CFTR region only. The
advantage of TOPMed reference panel
over the reduced CFGP becomes less
pronounced.
targets and references are from completely independent

recruitment sites. We then plotted the histograms of impu-

tation quality difference between different reference

panels and found most of the variants exhibit highly

similar qualities and that the EPIC-only reference panel

similarly leads to a greater proportion of variants around

CFTR better imputed than when using TOPMed as the

reference (Figures S2C and S2D). These results demonstrate

that the benefit is not simply due to overlapping of sam-

ples from the same recruitment sites, but the similarity of

genomes in patients with CF. Furthermore, our study

would not only benefit the CF community, but also pro-

vide a genotype imputation protocol for other Mendelian

diseases. With more WGS data in production, future inves-

tigators studying other Mendelian diseases could further

explore the benefits of disease-specific imputation refer-

ence panels.
Table 4. Examples of variants that are much better imputed with red

Variant (hg38) chr7:117480621:T:C chr7:117509047:G:Ta ch

rsIDs rs1244070394 rs77284892 rs

CFGP true R2 0.9934 0.9968 0.

TOPMed true R2 0.5490 0.3333 2.

CF5095 AC 6 21 8

CF5095 AF 5.89 3 10�4 2.06 3 10�3 7.

TOPMed8 AC 3 3 2

TOPMed8 AF 1.13 3 10�5 1.13 3 10�5 7.

CADD phred score 0.809 38 25

VEP annotation intron stop gain m

CF-disease causingb no yes ye

CFTR mutation c.53 þ 474T > C c.178G > A
p.Glu60Lys

c.
p.

AC, allele count; AF, allele frequency.
aThe middle three variants have very high CADD phred scores and are disease cau
the value of our CF-specific reference panel.
bAccording to cftr2.org.
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Since cohort-specific reference panel provides better

match in terms of allele and haplotype frequencies, while

TOPMed reference panel benefits from its much larger

sample size, future work can further explore strategies to

combine the two reference panels. Directly combining

different reference panels is largely unfeasible owing

to different marker densities and restricted access to indi-

vidual-level haplotypes. An alternative approach is to

combine two or more sets of imputed results using

‘‘meta-imputation,’’ which outputs a consensus imputed

dataset by calculating weighted sum of single-reference

imputed results, such as implemented in MetaMinimac2.

Another direction is to perform marker-level selection of

reference panels, where the issue is that we cannot easily

quantify the relative performance of reference panels

without true genotypes. In our study, we found the state-

of-the-art imputation quality estimation metric, Rsq
uced CFGP.

r7:117559471:T:Ca chr7:117587738:G:Aa chr7:117656113:C:T

139573311 rs76713772 rs893051013

9703 0.9837 0.9423

52 3 10�7 0.7799 0.5010

115 21

85 3 10�4 0.0113 2.06 3 10�3

20 6

56 3 10�6 7.56 3 10�5 2.27 3 10�5

.8 29.1 1.097

issense splice acceptor intron

s yes no

1400T > C
Leu467Pro

c.1585-1G > A c.3963 þ 3182C > T

sing variants, but their TOPMed imputation qualities are not satisfying. It shows

2
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Figure 3. Histograms of mean true R2 dif-
ference and proportion of variants better
imputed by reduced CFGP than TOPMed,
across 2,872 1-Mb non-overlapping re-
gions. We calculated the true R2 difference
of the two reference panels using reduced-
CFGP true R2 minus TOPMed true R2 for
each variant, and then summarized variant
level true R2 difference at the 1-Mb region
level using the two statistics: difference of
true R2 (A) and proportion of reduced-
CFGP better imputed variants (B).
output by minimac, tends to favor the TOPMed reference

panel, even when the true quality from reduced CFGP

reference panel is much better than that from TOPMed.

For example, for the last variant in Table 4, rs893051013

(chr7:117656113:C:T, [GRCh38]), selection of reference

panel based on Rsq would strongly favor TOPMed (Rsq is

0.80, much higher than 0.29 from the reduced CFGP),

but in reality the reduced CFGP performed much better:

the true R2 achieved 0.94, much better than TOPMed re-

sulting in a true R2 of only 0.5. Future research should

explore an imputation quality metric that either more

accurately reflects true quality or at least is comparable

across reference panels.

Besides providing further enhanced imputation reference

panels, WGS is also valuable in many other aspects,

including enabling the study of variants other SNPs and

more comprehensively identifying disease causing variants.

As one example, for the 281 disease causing variants re-

ported by CFTR2 that can bemapped to GRCh38 positions,

CFGP WGS data covered 137 of them, while only 35 were

well imputedbyTOPMed,demonstrating thevalueofgener-

atingWGSdata for theCFcommunity. Although25.5%(35/

137) is not ideal, imputation substantially enhances over

genotyping array with 1–10 of these 137 variants directly

genotyped, or over earlier imputation references panels

(e.g., with 1000 Genomes reference, 15 of the 137 variants

can be well imputed). Therefore, beforeWGS data are avail-
Hum
able for every CF patient, imputation using TOPMed or

CFGP reference panel provides a substantial boost.
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Figure 4. Illustration of impact of imputation on PRS construction. (A) Imputation performed in target cohorts. We started with four
independent discovery cohorts (I–III are TOPMed imputed data, IV is WGS data), performed association analysis for each subset sepa-
rately and then meta-analyzed the association results. The meta-GWAS summary statistics was then used to construct PRS using the
PþT method. The constructed PRS was applied to the same 1992 target samples but with four different marker densities (in yellow
highlight): array genotype, TOPMed imputed, reduced CFGP imputed, or WGS data to compare the benefit of imputation in target
cohort. (B) Imputation performed in discovery cohorts. We started with the same first three discovery cohorts as in A, but adopted
three different marker sets (again in yellow highlight), as well as a fourth independent WGS cohort. We then performed association
analysis and meta-analysis for each marker set, and constructed three different PRSs using the three different meta-GWAS summary
statistics. The three PRSs were then applied to the same cohort to compare the performances.
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Table 5. PRS performance when applied to UW samples

Without imputati

Correlation between PRS and KNoRMA 0.0455

p value for the correlation 0.1191

Two-sample t test p value comparing 5%
extreme tails

0.7121

Two PRS formulae were applied to the 1397 UW samples. As detailed inMethods S
one without imputation and the other aided with imputation. Two-sample t test p
the top and bottom 5% PRS scores, either based on the PRS formula without impu
tive power of the two PRSs in separating samples in terms of their KNoRMA scor
(reflected by higher and more significant correlation with KNoRMA) and better d
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Web resources

1. TOPMed imputation server: https://imputation.

biodatacatalyst.nhlbi.nih.gov/#!

2. Eagle: https://alkesgroup.broadinstitute.org/Eagle/

3. Minimac4: https://genome.sph.umich.edu/wiki/

Minimac4

4. Bravo: https://bravo.sph.umich.edu/freeze8/hg38/

5. CFTR2: https://cftr2.org

6. plink v1.90: https://www.cog-genomics.org/plink/

1.9/

7. EPACTS: https://genome.sph.umich.edu/wiki/EPACTS

8. TOP-LD: http://topld.genetics.unc.edu/topld/index.

php

9. MetaMinimac2: https://github.com/yukt/Meta

Minimac2
on TOPMed imputation CFGP imputation

0.0779 0.0496

0.0075 0.0890

0.0380 0.0065

ection B, both PRS formulae were constructed from the same 6112 patients, but
value: performed two-sample t test of the true KNoRMA values for samples with
tation, or the TOPMed/CFGP-based imputation-aided one to assess the distinc-
es. Our results show that the imputation-aided PRS results in better prediction
istinctive ability to stratify patients.
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