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Summary
Genome-wide association studies (GWASs) have identified hundreds of thousands of genetic variants associated with complex diseases

and traits. However, most variants are noncoding and not clearly linked to genes, making it challenging to interpret these GWAS signals.

We present a systematic variant-to-function study, prioritizing the most likely functional elements of the genome for experimental

follow-up, for >148,000 variants identified for hematological traits. Specifically, we developed VAMPIRE: Variant Annotation Method

Pointing to Interesting Regulatory Effects, an interactive web application implemented in R Shiny. This tool efficiently integrates and

displays information from multiple complementary sources, including epigenomic signatures from blood-cell-relevant tissues or cells,

functional and conservation summary scores, variant impact on protein and gene expression, chromatin conformation information, as

well as publicly available GWAS and phenome-wide association study (PheWAS) results. Leveraging data generated from independently

performed functional validation experiments, we demonstrate that our prioritized variants, genes, or variant-gene links are significantly

more likely to be experimentally validated. This study not only has important implications for systematic and efficient revelation of

functional mechanisms underlying GWAS variants for hematological traits but also provides a prototype that can be adapted to

many other complex traits, paving the path for efficient variant-to-function (V2F) analyses.
Introduction

Genome-wide association studies (GWASs) have identified

thousands of genetic loci and hundreds of thousands of ge-

netic variants associated with various complex human dis-

eases and traits, but the underlying genetic mechanism for

the vast majority of these GWAS signals remains elusive.

With extensive sequencing and GWAS efforts, there is a

pressing need to convert the large and ever-growing num-

ber of significant GWAS variant-trait pairs into human-

interpretable functional or mechanistic knowledge.1

Most variants identified through GWASs reside in the non-

coding regions (e.g., >95% for blood cell traits2), and most

signals include multiple highly correlated variants or vari-

ants in strong linkage disequilibrium (LD). Pinpointing the

most likely causal variants within GWAS signals, and link-

ing these variants to their target genes, is challenging,

particularly as the number of GWAS loci and variants in-

creases. For hematological traits, for instance, our recent

GWAS meta-analyses3,4 have revealed over 7,000 loci,

with >148,000 variants associated with at least one blood

cell index at stringent genome-wide significance

threshold. Comprehensive and computationally efficient
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annotation and prioritization of such GWAS findings are

of ever-increasing interest.

Understanding how genetic variants contribute to a

phenotype is often referred to as the variant-to-function

(V2F) problem. Responding to this problem requires us to

determine causal genetic variants, relative cell types/states,

their target genes, and cellular/physiological functions.5

Functional experiments are needed to fully reveal molecu-

lar mechanisms, but we cannot yet afford to perform time-,

money-, and labor-consuming experimental validations of

thousands of loci involving hundreds of thousands of

potentially functional variants or regulatory elements con-

trolling their nearby genes, since each gene is likely regu-

lated by multiple variants, and each variant may regulate

multiple genes. Thus, computational methods are needed

to screen potential variants and their effector genes for

further experiments.

In this study, we focus on hematological traits. Hemato-

logical phenotypes (red blood cell, white blood cell, and

platelet counts and indices) are critical physiological inter-

mediaries in oxygen transport, immunity, infection,

thrombosis, and hemostasis and are associated with auto-

immune, allergic, infectious, and cardiovascular diseases.
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Hematological traits are highly heritable,6 and recent large

GWASs for hematological traits (including nearly 750,000

participants) identified thousands of variant-trait associa-

tions.2,4 In addition, there are multiple large-scale func-

tional experiments already available2,7,8 for hematological

traits, as well as fairly comprehensive functional annota-

tion resources relevant to blood tissues. This makes hema-

tological traits an ideal model for this type of V2F compu-

tational solution.

We have developed VAMPIRE: Variant Annotation

Method Pointing to Interesting Regulatory Effects, a tool

for the user to explore annotations encompassing epige-

nomic signatures, variant impact on protein and gene

expression, chromatin conformation information from

Hi-C and similar technologies, as well as publicly available

GWAS and phenome-wide association study (PheWAS)

results, creating a comprehensive annotation profile

for variants from recent trans-ethnic blood cell trait

publications3,4 with a flexible interface for adding addi-

tional future GWAS results. This interactive web applica-

tion implemented in R Shiny provides a model display

mechanism for annotating GWAS variants from diverse

complex traits, allowing selection of most likely causal var-

iants and their effector genes for experimental follow-up.

Importantly, we show the value of how variants and genes

nominated by VAMPIRE can highlight key regulators of

blood cell traits using independent functional assessment,

confirming the value of this annotation tool. While blood

cell traits are the focus for VAMPIRE, this framework

(including our R Shiny application) is adaptable for

annotation of other complex trait GWAS results and will

facilitate the connection between variant and function.
Material and methods

Variant annotations
The current version of VAMPIRE (Figure 1) includes GWAS results

from two studies (as detailed in the supplemental methods),

including all variants in 95% credible sets for fine-mapped hema-

tological-trait-associated loci from Chen et al.4 (N1 ¼ 148,019 var-

iants) and lead variants (N2 ¼ 2) from a TOPMed imputed GWAS

meta-analysis in African American and Hispanic/Latino popula-

tions.3 We plan to extend VAMPIRE as new trans-ethnic blood

cell trait genetic analyses are released.

The sources of the annotation used are stated clearly in the

VAMPIRE online application, with links or references to the orig-

inal data sources. As a brief summary, the annotation categories

are trivially split into six types (‘‘variant level,’’ ‘‘1D,’’ ‘‘2D,’’

‘‘3D,’’ ‘‘PheWAS,’’ and ‘‘GWAS’’). First, variant level contains data

on phenotypic association from the original publication or pre-

print (such as the p value for association with a given hematolog-

ical trait, effect size, and posterior probability of inclusion for fine-

mapping credible sets). Second, 1D refers to epigenomic or

sequence constraint features. This displays selected output from

WGSA,9 including functional prediction scores, conservation

scores, and epigenetic information gathered from GeneHancer,10

FANTOM5,11,12 Roadmap,13 and ENCODE.14 ATAC-seq peaks

from recent studies for blood cell traits15,16 and key histone chro-
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matin immunoprecipitation sequencing (ChIP-seq) peaks such as

H3K9me3, H3K36me3, H3K4me1, H3K4me3, and H3K27Ac

generated across blood-cell-related tissues from Roadmap Epige-

nomics are also included.13,17 We further include information

regarding whether each variant resides in any selective sweep re-

gion detected from multiple populations in the 1000 Genomes

Project18 using the S/HIC method.19,20 Information is displayed

based on the tissue relevance to the blood cell phenotype (see Sup-

plemental methods). All variants have 1D annotation, but for pri-

oritization purposes as described below in the five categories for

noncoding variant annotation, we define 1D annotation as FAN-

TOM5_enhancer_robust ¼ Y (yes), or Genehancer_feature ¼ ‘‘Pro-

moter’’ or ‘‘Enhancer’’ or ‘‘Promoter/Enhancer,’’ or coreMarks (for

any relevant roadmap epigenomic category) ¼ ‘‘Enhancers’’ or

‘‘Active TSS.’’ Users can then additionally filter by criteria such as

functional prediction and conservation scores.

For the ‘‘2D’’ annotations, we included impact on gene expres-

sion and splicing ratios (expression quantitative trail locus

[eQTL] and splicing QTL [sQTL] information) and impact on pro-

tein abundance (protein QTL [pQTL] information21) from public

sources relevant to blood cell traits. This includes both bulk and

cell-type-specific sources from the public domain (eQTLGen,22

CAGE,23 BIOS24 for whole blood, and Raj et al.25 for purified

CD4þ Tcells andmonocytes). Information available in these sour-

ces varies, but generally we at aminimumdisplay the effect size es-

timate, p value, the allele assessed, and the gene or protein

involved. Variants were matched across sources based on chromo-

some, position, and alleles of each variant. Only significant results

(based on false discovery rate [FDR] or other publication-specific

thresholds) from the respective sources are displayed in VAMPIRE;

we do note that formal co-localization analyses would still need to

be performed to determine if blood-cell-related and gene/protein

expression QTL signals truly coincide.

For the 3D annotations, we include information on 3D genome

conformation, linking blood-lineage-specific regulatory elements

to target genes from various sources. More specifically, using Hi-

C data we incorporated statistically significant long-range chro-

matin interactions (LRCI)17,26,27 calculated from Fit-Hi-C,28 loops

using the HiCCUPsmethodology,26 and super-FIREs for related tis-

sues.17 Two Promoter-Capture Hi-C (PCHi-C) data sources29,30

were also incorporated and matched with the 2D results to high-

light consistent evidence regarding the affected gene(s) across

2D and 3D annotations. VAMPIRE displays information on the

number of loops, LRCI, PCHi-C interactions, FIREs, or super-FIREs,

as well as significance measures such as p values, FDR, or CHI-

CAGO scores where applicable. This 3D annotation information

can also be visualized via our HUGIn browser.31

The last two data groups present results from two PheWAS sour-

ces4,32 and GWAS results of blood cell traits from GWAS catalog,33

allowing the user to evaluate if hematological trait-associated var-

iants may also influence other complex traits.

To visualize and leverage these multiple annotation categories

for further analysis or prioritization of experimental validations,

VAMPIRE efficiently displays and integrates relevant variant infor-

mation, allowing the user to investigate either all the variants an-

notated or subsets based on annotation category groupings,

searching either by variant or by gene name. The comprehensive

annotation for the variants is summarized using a five-category

grouping created for highlighting the most promising variants,

as they have various types of annotation. Specifically, the five cat-

egories for noncoding variants are (1) themost restrictive category,

containing variants that have 1D, 2D, and 3D annotation and the
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Figure 1. Overall framework of this
study
VAMPIRE starts with GWAS variants in the
95% credible sets, integrates different an-
notations, and assigns them into different
prioritization categories. We further
demonstrated that our top prioritized cate-
gory is enriched with variants that were
experimentally validated. VAMPIRE pro-
vides a prototype that can be adapted to
many other complex traits, paving the
path for efficient variant-to-function
(V2F) analyses.
genes implicated by 2D and 3D evidence are consistent; (2) con-

taining variants with 1D, 2D, and 3D evidence, but the genes

implicated from different resources are not consistent; (3) 2D

and 3D with consistent gene evidence between the 2D and 3D an-

notations; (4) variants with 2D and 3D information and no consis-

tent gene implied; and (5) variants with 1D and 3D evidence. We

also have a predicted high-impact coding variant category dis-

played, including high-confidence loss-of-function (LoF) variants

and likely influential missense, in-frame insertions and deletions

(indels), and synonymous variants. Variants without strongly

compelling variant annotation are still displayed but are not listed

in these high-priority categories. The user can further subset re-

sults by hematological trait, hematological trait category, or (for

the Chen et al.4 paper) the ancestry-specific grouping in which a

given credible set was derived (trans-ethnic, European, East Asian,

South Asian, Hispanic/Latino, or African ancestry). In addition,

the user can restrict the amount of information presented by se-

lecting which tables to be displayed. All tables can be exported

in a csv or tab delimited format.
Enrichment analysis
To assess whether the variants prioritized by VAMPIRE are more

likely to be functionally impactful, we performed enrichment

analysis at three different levels: variant level, gene level, and

variant-gene pair level, leveraging data generated from previously

published functional experiments.2,7,8 For each set of analyses, we

conducted Fisher’s exact test and calculated odds ratios (ORs) and

one-sided p values.

At the variant level, we assessed the enrichment of variants that

modify transcription factor (TF) binding motif2 among our anno-

tation category 1 variants. We compared variants in category 1
Human Genetics and Genomic
with both uncategorized variants and var-

iants in other categories. Recently, Vuck-

ovic et al.2 characterized variants that

affect erythropoiesis or hematopoiesis by

modifying related TF motifs, such as for

KLF1, KLF6, MAFB, and GATA1. We chose

these four erythroid TFs as positive control

TFs and two non-erythroid TFs (IRF1 and

IRF8) as negative controls.

At the gene level, we evaluated the genes

interrogated by Nandakumar et al.8 with a

pooled short hairpin RNA (shRNA)-based

loss-of-function approach. Specifically,

Nandakumar et al.8 assessed 389 genes in

the neighborhood of 75 loci associated

with red blood cell traits,34 to identify po-
tential causal genes underlying these GWAS signals. We assessed

the enrichment of genes validated by shRNA experiments among

those prioritized in VAMPIRE’s category 1. Note that the categories

were previously defined at the variant level. Here we extend the

variant category to gene category as the strongest category where

a genome-wide significant variant linked to this gene falls in. Due

to the limited sample size of uncategorized genes, especially when

overlapping with genes in the shRNA paper (leaving us with only

two genes), we compared genes in category 1 to genes in all other

categories. We also performed enrichment analyses at both variant

and gene levels for categories 2–5, comparing one category to the

others to see if any specifically exhibit a higher level of enrichment

than the others. Specifically, we compared category 2 to categories

3–5; compared category 3 to categories 2, 4, and 5; and compared

category 5 to categories 2–4.

At the variant-gene pair level, we employed the enhancer-gene

connections validated via CRISPRi-FlowFISH experiments by Fulco

et al.7 in their activity-by-contact (ABC) paper. Specifically, Fulco

et al.7 tested pairs of candidate cis regulatory elements (CREs,

�500 bp regions) and their potential effector genes via CRISPRi

perturbations of the CREs, in multiple cell lines including the

K562 cells. Fulco et al.7 tested 4,124 CRE-gene pairs in total, of

which 175 were significant from their experiments. We overlap-

ped their tested CREs with variants in our VAMPIRE annotation

database. We define a VAMPIRE variant-gene pair confirmed if

the variant overlaps an ABC-validated CRE and the linked genes

in VAMPIRE (from QTL and chromatin capture conformation ev-

idence) overlap the corresponding effector gene for that CRE via

ABC’s CRISPRi-FlowFISH experiment. We focused on ABC experi-

ments performed on the K562 cells (instead of GM12878 cells,

where a very small number of CREs were tested), as the number

of tested CRE-gene pairs was not too small for robust statistical
s Advances 3, 100063, January 13, 2022 3



inference. Matching the K562 cell line, we focused only on vari-

ants associated with red blood cell traits. Similar to the above

two sets of enrichment analyses, we focused on annotations in

VAMPIRE’s prioritization category 1. Specifically, we tested

whether variant-gene pairs prioritized in VAMPIRE’s category 1

are enriched within ABC’s validated enhancer-gene connections.

Given the CREs tested in the ABC paper are rather short

(�500 bp), we also performed sensitivity analysis by first extend-

ing the CRE regions by 51 kb and 55 kb and then overlapping

variants with these extended CREs, to ensure robust conclusions.
Comparison to FUMA
To further assess the capability of VAMPIRE in terms of gene prior-

itization, we compared the genes prioritized by VAMPIRE to genes

prioritized by FUMA35 for seven red blood cell traits, including he-

matocrit (HCT), hemoglobin (HGB), mean corpuscular hemoglo-

bin (MCH), mean corpuscular hemoglobin concentration

(MCHC), mean corpuscular volume (MCV), red blood cell (RBC)

count, and red blood cell distribution width (RDW). We uploaded

the GWAS summary statistics for each trait separately to the FUMA

website with all default parameters using FUMA’s SNP2GENE func-

tion. We then combined the prioritized genes for all seven red

blood cell traits to compare the two methods. Similar to the

gene-level enrichment analysis described above, we evaluated

the number of shRNA-assessed genes and shRNA-validated genes

from the shRNA experiments overlapping with the two methods.

Venn diagrams were used for better illustration of the results.
Results

Overview of VAMPIRE annotations

The overall framework of VAMPIRE is illustrated in Figure 1.

We started with all variants in 95% credible sets from our

recent trans-ethnic study for hematological traits (total

148,019 variants)4 and lead variants (2 variants) from Ko-

walski et al.3 We incorporated six types of annotations

(detailed in Material and methods): GWAS summary statis-

tics and posterior probability of inclusion from our previ-

ous fine-mapping analyses;4 epigenomic or sequence con-

straints features (1D); eQTL, sQTL, and pQTL information

(2D); information on 3D genome conformation (3D); re-

sults from two PheWAS sources4,32 (PheWAS); and GWAS

results from blood cell traits fromGWAS catalog33 (GWAS).
VAMPIRE variant categories

To visualize and prioritize variants along with their corre-

sponding candidate regulatory regions and their potential

effector genes, we leverage the aforementioned six types of

annotation to group these �148,000 blood cell traits’ asso-

ciated variants into various prioritization categories. Spe-

cifically, for non-coding variants, we classified them into

five categories (detailed in Material and methods). Among

them, category 1 is the most restrictive category, contain-

ing variants that meet all the fulling criteria: have 1D,

2D, and 3D annotation and 2D and 3D evidence supports

the same effector genes (i.e., gene-consistent). Variants in

category 2 also are required to have 1D, 2D, and 3D anno-

tation simultaneously, but the genes implicated by 2D and
4 Human Genetics and Genomics Advances 3, 100063, January 13, 2
3D evidence are inconsistent. For example, if a variant

rsXXX is an eQTL of gene A according to 2D annotations,

and it also resides in a region that forms a loop with the

promoter region of gene A, we say the 2D and 3D evidence

is gene-consistent, and rsXXX will be classified in category

1. However, if rsYYY is an eQTL of gene B according to 2D

annotations, but there is only information suggesting the

rsYYY-residing region forms a loop with the promoter re-

gion of gene C, we say it is not gene-consistent and will

classify rsYYY in category 2. Of course, it’s possible that a

SNP is an eQTL for multiple genes (e.g., gene D and gene

E) and its residing region forms loops with promoters of

multiple genes (e.g., gene E and gene F). As long as we

can find one gene that is shared, we classify the variant

as gene-consistent for the shared gene(s). In practice, we

are more confident to prioritize functional experiments

for rsXXX than for rsYYY, since we have consistent support

from three independent sources of information for rsXXX:

1D suggesting it is regulatory, and 2D (i.e., eQTL or pQTL)

and 3D (i.e., chromatin conformation) both suggesting it is

regulating gene A).

Variants in category 3 and 4 have only 2D and 3D anno-

tation. Category 3 includes those with consistent target

genes suggested by 2D and 3D annotation, while variants

in category 4 have 2D and 3D annotations suggesting

different/inconsistent target genes. Category 5 includes

those with 1D and 3D annotation but no 2D evidence. Var-

iants not falling into any of the five categories are classified

as uncategorized. Note that due to tissue or cell type spec-

ificity for some 2D (e.g., eQTL) and 3D (e.g., pcHiC) anno-

tations, such variant-level categorization was separately

performed for different traits. For instance, for white blood

cell-related indices (e.g., monocyte), we considered 2D an-

notations from whole blood, peripheral blood mononu-

clear cells (PBMCs), and monocytes, while for platelet-

related traits (e.g., platelet count), we only considered 2D

annotations from whole blood and PBMCs. Suppose a

variant has 1D regulatory evidence and forms a loop

with gene A from 3D annotations. Furthermore, it is an

eQTL for gene A based on monocyte, but is an eQTL only

for another gene B from whole blood and PBMCs; the

variant falls into category 1 for monocyte count, but cate-

gory 2 for platelet count. In summary, a variant may fall

into different categories for different traits. In addition,

each gene is categorized according to the prioritization cat-

egories according to its linked variant(s). When its linked

variants fall in multiple categories, the gene is assigned

to the most highly prioritized category. The numbers of

variants and genes in each category are shown in Table 1.

Enrichment analysis

Our enrichment analyses employing multiple previously

published functional validation experiments encompassing

variant-level, gene-level, and variant-gene pair levels all

showed promising results. Specifically, at the variant level,

compared to uncategorized variants, we found significant

enrichment of variants affecting TF binding motifs among
022



Table 1. Numbers of variants and genes in each category

Explanation
Unique
variants (#)

Variant-trait
pairs (#) Genes (#)

Category 1 1D & 2D & 3D & gene-consistent 13,862 19,988 9,857

Category 2 1D & 2D & 3D & not gene-consistent 21,269 30,276 2,735

Category 3 2D & 3D & gene-consistent 14,155 20,192 1,300

Category 4 2D & 3D & not gene-consistent 33,732 48,497 1,621

Category 5 1D & 3D 11,820 14,507 1,578

Uncategorized others 62,489 78,477 174

Total 148,215 211,937 17,265

Note that the category was defined initially at variant level, separately for each blood cell trait. One variant may fall in category 1 for one trait but in other cat-
egories for other traits. In total, we have 148,215 unique variants and 211,937 variant-trait association pairs. For gene-level category, each gene is categorized
according to the prioritization categories of its linked variant(s). When its linked variants fall in multiple categories, the gene is assigned to the most highly prior-
itized category.
variants prioritized in category 1 of VAMPIRE (Figure 2) for

all the erythroid TFs (p< 8.1E�4) but GATA1 (p¼ 0.18) (Ta-

ble 2), likely due a smaller sample size of variants. In

contrast, neither of the two negative control TFs (IRF1 and

IRF8) showed any significant enrichment (p ¼ 0.22 and

0.62). A similar pattern holds when comparing category 1

variants to all other categories, but the significance level

decreased (Table S1), which suggests that variants in other

prioritized categories, although not as enriched at TF bind-

ing sites as category 1 variants, tend to exhibit higher levels

of enrichment than the uncategorized variants. At the gene

level, we focused on two statistics: (1) number of genes

selected for shRNA experiments, since genes were more

likely to be selected for experiments when they demon-

strated some prior evidence of potential causality; and (2)

number of genes validated (p < 0.05) by shRNA experi-

ments. We compared the number of genes in our annota-

tion category 1 and all other categories and found that

both shRNA-assessed genes (p ¼ 3.5E�13) and validated

genes (p ¼ 3.1E�8) show strong enrichment among those

in our annotation category 1 (Table 3), and the estimated

enrichment score for validated genes (OR ¼ 4.65) is almost

double of that for shRNA-assessed genes (OR ¼ 2.37).

We also conducted similar enrichment analyses at

variant and gene levels to compare categories 2–5. Neither

variant-level (Table S1) nor gene-level (Table S2) enrich-

ment results is significant at all, except for category 3

(i.e., both 2D and 3D evidence exist and suggesting the

same gene[s]). Category 3 is significantly (p ¼ 0.037) en-

riched with KLF1 motif variants (OR ¼ 1.44) and is signif-

icantly (p ¼ 0.027) enriched with shRNA-assessed genes

(OR ¼ 1.70). These results suggest category 3 may be the

next category most worthy of further investigation after

category 1, but the evidence is not strong: the significance

levels are not very high, other TF motifs are not enriched,

and sample size (i.e., number of genes tested) is small.

However, category 2 (1D/2D/3D but not gene-consistent)

is significantly favorable over category 4 (2D/3D but not

gene-consistent) (Table S3), suggesting that the additional

1D information provides more evidence.
Human
Finally, at the variant-gene pair level, we also observed

enrichment among variants selected into VAMPIRE’s cate-

gory1 (Table4).Whenrestrictingonly tovariants incategory

1 and associated with red blood cell traits and without ex-

tending the CRE regions, only 7 of VAMPIRE’s variant-gene

pairs can be found in ABC’s CRISPRi-FlowFISH experiments,

of which 6 are not significant and 1 is significant.While not

significant (p ¼ 0.26), the direction of enrichment is never-

theless encouraging (one of seven, or 14.3%, confirmed by

CRISPRi-FlowFISH experiments) and 3-fold greater than

that among all/background pairs from Fulco et al.,7 where

175 out of 4,124 variant-gene pairs (4.2%) were confirmed.

Note that all the confirmed pairs were linked with variants

associated with red blood cell traits. Further generalizing to

allVAMPIREannotationcategoriesandtovariantsassociated

withanybloodcell trait, theenrichmentOR increases to8.30

withpvalue9.0E�5, indicating thatvariant-genepairs prior-

itized by VAMPIRE’s five categories have much higher odds

of being functional. To further accommodate causal variants

tagged by GWAS variants not falling into the short 500 bp

CREs, we extended the CREs by 51 kb or 55 kb and per-

formed similar enrichment analysis. Our conclusions re-

mained qualitatively similar (Table 4), but the enrichments

increased in significance, thanks to larger sample size (in

this context, the largernumber of variant-genepairs contrib-

uting to the analysis) and suggesting that more liberal win-

dows of cis-regulatory regions can capture a higher rate of

functional variant-gene pairs. For example, the enrichment

for category 1 variants associated with red blood cell traits

reached an OR of 15.77 (p ¼ 3.8E�6) and 16.68 (p ¼
3.1E�15) for 1 kb and 5 kb extension, respectively. We thus

conclude that such enrichment is significant and robust to

the extension of CREs.

Application example

Figure 3 shows one example at the CALR locus associated

with red blood cell traits. Fulco et al.7 confirmed by

CRISPRi-FlowFISH experiment that CRE chr19:

12,996,905–12,998,745 (hg19) regulates gene CALR

(adjusted p value, 1.9E�7). Annotations compiled by
Genetics and Genomics Advances 3, 100063, January 13, 2022 5
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Figure 2. Variant-level TF motif enrich-
ment analysis
Each dot represents an enrichment score,
with the line depicting 95% confidence in-
terval (CI). All the upper bounds of these
CIs are infinity. The p values of the enrich-
ment are reflected by the dot size at the
OR point estimate, with a larger dot indi-
cating more significant enrichment.
VAMPIRE suggest, consistently, that CALR is linked to

rs8110787 (chr19: 12,999,458, hg19) in category 1.

rs8110787 is associated with several red blood cell traits,4

including HCT, MCH, MCV, and red blood cell counts.

Based on genomic distance alone, CALR is not the nearest

gene to rs8110787, with several other closer genes. Howev-

er, based on H3K27ac HiChIP data in K562 cells,36

rs8110787 significantly interacts with CALR promoter re-

gion (p < 1E�120), suggesting that CALR is a potential

target gene regulated by the CRE around rs8110787. This

variant is also an eQTL of CALR from CAGE23 (p ¼
9.4E�16) and BIOS24 (p ¼ 1.0E�25) and is an enhancer
Table 2. Variant-level transcription factor (TF) motif enrichment
analysis

Category
1 Uncategorized p value

Odds
ratio

All
RBCT
variants

5,687 21,947

KLF1 34 34 7.10E�08 3.86

KLF6 21 14 4.30E�07 5.79

MAFB 13 13 8.10E�04 3.86

GATA1 8 19 0.18 1.63

IRF1 12 49 0.62 0.95

IRF8 19 58 0.22 1.26

Four erythroid TFs and two non-erythroid TFs were selected. Fisher’s exact test
was applied to test for enrichment. Three erythroid TFs show enrichment for
our VAMPIRE annotation category 1 (MAFB, KLF6, KLF1, p < 0.05). GATA1
motif variants also have some evidence of enrichment (odds ratio ¼ 1.625),
but this enrichment is not significant (p ¼ 0.18), likely due to smaller sample
size of variants. Two non-hematopoiesis transcription factors selected as con-
trols do not show significant enrichment with VAMPIRE functional annotation
category 1. RBCT, red blood cell trait associated.
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in K562 leukemia cells (E123) from

Roadmap,13 adding additional evi-

dence. Our VAMPIRE successfully

highlights this rs8110787-CALR pair

in its category 1.

As a further example of the utility of

the VAMPIRE application, we present

the annotation results for one of the

lead genome-wide significant variants

fromrecent trans-ethnicGWASanalyses

from Chen et al.4 For our analysis, we

were particularly interested in exploring

low-frequency variants and those more
common in those of non-European ancestry. We were able

to quickly rank and prioritize variants for further examina-

tion using the annotation categories described above,

including the low-frequencyvariant rs112097551associated

with MCV, MCH, and red blood cell count.

This low-frequency intergenic variant rs112097551

(GATA2-RPN1 locus, 0.15% minor allele frequency in

Chen et al.4 trans-ethnic analysis) has no close linkage

disequilibrium proxies in African or European populations

and thus was not compared to other highly correlated var-

iants. Based on variant frequency, particularly in European

ancestry populations, we had no expectation this variant

would have eQTL or pQTL evidence (2D annotation),

given currently available sample sizes for eQTL and pQTL

analysis. For low-frequency variants, 1D and 3D annota-

tion would be the highest annotation category likely for

a variant of interest like rs112097551. The variant is �53

more common among African versus non-African samples

in gnomAD version 2.1.1. It is the only variant in the cred-

ible set in fine-mapping analyses from Chen et al.4 1D

annotation suggests this variant is highly conserved

(CADD Phred score of 20.4, meaning the variant is among

the top 1% of deleterious variants in the human genome),

and it is rated as deleterious by FATHMM-XF (rank score

0.99169, close to the maximum score of 1). It is also in

open chromatin in megakaryocyte-erythroid progenitor

cells, based on hematopoietic ATAC-seq data.37 3D annota-

tion from PCHi-C data in erythroblasts from Javierre

et al.29 links this variant to the gene RUVBL1 �500 kb

away, as well as noncoding transcripts RNU2-37P and

RUVBL1-AS1. Based on these data, which can be quickly

displayed using the VAMPIRE application, we most

recently validated experimentally this candidate func-

tional enhancer variant via base and nuclease editing.38



Table 3. Gene level enrichment analysis

Category
1

Other
categories p value

Odds
ratio

All
category
genes

9,857 7,408

shRNA-
assessed
genes

262 83 3.50E�13 2.37

shRNA-
validated
genes

68 11 3.10E�08 4.65

Fisher’s exact test was applied to test for enrichment. Both shRNA experiment
assessed genes and validated genes show significant enrichment in our most
restrictive VAMPIRE annotation category (category 1).
Comparison to FUMA

FUMA35 is an integrative web-based platform using multi-

ple different sources of biological evidence to facilitate

functional annotation of GWAS results, gene prioritiza-

tion, and interactive visualization. We compared our

VAMPIRE and FUMA, in terms of the number of genes

prioritized, shRNA-assessed genes, and validated genes of

Figure 4, for red blood cell traits. FUMA prioritized 4,070

genes (A1 þ A2 þ A3), where 1,886 genes are also priori-

tized by VAMPIRE category 1 (A1) with an additional

769 genes in categories 2–5 of VAMPIRE (A2). The total

number of genes prioritized by VAMPIRE category 1 (n

¼ 4,832, A1 þ A4) is similar to that by FUMA (n ¼
4,070), but that number is almost twice that of FUMA

when considering all the categories of VAMPIRE (n ¼
7,922, A1 þ A2 þ A4 þ A5). We evaluated the prioritized

genes using data from the shRNA experiments. We first
Table 4. Variant-gene pair level enrichment analysis

Not significant S

All pairs from Fulco et al.7 3,949 1

Confirmed pairs in category 1 for RBC traits 6 1

Confirmed pairs in category 1 for all traits 6 1

Confirmed pairs in all categories for all traits 19 7

Confirmed pairs in category 1 for RBC traits
(51 kb)

10 7

Confirmed pairs in category 1 for all traits
(51 kb)

21 9

Confirmed pairs in all categories for all traits
(51 kb)

70 2

Confirmed pairs in category 1 for RBC traits
(5 5 kb)

27 2

Confirmed pairs in category 1 for all traits (5
5 kb)

64 2

Confirmed pairs in all categories for all traits
(5 5 kb)

160 3

We performed analysis for three variant annotation pools (category 1, red blood c
tation priority category (1–5), any blood cell trait associated) and three CRE length
for all three variant annotation pools. These enrichments are also robust to the ex

Human
checked genes assessed in the shRNA experiments

(Figure 4B) and observed similar proportions of method-

specific prioritized genes assessed. Comparing FUMA

and VAMPIRE category 1, for example, out of the 2,184

(A2 þ A3) FUMA-specific genes, 79 (B2 þ B3) are assessed

(3.6%); out of the 2,177 (A4) VAMPIRE category 1-specific

genes, 84 (B4) are assessed (3.9%). We also found that

shRNA-assessed genes exhibit a higher level of sharing

than all genes prioritized. Again, comparing FUMA and

VAMPIRE category 1, 178 (B1) out of 341 (B1 þ B2 þ B3

þ B4) shRNA-assessed genes (52.2%) are shared between

the two methods. In contrast, 1,886 (A1) out of 6,247

(A1 þ A2 þ A3 þ A4) of all genes prioritized (30.2%) are

shared. Finally, compared to FUMA, VAMPIRE category 1

led to a larger number (23 [C4] specific to VAMPIRE cate-

gory 1 versus 16 [C2 þ C3] specific to FUMA, Figure 4C)

and larger proportion (27.4% [C4/B4] versus 20.3% [(C2

þ C3)/(B2 þ B3)], although not statistically significant

due to small number of genes involved) of shRNA-vali-

dated genes (Figures 4B and 4C). These results suggest

that VAMPIRE is complementary to FUMA, with VAMPIRE

category 1 genes more likely being functional.
Discussion

As genotyped sample sizes increase and meta-analysis ef-

forts grow ever larger, more variant-trait pairs are identified

for complex traits than can be easily annotated on a

variant-by-variant basis. New, user-friendly applications

are needed for rapid display of functional annotation in-

formation and prioritization of variants for further func-

tional follow-up to pave the V2F path. Our VAMPIRE tool
ignificant Significant (%) p value Odds ratio

75 4.24

14.29 0.26 3.76

14.29 0.26 3.76

26.92 9.00E�05 8.3

41.18 3.80E�06 15.77

30 3.50E�06 9.66

1 23.08 4.60E�10 6.76

0 42.55 3.10E�15 16.68

3 26.44 3.80E�12 8.1

7 18.78 3.10E�13 5.21

ell [RBC] trait associated; category 1, any blood cell trait associated; any anno-
s. Fisher’s exact test was applied to test for enrichment. We found enrichment
tension of CREs.
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Figure 3. Variant-gene pair example (rs8110787-CALR) visualization from HUGIn231

Fulco et al.7 confirmed via CRISPRi experiments that chr19: 12,996,905–12,998,745 (hg19) regulates gene CALR (adjusted p value,
1.9E�7), which is highly expressed in erythroblasts. Based on annotations in VAMPIRE, CALR is linked to rs8110787 (chr19:
12,999,458, hg19) in prioritization category 1, including higher-than-expected physical interactions with the CALR locus from erythro-
blast pcHiC data,29 eQTL of CALR in CAGE23 and BIOS,24 erythroid ATAC-seq peak,16 and H3K27ac peak in K562 leukemia cells.13

rs8110787 is associatedwith several red blood cell traits (namely hematocrit [HCT], mean corpuscular hemoglobin [MCH],mean corpus-
cular volume [MCV], and red blood cell count), as reported in Chen et al.4
provides an example of how the publicly available code

can be adapted to accommodate other sources of annota-

tion specific to other complex trait GWAS results or to

accommodate future blood cell trait GWASs and annota-

tion resources. Along with the addition of more blood

cell trait genetics papers published in the future, VAMPIRE

could also be used as written to annotate GWAS results for

other blood-related phenotypes, such as recent GWASs of

risk of myeloproliferative neoplasm or clonal hematopoie-

sis.39,40

For non-coding variants, we group them in five cate-

gories, and we have the following conclusions and obser-

vations in terms of variant prioritization. First, category 1

is the most restrictive category, and variants in category 1

are more likely to be functional than those in the other cat-

egories. Second, beyond category 1, we only found cate-

gory 2 shows enhanced functional potential over category

4, while there are no strong preferences among the other

categories. We have performed both variant-level (Table

S1) and gene-level (Table S2) enrichment analyses

comparing categories 2–5 and found no significant results,

except for category 3. This may suggest that category 3 is

slightly more likely to contain functional variants than

categories 2, 4, and 5. However, the evidence is not strong:

the significance levels are not very high, other TF motifs

are not enriched, and sample size (i.e., number of genes

tested) is small. Third, variant frequency information can

also be helpful in interpreting eQTL/pQTL data. For a

low frequency or rare variant, power is low in current

eQTL/pQTL studies with small to moderate sample sizes.

Thus, the absence of 2D evidence most likely reflects the

power issue and should be treated as eQTL/pQTL not hav-

ing been adequately assessed rather than truly not associ-
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ated with the expression of gene(s) or the abundances of

protein(s). Finally, different annotations have different

weights depending on the trait of interest. For instance, an-

notations frommegakaryocytes are critically important for

platelet-related traits but can be rather safely ignored for

red blood cell-related traits. Investigators focusing on

different traits should use their discretion to up-/down-

weigh various annotations.

There are several reasons that a variant does not show up

in the current VAMPIRE. First, we only included variants in

credible sets from the recent GWAS efforts for blood cell

traits.3,4 Variants not in those fine-mapping credible sets

were not annotated. It is possible that such variants play

functional roles but were not detected by GWASs and

further missed by subsequent fine mapping. However,

the probability tends to be low, particularly for common

causal variants, given the >750,000 sample size involved

in the generation of the credible sets. Second, for the

included variants (i.e., credible set variants for blood cell

traits), not falling in the prioritization categories (e.g., un-

categorized) means that they are less likely to play func-

tionally important roles compared to variants in categories

1–5, because no regulatory evidence or target genes are sug-

gested based on the functional annotation information we

have. Of course, it is possible that some of these uncatego-

rized variants are indeed functional, but their functions are

not reflected by the functional data we currently have.

As we accumulate additional functional validation data,

including high-throughput massively parallel reporter as-

says (MPRAs), medium-throughput CRISPRi/CRISPRa,

and low-throughput mouse xenotransplant experiments,

we will provide statistics summarizing experimental vali-

dation results (e.g., number of variants in the category
022
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Figure 4. Venn diagrams comparing FUMA and VAMPIRE
(A) All prioritized genes by FUMA and VAMPIRE. (B) shRNA-assessed genes overlap with genes prioritized by FUMA and VAMPIRE. (C)
shRNA-validated genes overlap with genes prioritized by FUMA and VAMPIRE. In each panel, numbers are the number of genes
belonging to the corresponding category. A1: shared between FUMA and VAMPIRE category 1; A2: shared between FUMA and VAMPIRE
other categories (categories 2–5); A3: FUMA-specific genes; A4: VAMPIRE category 1-specific genes; A5: VAMPIRE other category-specific
genes. Similar interpretation for B1–B5, C1–C5.
followed up, proportion that show evidence of functional

impact in their experiments) for each of the VAMPIRE cat-

egories and for user-defined categories. Importantly, we

illustrate the value of VAMPIRE using existing indepen-

dent functional validation and therefore illuminate the

value of this type of annotation tool in enabling one to

go from variant to function for blood cell traits and other

complex phenotypes.

We also note that there are some limitations of VAM-

PIRE. First, comprehensive annotations specific to various

cell types and cell states would further enhance classifica-

tion and prioritization accuracy of functional variants or

regulatory elements and their target genes. Although

data are increasingly being generated by us15,16 and

others,29,36 and have been incorporated into VAMPIRE

where available, interrogations in a cell-type- or state-

specific manner are still much needed. For instance, our

recent work has demonstrated cell-type or tissue-specific

FIREs17,41 and super-interactive promoters (SIPs)42 play

key regulatory roles and aid the identification and prioriti-

zation of functional regulatory elements and their corre-

sponding genes. As more experimental data are generated,

we will update VAMPIRE accordingly. Second, our list of

148,019 variants derives primarily from fine-mapping

studies, which may be inaccurate in loci where more

than one independent or partially independent signal

exists. However, this limitation cannot be resolved before

more powerful methods are developed for fine-mapping

analysis for trans-ethnic GWASs. Finally, most of the anno-

tations are based on analyses in European ancestry individ-

uals (e.g., eQTL, pQTL, chromatin conformation, etc.).

Many ongoing efforts, including ours, are generating

resources for non-European ancestry samples. For

example, we are involved in several recently funded efforts

to generate RNA-sequencing data in non-European

ancestry individuals in hematopoietic cell types and

anticipate relevant eQTL and sQTL annotations being

added to VAMPIRE in upcoming years.
Human
In conclusion, we have built a comprehensive annota-

tion tool, VAMPIRE, which provides characterization and

prioritization of blood cell trait-related GWAS signals.

Our results using existing functional experiments demon-

strate that variants and genes prioritized by VAMPIRE are

significantly more likely to be functionally validated at

either the variant, gene, or variant-gene pair level. Annota-

tion tools like VAMPIRE, which could be easily modified to

apply to additional complex traits and diseases, are neces-

sary to translate knowledge of GWAS-significant variants

to target genes and biological insights and to guide our de-

cisions to prioritize experimental validations of most likely

functional regulatory variants/elements and their effector

genes.
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