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Abstract

Hematological measures are important intermediate clinical phenotypes for

many acute and chronic diseases and are highly heritable. Although genome‐
wide association studies (GWAS) have identified thousands of loci containing

trait‐associated variants, the causal genes underlying these associations are

often uncertain. To better understand the underlying genetic regulatory

mechanisms, we performed a transcriptome‐wide association study (TWAS) to

systematically investigate the association between genetically predicted gene

expression and hematological measures in 54,542 Europeans from the Genetic

Epidemiology Research on Aging cohort. We found 239 significant gene‐trait
associations with hematological measures; we replicated 71 associations at

p< 0.05 in a TWAS meta‐analysis consisting of up to 35,900 Europeans from

the Women's Health Initiative, Atherosclerosis Risk in Communities Study,

and BioMe Biobank. Additionally, we attempted to refine this list of candidate
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genes by performing conditional analyses, adjusting for individual variants

previously associated with hematological measures, and performed further

fine‐mapping of TWAS loci. To facilitate interpretation of our findings, we

designed an R Shiny application to interactively visualize our TWAS results by

integrating them with additional genetic data sources (GWAS, TWAS from

multiple reference panels, conditional analyses, known GWAS variants, etc.).

Our results and application highlight frequently overlooked TWAS challenges

and illustrate the complexity of TWAS fine‐mapping.
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1 | INTRODUCTION

Genome‐wide association studies (GWAS) have identi-
fied thousands of loci containing hematological trait‐
associated variants (i.e., variants associated with red cell,
white cell, and platelet traits), and previous Mendelian
randomization and phenome‐wide association study
analyses have highlighted the likely causal role of he-
matological trait‐associated genetic variants in a variety
of disorders, including autoimmune conditions and cor-
onary heart disease (Astle et al., 2016; Chen et al., 2020;
Vuckovic et al., 2020). Unfortunately, these individual
single nucleotide polymorphism (SNP)‐based GWAS
make it difficult to identify regulatory variants with small
effect sizes which in aggregate impact the same gene,
even in very large sample sizes, and they identify regions
of associated variants whose biological function is often
not clear (Gamazon et al., 2015).

A transcriptome‐wide association study (TWAS) is
one gene‐based method that systematically investigates
the association between genetically predicted gene ex-
pression and phenotypes of interest, which can increase
the power to identify novel trait‐associated loci and may
elucidate mechanisms of biological function (Gamazon
et al., 2015; Gusev et al., 2018; Hu et al., 2019; Zhou
et al., 2020). However, many challenges associated with
TWAS, such as loci containing multiple associated genes,
correlated gene expression, and bias with expression
panels (Wainberg et al., 2019) can complicate TWAS
results interpretation, particularly for well‐studied traits
with many identified genetic loci. Here we performed a
large‐scale TWAS of hematological measures using the
PrediXcan method (Gamazon et al., 2015) to analyze data
from 54,542 individuals of European ancestry from the
Genetic Epidemiology Research on Adult Health and
Aging (GERA) cohort (our discovery data set) (Banda
et al., 2015; Kvale et al., 2015). Following the initial
TWAS analysis, we explored several complimentary

strategies (including conditional analysis, TWAS meta‐
analysis, TWAS using secondary gene expression re-
ference panels, and fine‐mapping tools) to improve
TWAS results interpretation. Hematological phenotypes
are particularly good candidates for exploring TWAS
analysis interpretation due to the availability of large
RNA‐sequencing datasets in a relevant tissue type, high
heritability across traits, and a large number of known
genetic associations, most with poorly understood me-
chanisms and target genes.

In addition to TWAS, we performed conditional
analyses to evaluate if TWAS‐identified genes re-
presented novel statistical signals or were primarily dri-
ven by variants known from GWAS (Vuckovic
et al., 2020); we replicated our significant set of gene‐trait
associations in a meta‐analyzed sample of TWAS results
containing 18,100 individuals from the Women's Health
Initiative (WHI), 9345 individuals from the Athero-
sclerosis Risk in Communities Study (ARIC), and 8455
individuals from Mount Sinai BioMe Biobank (BioMe),
all of European ancestry (Table S1); and we compared
the TWAS results between primary and secondary gene
expression reference panels to determine if relevant tis-
sues with smaller sample sizes support our primary
TWAS findings.

We further employed several strategies to improve
our understanding and interpretation of complex
genomic regions containing multiple TWAS‐identified
genes. First, we used FOCUS (fine‐mapping of causal
gene sets (Mancuso et al., 2019)) to seek to identify a set
of causal genes within genomic loci containing multiple
significant TWAS gene‐trait associations. FOCUS is a
software used to fine‐map TWAS statistics at genomic
risk regions, while accounting for linkage dis-
equilibrium (LD) among variants and predicted ex-
pression correlation among genes at those risk regions.
Second, we developed a novel web‐based tool (called
LocusXcanR) for integrating and visualizing TWAS and
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GWAS results, as well as results from multiple expres-
sion reference datasets. Taking the results of each ana-
lysis into consideration, we highlight frequently
overlooked challenges of TWAS interpretation, such as
failure to consider the number of proximal genes which
cannot be accurately imputed with a given reference
panel, but which may still be influenced by variants
identified in GWAS studies. Our results illustrate the
complexity of TWAS interpretation and fine‐mapping
efforts and provide one resource for clarifying likely
gene targets for hematological trait‐related genetic loci.
Consideration of additional annotation resources and
TWAS limitations is necessary for confident identifica-
tion of gene targets.

2 | METHODS

2.1 | Initial TWAS analysis

We applied the PrediXcan method (detailed in Online
Supporting Information) to identify expression‐trait as-
sociations using individual‐level genotype and phenotype
data from the GERA non‐Hispanic White ethnic group.
The GERA cohort includes over 100,000 adults who are
members of the Kaiser Permanente Medical Care Plan,
Northern California Region. Genotyping was completed
as previously described (Kvale et al., 2015) and genotype
data were phased without external reference and im-
puted to 1000 Genomes Phase 3 v5. Principal compo-
nents analysis was used to characterize genetic structure
in this European ancestry sample (Banda et al., 2015).
Hematological measures were extracted from medical
records, and the first visit was used for each participant
in most cases. In total, 54,542 non‐Hispanic White in-
dividuals with hematological measures were included in
the analysis (see Online Supporting Information for
further details).

Variants were filtered for imputation quality
(R2 > 0.3). Ten hematological measures were analyzed
including platelet count (PLT), red blood cell counts (red
blood cell count [RBC], hematocrit [HCT], hemoglobin
[HGB], mean corpuscular volume [MCV], and red cell
distribution width [RDW] indices), and white blood cell
counts (white blood cell count [WBC], monocyte count
[MONO], neutrophil count [NEUTRO], and lymphocyte
count [LYMPH]) indices). Because the Depression Genes
and Networks (DGN) cohort has the largest single whole
blood RNA‐seq data set (Battle et al., 2014; genes =
11,538, n= 922), we used DGN gene expression panel
weights from PredictDB (see URLs) to predict gene ex-
pression levels in GERA.

2.2 | Conditional analysis of significant
TWAS genes on known GWAS variants

To determine if TWAS results from GERA were driven by
any previously reported genome‐wide significant variant,
we performed conditional analysis. For each statistically
significant TWAS gene‐trait association, the effect of pre-
dicted gene expression was conditioned on a set of pre-
viously reported GWAS sentinel variants (Vuckovic
et al., 2020) meeting the following criteria: (1) the sentinel
variant fell within a 1Mb region of the TWAS gene, (2) the
trait with which the GWAS variant was associated mat-
ched the TWAS analytical trait or was within the same
trait category as the analytical trait (PLTs, red blood cell
indices [HCT, HGB, MCV, RBC, and RDW], white blood
cell indices [WBC, NEUTRO, MONO, and LYMPH]), and
(3) the GWAS variant met an imputation quality threshold
of R2 > 0.3. We used a modified version of the cpgen R
package (see Online Supporting Information) to perform
the conditional analysis, accounting for a PLINK KING‐
robust kinship matrix (Manichaikul et al., 2010), which
used only genotyped variants and excluded variants with
minor allele frequency less than 5% and individuals
missing more than 1% of SNPs.

2.3 | Replication of conditional TWAS
results in meta‐analyzed cohorts

To replicate the conditionally significant gene‐trait as-
sociations in GERA, we compared each gene‐trait asso-
ciation to a TWAS meta‐analysis including ARIC, WHI,
and BioMe cohorts (brief cohort summaries follow and
are detailed in Online Supporting Information). All
TWAS analyses were limited to self‐reported white or
European ancestry participants for easy comparability of
the DGN European ancestry eQTL panel and with the
largest single‐ancestry blood cell trait GWAS (also con-
ducted in European ancestry participants). We analyzed
10 hematological phenotypes (as noted above) across all
cohorts; inverse normalized phenotypes were analyzed
with appropriate covariate adjustments for demographic
characteristics and principal components.

Each cohort anlayzed in this study included only
participants of European ancestry with hematological
measures. Atherosclerosis Risk in Communities Study
(ARIC) included 9345 participants (“The Atherosclerosis
Risk in Communities [ARIC] Study: design and objec-
tives,” 1989; Women's Health Initiative (WHI) included
18,100 women (The Women's Health Initiative Study
Group, 1998); and BioMe (the Mount Sinai BioMe Bio-
bank) included 8455 participants.
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Replication of the conditionally significant GERA
gene‐trait associations was performed using meta‐
analyzed TWAS results from ARIC, WHI, and BioMe. As
described above, PrediXcan was used to facilitate gene
expression imputation and association in each cohort
separately, and the meta‐analysis association test was
conducted using METAL (Willer et al., 2010). Seventeen
gene‐trait associations remained statistically significant
after conditional analysis; thus, for this set of genes, we
defined a Bonferroni‐corrected statistically significant
replication threshold at p‐value < 2.94 × 10−3.

2.4 | Characterization of
TWAS‐identified fine‐mapping loci

We next performed fine‐mapping of TWAS‐identified loci.
Fine‐mapping loci refers to fine‐mapping analysis of trait‐
specific genomic locations that contain, and are centered
at sentinel TWAS genes. That is, we took the set of trait‐
specific statistically significant GERA TWAS genes, se-
lected the most significant gene in the set (the sentinel
gene), and assigned it to a locus along with any other
statistically significant TWAS genes within a 1Mb win-
dow of the sentinel gene. We then selected the next most
significant TWAS gene which had not yet been assigned to
a locus and continued in this fashion until all statistically
significant TWAS genes had been assigned to a locus.

We then defined locus categories based on whether
the locus contained a single gene or multiple genes and
whether the locus replicated in TWAS meta‐analysis at
either a lenient or strict threshold. For this fine‐
mapping analysis, the statistical significance of re-
plicated genes was qualified based on two different
thresholds – a stringent threshold Bonferroni‐corrected
for all 239 statistically significant TWAS gene‐trait as-
sociations at p‐value < 2.09 × 10−4, and a more lenient
threshold at p‐value < 0.05. Thus, locus categories were
defined as follows: 1 = single gene locus, strict replica-
tion (p< 2.09E−04); 2 = single gene locus, replication
(p< 0.05); 3 = single gene locus, no replication;
4 =multi gene locus, strict replication (p< 2.09E−04);
5 =multi gene locus, replication (p< 0.05); 6 =multi
gene locus, no replication.

2.5 | TWAS fine‐mapping strategies

To facilitate TWAS fine‐mapping and allow for better
interpretation of TWAS results, we employed several
different strategies including the use of R Shiny, FOCUS,
and secondary TWAS reference panels. Details of each
method follow.

2.5.1 | R Shiny application

We used R's convenient Shiny package (version 1.5.0,
implemented in R 4.0.3) to produce a web application
(LocusXcanR) that displays our GERA TWAS results. All
GERA TWAS results were produced using PrediXcan as
described above. We also included GERA GWAS results
in the R Shiny app; analysis was performed using Bolt
LMM as implemented in rvtests (Zhan et al., 2016).
GERA conditional analysis results were produced using
cpgen. Known GWAS sentinel variants were obtained
from (Vuckovic et al., 2020). Model weights and model
variants were taken from our primary DGN reference
panel from PredictDB or secondary reference panels from
PredictDB (Genotype‐Tissue Expression [GTEx] Project;
The Genotype‐Tissue Expression GTEx project, 2013;
whole blood [GWB] and Epstein‐Barr virus [EBV]
transformed lymphocytes [GTL]; and Multi‐Ethnic Study
of Atherosclerosis [MESA] [Liu et al., 2013] monocytes
[MSA]. These are considered secondary reference panels
due to their smaller sample sizes compared with DGN).
Supplementary Methods contains further details relevant
to R Shiny data and visualizations.

2.5.2 | Fine‐mapping Of CaUsal gene Sets
(FOCUS)

We used the Fine‐mapping Of CaUsal gene Sets
(FOCUS) (Mancuso et al., 2019) software to fine‐map
TWAS statistics at genomic risk regions. As input, we
used GERA GWAS summary data along with eQTL
weights from PredictDB Depression Genes and Networks
whole blood data, and the European LD reference panel
from 1000 Genomes Phase 3. The software outputs a
credible set of genes at each locus which can be used to
explain observed genomic risk.

2.5.3 | TWAS secondary reference panels

We used a set of secondary gene expression reference
panels relevant to whole blood to assist with fine‐
mapping by assessing consistency between our primary
TWAS results from DGN and TWAS results from sec-
ondary reference panels. Thus, in addition to DGN
weights, weights for gene expression using RNA se-
quencing data were obtained from the Genotype‐Tissue
Expression project (version 7) (Zhang & Lin, 2013)
(whole blood, genes = 6208; and EBV transformed lym-
phocytes, genes = 3000), and Multi‐Ethnic Study of
Atherosclerosis (Europeans only, monocytes, genes =
4647) (Mogil et al., 2018).
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2.6 | Ethics statement

We performed secondary data analysis on deidentified
data only (exempt research). All individual studies in-
cluded were approved by relevant local institutional re-
view boards, and participants provided written informed
consent.

3 | RESULTS

3.1 | Initial TWAS analysis

We applied the PrediXcan method to identify expression‐
trait associations using individual‐level genotype and
phenotype data from the GERA non‐Hispanic White
ethnic group. Analyzed blood cell traits included PLT,
RBC, HCT, HGB, MCV, RDW, WBC, MONO, NEUTRO,
and LYMPH indices. We used DGN whole blood ex-
pression panel weights from PredictDB (a database of
weights provided by PrediXcan; see URLs) to predict
gene expression levels in GERA. Among the 11,538 genes
in the DGN expression panel, 11,438 genes were pre-
dicted in GERA and 51% of those genes achieved DGN
model R2 > 0.05 (see Table S2 for model R2 values for
significant genes and Table S3 for genes included in DGN
but not predicted in GERA). The number of GERA var-
iants used for prediction was equal to the number of
variants included in the prediction model (i.e., complete
variant matching) for 74% of the predicted genes; the
remaining genes used fewer variants from GERA than
were included in the prediction models. We tested each
of the 11,438 predicted genes individually for association
with each of the 10 hematological measures, resulting in
a Bonferroni‐corrected p‐value threshold of
p< 4.37 × 10−7. Through the subsequent study analyses,
we will refer to these results as “marginal TWAS.”

Overall, we identified 295 statistically significant mar-
ginal TWAS associations (p<4.37 × 10−7), with each he-
matological measure having at least one significant
association (Table S2). Among these, 47 marginal TWAS
associations fell into the major histocompatibility
complex (MHC) or HLA region (GRCh37; chr 6:
28,477,797–33,448,354) and were not considered in sub-
sequent analyses (Table S4); disentangling a set of causal
genes within the MHC region is exceptionally difficult due
to the highly polymorphic genetic loci and complex LD in
the region. Another nine significant associations included
genes which contained only a single variant in the predic-
tion model. These associations were also not included in
subsequent analyses (Table S4). The remaining 239 sig-
nificant associations included genes predicted from 2 to 112
variants, with a median of 21 variants used in predictive

models. Among this set of 239 associations, we replicated
71 at p<0.05 with same direction of effect for the blood cell
trait in TWAS meta‐analysis.

3.2 | Conditional analysis of significant
TWAS genes on known GWAS variants

To determine whether any of the 239 remaining sig-
nificant gene‐trait associations were novel signals, not
driven by any previously reported genome‐wide sig-
nificant variant, we performed conditional analysis.
Since we performed TWAS with individual‐level data,
we conditioned the predicted gene expression value of
each statistically significant marginal TWAS gene on
the set of nearby (within ± 1 Mb of the gene) sentinel
GWAS variants within the hematological category
(RBC, WBC, and PLT) from the largest current
European ancestry focused GWAS for hematological
measures (Vuckovic et al., 2020). We found that 222
(93%) of all marginal TWAS significant associations
were attenuated by known GWAS variants and became
nonsignificant (p > 4.37 × 10−7) upon conditional ana-
lysis. Another 15 of the associations remained sig-
nificant after conditional analysis, and the remaining
two associations did not have GWAS‐reported variants
within a 1 Mb window of the gene (Table S5).

3.3 | Replication of conditional TWAS
results in meta‐analyzed cohorts

For confirmation of robust and/or novel signal, we at-
tempted to replicate these 17 conditionally significant
findings in a TWAS meta‐analysis which included up to
32,036 European ancestry individuals from three cohorts:
ARIC, WHI, and BioMe. Two of the 17 conditionally
significant gene‐trait associations (HIST1H2BO‐HGB and
HIST1H2BO‐RDW) included in the replication set met
the stringent significance threshold (p< 2.94 × 10−3).
However, HIST1H2BO is situated within 1Mb of the
MHC region already excluded above (GRCh37; chr 6:
28,477,797–33,448,354), with this signal potentially re-
flecting long‐range LD with the MHC region, and has
poor model R2 = 0.016. Additionally, OR2B6 associated
with HGB, MCV, and RWD; ZNF192 associated with
HGB, MCV, and RDW; and ZSCAN12 associated with
MCV meet a more lenient significance threshold
(p< 0.05). Yet, OR2B6, ZNF192, and ZSCAN12 are also
located on chromosome 6 within approximately 500 kb of
the MHC region and all have poor model R2 < 0.015. The
remaining seven gene‐trait associations did not meet any
replication criteria.
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3.4 | Characterization of
TWAS‐Identified fine‐mapping loci

Based on the conditional analysis, previously reported
GWAS sentinel variants were at least partly responsible
for and attenuated 93% of the significant marginal TWAS
signals. Thus, we next examined if TWAS aided fine‐
mapping and identification of regulatory mechanisms at
these loci. To better contextualize if fine‐mapping in
GERA was consistent in additional cohorts, we also ex-
amined replication of TWAS significant genes in these
known loci. The 239 marginal TWAS associations resided
in 120 trait‐specific, physically nonoverlapping cis loci
(i.e., the cis region of each locus is ± 1Mb of the locus's
TWAS sentinel gene start and end positions). Over half
(57%) of these loci contained only a single significant
gene, while another 19% contained two significant genes.
The remaining 24% of nonoverlapping loci contained
three or more significant genes, with up to 11 significant
genes at a single locus. These 120 loci contained 87 un-
ique index genes (defined as the most significant TWAS
gene within the locus). Most loci did not contain a TWAS
gene that replicated in meta‐analysis (67% total; i.e., 47%
of all loci were single‐gene loci that did not replicate plus
20% of all loci were multi‐gene loci that did not contain
any gene that replicated, even at a marginal level). Ten
percent of all loci were single‐gene loci that met a mar-
ginal replication threshold (p< 0.05), and 20% of all loci
were multi‐gene loci that met this marginal threshold for
at least one gene at the locus. The remaining four loci
(3%) contained multiple TWAS genes with at least
one gene meeting a strict replication threshold
(p< 2.09 × 10−4) (Table S2). These included the following
index gene‐phenotype associations: TRIM68‐MCV,
USP49‐MCV, PSMD3‐NEUTRO, and PSMD3‐WBC.

3.5 | TWAS fine‐mapping strategies

To facilitate TWAS fine‐mapping and allow for better
interpretation of whether a given TWAS‐identified gene
was truly likely to associate with hematological variation,
or whether it was likely to be a spurious association due
to correlation of expression with nearby genes or other
factors, we created an R Shiny application (LocusXcanR)
to interactively visualize TWAS sentinel genes in context,
one locus at a time. LocusXcanR allowed us to integrate
multiple sources of information from our primary TWAS
analysis, including gene expression prediction models,
TWAS meta‐analysis, TWAS using secondary reference
panels (whole blood and EBV transformed lymphocytes
from GTEx, and monocytes from MESA), GWAS analysis
of all hematological measures, and correlation among

genetic variants (i.e., LD) and among predicted gene
expression levels. We highlight several loci to demon-
strate the utility of the application, showcase some of the
challenges that arise when TWAS identifies multiple
significant genes at a single locus, and illustrate some of
the complexities that are inherent in TWAS fine‐
mapping. In the sections that follow, we feature TWAS
genes that fall into loci with a low, intermediate, or high
level of complexity. All the figures in the following sec-
tions originate from LocusXcanR (http://shiny.bios.unc.
edu/gera-twas/), which could be readily adapted to fu-
ture TWAS analyses for other complex traits.

3.5.1 | HK1locus

The HK1 gene is known to be associated with several red
blood cell traits including HGB, MCV, HCT, mean cor-
puscular hemoglobin, RBC, and RDW in GWAS analyses
(Vuckovic et al., 2020) and is a Mendelian gene for he-
molytic anemia [MIM 142600]. Our TWAS results con-
firmed previously reported HK1 GWAS associations with
HCT and MCV (assigned based on nearest gene for lead
GWAS variants). The marginal TWAS tests for associa-
tion between HK1 and HCT (p= 3.84 × 10−8) and MCV
(p= 1.05 × 10−7) were statistically significant (Figure 1);
associations were all but eliminated by conditional ana-
lysis on known GWAS sentinel variants (HCT
p= 2.58 × 10−1; MCV p = 4.36 × 10−2); HK1 with HCT
replicated in meta‐analysis (p= 4.63 × 10−2); and HK1
was the most significant TWAS gene among only two
other genes (HKDC1 and TSPAN15) implicated by
GWAS at these loci, with the other two genes showing no
TWAS signal. Thus, results point simply to HK1 as the
most likely causal gene at this locus.

3.5.2 | CREB5locus

The marginal TWAS tests for association between
CREB5 and NEUTRO (p=1.41 × 10−12) and WBC
(p=4.01 × 10−10) were the only TWAS significant associa-
tions at this locus (Figure 2a), and associations were es-
sentially eliminated by conditional analysis on known
GWAS sentinel variants (NEUTRO p=9.04 × 10−1; WBC
p=3.97 × 10−1). However, at this locus, both CREB5
and JAZF1 (TWAS NEUTRO p=5.26 × 10−3, WBC
p=2.42 × 10−3) had previously been annotated as being the
nearest and/or assigned gene for one or more GWAS sen-
tinel variants. Predicted gene expression for CREB5 and
JAZF1 was not highly correlated (r2 between 0.0–0.2), and
the genes appeared to share only a single, nonsignificant
predictive model variant (Figure 2b). CREB5 and JAZF1
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both replicated at a lenient significance threshold for
NEUTRO (p=1.25 × 10−2, p=8.98 × 10−3, respectively),
and CREB5 also replicated at a lenient threshold for WBC
(p=2.61 × 10−2) but JAZF1‐WBC did not replicate
(p=0.11). Both genes appeared in the GTEx whole blood
(GWB) and MESA monocyte (MSA) secondary reference
panels, but neither gene met the significance threshold for

either reference panel. Importantly, Human Protein Atlas
(Uhlén et al., 2015) reported that CREB5 was enhanced in
blood and brain tissues and was specifically cell type en-
riched for NEUTRO (Human Protein Atlas., 2020b). JAZF1
on the other hand had low tissue specificity (Human Pro-
tein Atlas., 2020d). Together the TWAS, GWAS, and Hu-
man Protein Atlas results point to CREB5 as the most

FIGURE 1 HK1locus (locus 60; chr 10:
70,029,740–72,161,638; trait =MCV) from R
Shiny. TWAS results (top panel) and GWAS
results (bottom panel). Marginal and conditional
results for HK1 are presented in the top panel.
Black‐colored genes and variants denote those
previously reported by UK Biobank and BCX
GWAS (Vuckovic et al., 2020), blue variants
denote those not previously reported as UK
Biobank and BCX GWAS sentinel variants.
GWAS, genome‐wide association studies;
TWAS, transcriptome‐wide association study

FIGURE 2 CREB5locus (locus 40; chr 7: 27,338,940–29,865,511; trait = NEUTRO) from R Shiny. TWAS results (top panels) and GWAS
results (bottom panels). Marginal TWAS result displayed in (a), with Black‐colored genes and variants denoting those previously reported by
GWAS, blue variants denote those not previously reported as GWAS sentinel variants. (b) Mirrored‐Manhattan locus‐zoom plot displaying
genes connected to their predictive model variants. Color scale, increasing from light gray to red, indicates the predicted expression
correlation (r2) between the index TWAS gene and all other genes in the locus and the LD between the index variant and all other variants in
the locus. GWAS, genome‐wide association studies; TWAS, transcriptome‐wide association study
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likely, and most biologically plausible, gene over JAZF1 at
this locus.

3.5.3 | CD164locus

The CD164 gene is known to play a role in hematopoiesis
(Watt et al., 1998; Zannettino et al., 1998) and has been
associated with several blood cell indices in GWAS
analyses (Vuckovic et al., 2020). Our TWAS results
prioritized CD164 over other genes at the locus as being
significantly associated with MCV (p= 2.54 × 10−12) and
categorized it into a multi‐gene locus along withMICAL1
(p= 4.20 × 10−7) (Figure 3a). Conditional analysis on
sentinel GWAS variants all but eliminated the TWAS
signal for both CD164 (p= 8.61 × 10−2) and MICAL1
(p= 1.26 × 10−1). Interestingly, Figure 3b shows that
CD164 and MICAL1 were not highly correlated in their
predicted gene expression (r2: 0.2–0.4) and did not share
any predictive model variants. We also note that both

genes replicated in meta‐analysis at a lenient threshold
(CD164 p= 1.56 × 10−3; MICAL1 p= 7.06 × 10−3;
Figure 3c). Additionally, while MICAL1 is not available
in secondary reference panels, CD164 met the TWAS
significance threshold for its association with MCV in
GTEx whole blood and MESA monocytes (GTEx
p= 2.61 × 10−9 and MESA p= 4.09 × 10−8). Thus, the
evidence at this locus suggests that expression of CD164
and MICAL1 are both reasonable candidates for being
regulated by red cell‐associated genetic variants although
we note that Human Protein Atlas reports low tissue
specificity for MICAL1 (Human Protein Atlas., 2020f).

3.5.4 | PSMD3locus

The PSMD3 locus contained a much higher level of
complexity because it fell into a region containing many
marginal TWAS genes, had a complex gene‐gene corre-
lation and LD pattern, and included a combination of

FIGURE 3 CD164locus (locus 36; chr 6: 108,687,717–110,703,762; trait =MCV) from R Shiny. (a) Marginal TWAS results in the top
panel and GWAS results in the bottom panel. Black‐colored genes and variants denote those previously implicated by GWAS, and
blue‐colored genes and variants denote those not previously implicated by GWAS. (b) Mirrored‐Manhattan locus‐zoom plot displaying genes
connected to their predictive model variants. TWAS results in the top panel, GWAS results in the bottom panel. Color scale, increasing from
light gray to red, indicates the predicted expression correlation (r2) between the index TWAS gene and all other genes in the locus and the
LD between the index variant and all other variants in the locus. (c) Comparison of marginal TWAS (left panel) and TWAS meta‐analysis
(right panel). Black‐colored genes denote those previously implicated by GWAS sentinel variants, and blue genes denote those not
previously implicated by GWAS sentinel variants. GWAS, genome‐wide association studies; TWAS, transcriptome‐wide association study
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genes previously reported by GWAS as well as genes that
had not been reported by GWAS. Thus, TWAS results did
not clearly pinpoint the most likely causal gene. While
PSMD3 appeared as the index TWAS gene associated
with WBC (Figure 4a), eight other genes were also TWAS
significant at this locus. Five of those genes (IKZF3,
GSDMB, ORMDL3, MED24, and CCR7) replicated at a
lenient significance threshold (p< 0.05), and PSMD3 re-
plicated at a more stringent threshold (p< 2.09 × 10−4)

(Figure 4c). We saw a complex network of shared model
variants and correlation/LD patterns in Figure 4b, no-
tably with MED24 and CCR7 (the next most significant
genes at this locus) being only slightly correlated (r2 be-
tween 0.2 and 0.4) with PSMD3. The FOCUS fine‐
mapping results (Figure 4d) aligned to the TWAS results
and indicated PSMD3 and MED24 as the most likely
causal genes at the locus, each having posterior inclusion
probabilities (PIPs) equal to 1.0. PIPs for all other genes

FIGURE 4 PSMD3locus (locus 101; chr 17: 37,137,050–39,154,213; trait = white blood cell count). (a) displays marginal TWAS results
(top panel) and GWAS results (bottom panel), with genes and variants colored in blue and black to denote those not reported by GWAS and
those reported by GWAS, respectively. (b) is a mirrored‐Manhattan locus‐zoom plot displaying genes connected to their predictive model
variants with TWAS results (top panel) and GWAS results (bottom panel). Color scale, increasing from light gray to red, indicates the
predicted expression correlation (r2) between the index TWAS gene and all other genes in the locus and the LD between the index variant
and all other variants in the locus. (c) presents marginal TWAS results (left panel) and meta‐analysis TWAS results (right panel), with genes
colored in blue and black to denote those not reported by GWAS and those reported by GWAS, respectively. (d) displays the FOCUS
posterior inclusion probabilities (PIPs) for each gene at this locus. FOCUS, Fine‐mapping Of CaUsal gene Sets; GWAS, genome‐wide
association studies; TWAS, transcriptome‐wide association study
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at this locus, including CCR7, were less than 0.021
(Figure 4d).

4 | DISCUSSION

Our follow‐up fine‐mapping, replication, and conditional
analyses for a large‐scale TWAS of 10 hematological
measures demonstrates that results from marginal TWAS
analyses alone cannot illuminate causal genes at loci for
these traits.

4.1 | TWAS discovery analyses

While 17 of our 239 marginal gene‐trait associations did
remain significant after conditional analysis or contained
no known GWAS sentinel variants within a 1Mb region
of the gene, we found no substantive evidence from
meta‐analysis nor secondary reference panels to support
these associations as novel discoveries for hematological
traits. Conditional analyses suggested that nearly all our
TWAS findings were driven at least in part by GWAS
sentinel variants from the largest recent European‐
focused GWAS analysis for hematological measures
(Vuckovic et al., 2020). This is perhaps not surprising
given the greater statistical power for this GWAS analy-
sis, which was conducted in 563,085 participants (vs.
54,542 participants in our analysis). However, for 61
gene‐trait associations (26%), some residual signal
(p< 0.05) remained after conditioning on GWAS. For
example, although JAK2 is a well‐known blood cell‐
associated signal from GWAS (Vuckovic et al., 2020) and
the Mendelian disease literature for platelet disorders
[MIM 147796], its association with platelet count re-
mained statistically significant after conditional analysis.
Thus, our TWAS results also suggested that there are
likely additional regulatory variants at the JAK2 locus
which are not tagged by current GWAS single variants.
Similarly, for other gene‐trait associations retaining some
residual significance after conditional analysis, our re-
sults suggest that additional small‐effect regulatory var-
iants remain to be discovered for these genes which
associate with blood cell indices, illustrating the power
advantages from aggregate tests like TWAS.

4.2 | TWAS Fine‐Mapping

For TWAS fine‐mapping, we grouped the 239 TWAS‐
wide significant gene‐trait associations into 120 loci. To
effectively interpret these results, we introduced Lo-
cusXcanR, an R Shiny application that integrates TWAS

and GWAS information into locus‐specific, interactive
visualizations which we use to assist with TWAS fine‐
mapping and TWAS results interpretation. We showed
the utility of LocusXcanR by highlighting the varying
levels of complexity at several TWAS loci and demon-
strating where TWAS aligns with or provides advantages
over GWAS. For example, the HK1‐MCV locus showed a
very simple genomic locus in which we found that TWAS
confirmed what we already knew from GWAS. Coding
variants in HK1 are known to be associated with hemo-
lytic anemia due to hexokinase deficiency [MIM 142600],
providing a clear link to red blood cell‐related traits.

The CREB5 locus further demonstrated one of the
advantages of TWAS over GWAS in that the TWAS re-
sults provided clarity regarding the likely causal gene at
the locus. At this locus, CREB5 and JAZF1 had both been
implicated by GWAS, likely assigned based on their
physical proximity to the GWAS sentinel variant. How-
ever, CREB5 showed a stronger TWAS signal, replicated
in the much smaller meta‐analysis sample, and Human
Protein Atlas provided clear evidence of enrichment in
blood (specifically neutrophils) (Human Protein
Atlas., 2020b, 2020d; Uhlén et al., 2015). These results in
aggregate supported CREB5 as the likely causal gene at
this locus, even though CREB5 may not be the closest
gene in proximity to all sentinel GWAS variants within
the region.

4.3 | TWAS challenges

We further highlight the challenges, particularly at multi‐
gene loci, which should be considered when interpreting
TWAS findings, including total and/or predicted expres-
sion correlation, shared predictive model variants, the re-
levance of reference tissue panel, biological plausibility,
and so forth and demonstrated the importance of inter-
preting TWAS results in context. Although TWAS is useful
for prioritizing candidate causal genes, researchers should
guard against the hasty conclusion that the most sig-
nificant gene is the only causal gene or even the most likely
causal gene. For example, the conclusion at the CD164
locus is not evident from TWAS results. While TWAS
points to CD164 as the causal gene, as does existing
knowledge of the gene's biological function, taking the full
context of this locus into consideration, it is not out of the
realm of possibilities that both CD164 and MICAL1 are
causal at this locus.

Furthermore, at the PSMD3 locus we see potentially
misleading TWAS results when marginal TWAS statistics
are interpreted alone. The PSMD3‐WBC association ap-
pears as the sentinel gene at this locus. However, several
pieces of evidence support other genes, including CCR7,
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as the most likely biologically plausible causal gene at the
locus. First, PSMD3 and MED24 have no immune cell
specificity (Human Protein Atlas., 2020e, 2020g; Uhlén
et al., 2015). Second, CCR7 was also TWAS significant, it
replicated at a lenient threshold in meta‐analysis, and is
enriched for expression in blood and lymphoid tissues,
especially T‐cells (Human Protein Atlas., 2020a). How-
ever, CCR7 was not highly correlated with nor does it
appear to share model variants with lead gene PSMD3,
and the FOCUS results show a posterior inclusion
probability of only 0.001. Finally, CCR7 is known to be
involved in the migration of neutrophils to lymph nodes
(Beauvillain et al., 2011). While it is certainly possible at
multi‐gene TWAS loci for multiple genes to be con-
tributing to trait regulation, it is also possible for spurious
or nonrelevant genes to be identified based on shared
eQTLs across tissues that are not relevant to a given trait
or correlation of gene expression.

Moreover, proximal genes which cannot be accurately
imputed with a given reference panel, but which may still
be influenced by variants identified by GWAS studies,
must also be considered. For example, the gene colony‐
stimulating factor 3 (CSF3), which has a known key role in
the production, differentiation, and function of granulo-
cytes [MIM 138970], is also situated within the PSMD3
locus. However, this gene has very low constitutive ex-
pression in whole blood (Human Protein Atlas., 2020c),
and it is not depicted in Figure 4 (or LocusXcanR) because
a predictive model could not be fit for this gene in the DGN
reference panel (likely due to very low expression); there-
fore, CFS3 cannot be detected as a possible target gene at
this locus (Supplementary Table 7 contains CSF3, along
with other genes that have been assigned by one or more
GWAS variants but are not included in DGN). This
genomic region is extremely complex and highly pleio-
tropic, and any interpretation of this locus using TWAS
results alone is likely to be overly simplistic. This complex
locus shows the importance of considering statistical evi-
dence from TWAS, GWAS, and FOCUS fine‐mapping as
well as trait biology in the interpretation of TWAS findings.

5 | LIMITATIONS

While we have used PrediXcan and pre‐calculated Pre-
dictDB weights for our analysis, we note a limitation in
doing so. The variants included in PredictDB were not
always available in our analytical cohort (generally due
to poor imputation quality), so some predictive models
did not use all PredictDB weights. We note that 70% of
our TWAS significant genes were predicted with com-
plete variant matching (i.e. used all model variants) and
85% of TWAS significant genes used at least 90% of model

variants; we have included this information in Table S2
for transparency, and these details should be taken into
account when interpreting TWAS results.

The cohorts that we have included in our TWAS meta‐
analysis also pose some limitations on our ability to re-
plicate GERA TWAS sentinel genes. The smaller sample
sizes of the meta‐analyzed cohorts are likely the primary
reason why GERA TWAS sentinel genes fail to replicate.
Additionally, it may be the case that major contributing
variants exhibit differential allele frequencies across co-
horts; although this is less likely than in multi‐ethnic
analyses because all cohorts are of European ancestry, it
could still contribute to poorer power for replication.
Furthermore, differences in imputation quality across co-
horts could also explain the failure to replicate TWAS
sentinel genes in meta‐analysis.

Although FOCUS, in some cases, helps to identify a set
of the most likely causal genes at a locus, we have shown
that it does not always provide enough evidence above and
beyond TWAS to fully identify a putative causal gene set at
a complex locus. Additionally, FOCUS performs a sum-
mary statistics‐based TWAS method and then proceeds to
fine‐mapping the TWAS results from this method. How-
ever, we performed TWAS using PrediXcan, and thus, the
fine‐mapping results from FOCUS may not exactly match
our PrediXcan TWAS results. In future, the FOCUS soft-
ware could be extended to take pre‐calculated TWAS re-
sults as input (using the TWAS method of the researcher's
choosing), bypassing the need to use GWAS summary
statistics or to recompute predicted gene expression.

Our analysis is primarily conducted using whole blood
TWAS weights only, with supplemental TWAS results
available in our app for a few other blood‐related tissues
(whole blood and EBV transformed lymphocytes from
GTEx and monocytes from MESA); we felt this was the
most prudent approach to limit false positives and reduce
needed multiple testing correction, versus an approach
using TWAS weights in, for example, all GTEx tissues.
However, this choice could be inappropriate if the main
relevant tissue at some blood cell‐related loci is not in fact
whole blood, and it limits our ability to use FOCUS fine‐
mapping to overcome the choice of tissue for TWAS
training. Joint/multiple tissue TWAS approaches such as
UTMOST (Hu et al., 2019) and MR‐JTI (Zhou et al., 2020)
could be employed in the future to assess the relevance of
other tissues at blood‐cell‐related loci.

6 | SUMMARY

In summary, we found that TWAS results enrich our
understanding of GWAS, can help to explain trait var-
iation, and are superior to merely selecting the nearest
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gene. We have shown that the gene, or genes, im-
plicated in TWAS, in some cases, clearly overlap with
what is known in GWAS and from prior knowledge of
important genes in hematopoietic processes. However,
while we showed that TWAS may help in some cases to
pinpoint likely causal genes, we emphasize the need for
investigators not to interpret TWAS results alone and
out of context. We introduced an R Shiny application
and demonstrated its utility in assisting researchers in
this endeavor by leveraging the TWAS and GWAS in-
formation available from the analytical cohort and in-
teractively visualizing results one locus at a time. The
results of this analysis are accessible online (http://
shiny.bios.unc.edu/gera-twas/), and we also made the
layout of this application available for others to import
and analyze their own TWAS results in the LocusXcanR
R package, available on GitHub (https://github.com/
amanda-tapia/LocusXcanR). Together with a clearer
understanding of the relationship between TWAS and
GWAS results, biological insight, and subject matter
expertise, TWAS results can help us formulate me-
chanistic hypotheses for functional experimental
validation.

URLS
cpgen: https://github.com/cheuerde/cpgen
FOCUS: https://github.com/bogdanlab/focus
Human Protein Atlas: https://www.proteinatlas.org/
LocusXcanR R package for R Shiny application: https://
github.com/amanda-tapia/LocusXcanR
LocusXcanR R Shiny application for GERA results:
http://shiny.bios.unc.edu/gera-twas/
METAL: https://genome.sph.umich.edu/wiki/METAL_Doc
umentation
Online Mendelian Inheritance in Man (OMIM): https://
www.omim.org/
PLINK KING kinship matrix: https://www.cog-genom
ics.org/plink/2.0/distance#make_king
PredictDB: http://predictdb.org/
PrediXcan: https://github.com/hakyimlab/PrediXcan
R Shiny: https://shiny.rstudio.com/
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