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ABSTRACT: Population stratification has long been recognized as an issue in genetic association studies because unrecognized
population stratification can lead to both false-positive and false-negative findings and can obscure true association signals
if not appropriately corrected. This issue can be even worse in rare variant association analyses because rare variants often
demonstrate stronger and potentially different patterns of stratification than common variants. To correct for population
stratification in genetic association studies, we proposed a novel method to Test the effect of an Optimally Weighted
combination of variants in Admixed populations (TOWA) in which the analytically derived optimal weights can be calculated
from existing phenotype and genotype data. TOWA up weights rare variants and those variants that have strong associations
with the phenotype. Additionally, it can adjust for the direction of the association, and allows for local ancestry difference
among study subjects. Extensive simulations show that the type I error rate of TOWA is under control in the presence of
population stratification and it is more powerful than existing methods. We have also applied TOWA to a real sequencing data.
Our simulation studies as well as real data analysis results indicate that TOWA is a useful tool for rare variant association
analyses in admixed populations.
Genet Epidemiol 00:1–12, 2015. © 2015 Wiley Periodicals, Inc.
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Introduction

Genome-wide association studies have identified hundreds
of genetic variants associated with complex human diseases.
However, most identified variants explain only a small pro-
portion of the heritability [Bansal et al., 2010; McCarthy et al.,
2008; Schork et al., 2009]. There is growing recognition that
many common diseases could be influenced by rare variants
[Cohen et al., 2006; Ji et al., 2008; Manolio et al., 2009; Marini
et al., 2008; Nejentsev et al., 2009; Zhu et al., 2010]. Advances
in next-generation-sequencing technologies allow detecting
causal variants by directly examining the effect of rare vari-
ants. Several recent studies have achieved promising findings
[Dickson et al., 2010; Goldstein et al., 2013; Hershberger et al.,
2010; Nejentsev et al., 2009; Zawistowski et al., 2010]. How-
ever, due to allelic heterogeneity and the extreme rarity of
individual variants, well-established statistical methods for
analysis of common variants may not be optimal for detect-
ing rare variants [Li and Leal, 2008]. Moreover, population
stratification, which has long been recognized as an issue in
genetic association studies, can have even stronger impact
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in rare variant association studies because rare variants of-
ten demonstrate stronger and potentially different patterns
of stratification than common variants [Mathieson et al.,
2012]. The aforementioned issues prompt an urgent need
to develop powerful statistical methods for rare variant as-
sociation studies, especially, methods that can be applied in
admixed populations.

Recently, many statistical methods have been developed
for the analyses of rare variants. Most of these methods can
be classified into three categories: (1) burden tests [Li and
Leal, 2008; Madsen and Browning, 2009; Price et al., 2010;
Zawistowski et al., 2010], which collapse rare variants in a
genomic region as a single burden variable and then test the
cumulative effect of rare variants via regression on the derived
burden variable; (2) quadratic tests [Neale et al., 2011; Sha
et al., 2012; Wu et al., 2011], which involve the use of a
quadratic form of the score vector in test statistics; and (3)
combined tests [Derkach et al., 2012; Han and Pan, 2010;
Hoffmann et al., 2010; Ionita-Laza et al., 2013; Lee et al., 2012;
Li et al., 2010; Lin and Tang, 2011; Sha et al., 2013; Yi and
Zhi, 2011] that combine evidence of association from burden
tests, quadratic tests, and other possible tests to maximize the
use of existing information.
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Burden tests implicitly assume that all rare variants are
causal and the directions of the effects are the same. Since
such tests cannot differentiate rare variants that associate
with the disease in different directions, they may lose power
when both risk and protective variants are present. Quadratic
tests circumvent this problem by using a quadratic term in
the test statistic when modeling complex relationships be-
tween rare variants and the phenotype. Burden tests can only
outperform quadratic tests when most of the rare variants
are causal and the directions of the effects of causal variants
are the same. The combined tests attempt to retain the ad-
vantages of both burden tests and quadratic tests. They are
robust in the presence of opposite effect directions of the
causal variants, and are less affected by neutral variants when
compared to burden tests.

Although the aforementioned methods have shown
promise in detecting rare variants, none of them explicitly
model population stratification, which has long been recog-
nized as an issue in genetic association studies. Population
stratification emerges when there is a systematic difference in
allele frequencies among study subjects due to ancestry dif-
ference across individuals. Unrecognized population strat-
ification can lead to both false-positive and false-negative
findings and can obscure true association signals if not ap-
propriately corrected [Knowler et al., 1988; Lander et al.,
1994; Mao et al., 2013]. For rare variants this problem can be
more serious because the spectrum of rare variation can be
different in diverse populations. It has been shown that rare
variants can demonstrate stronger and potentially different
patterns of stratification than common variants, and existing
methods cannot effectively correct population stratification
in rare variant analyses [Mathieson et al., 2012]. Addition-
ally, empirical findings from the 1000 Genomes Project have
shown that the numbers of rare variants can differ signifi-
cantly among different populations [1000 Genomes Project
Consortium, 2010]. These empirical findings have impor-
tant implications for the analyses of admixed population,
such as African Americans and Hispanic Americans, who are
recently admixed and have inherited ancestry from more than
one continent.

Population stratification could emerge due to two types of
mechanisms: (1) stratification due to local ancestry differ-
ence driven by natural selection at certain genomic regions;
(2) stratification due to global ancestry difference driven by
the demographic history of a population or genetic random
drift due to finite population size [Wang et al., 2011]. Com-
monly used methods, such as EIGENSTRAT [Price et al.,
2006], genomic control [Devlin and Roeder, 1999; Reich and
Goldstein, 2001], may fail to correct population stratifica-
tion in rare variant association studies [Mathieson et al.,
2012] because (1) these methods use a set of genomic mark-
ers across the entire genome to capture the global population
structure, whereas subtle differences in local ancestry might
be diluted due to the inclusion of markers from other ge-
nomic regions [Qin et al., 2010]; (2) rare variants can show
systematically different patterns of stratification from com-
mon variants. Wang et al. [2011] empirically and theoretically

demonstrated that regardless of the mechanism of popula-
tion stratification, whether due to local or global ancestry
differences, it is sufficient to adjust for local ancestry at the
test region.

Although controlling for population stratification has be-
come a routine in common variant association studies
[Epstein et al., 2007; Li et al., 2010], currently, there is only
one publication on controlling for population stratification
in rare variant association analyses [Mao et al., 2013]. The
local ancestry-based weighted dosage score (AWDS) test de-
veloped by Mao et al. [2013] takes into account local ancestry
of rare alleles, uncertainties in rare variant imputation when
imputed data are included, and the direction of the effect of
rare variants on phenotypic trait. A shortcoming of AWDS
is that it needs to split data into training set and testing set:
(1) training set (30% data as training set) is used to decide
risk, protective, or neutral variants; (2) testing set (70% data
as testing set) is used to test for association. Exclusion of the
training data when testing association of rare variants could
lead to loss of power. In addition, AWDS tests association
in each ancestral population separately. This approach is less
powerful than methods that detect causal rare variants in all
ancestral populations simultaneously.

To correct for population stratification induced by local
ancestry difference, we proposed a novel method to Test the
effect of an Optimally Weighted combination of variants in
Admixed populations (TOWA). The analytically derived op-
timal weights can be calculated from existing phenotype and
genotype data. TOWA up weights rare variants and those that
have strong associations with the phenotype [Sha et al., 2012].
Additionally, it can adjust for the direction of the association,
and allows for local ancestry difference among study subjects.
Based on the optimal weights and the incorporation of the
information from both local ancestry and rare alleles, TOWA
is able to test the effect of an optimally weighted combina-
tion of rare variants in a region (i.e., gene or pathway) and
properly control population stratification. To evaluate the
performance of the proposed method, we conducted exten-
sive simulation studies using whole-genome sequence data as
well as an analysis in a real sequencing data. We compared the
power of the proposed method with AWDS and the weighted
dosage score (WDS) test proposed in WHaT [Li et al., 2010].
Our results indicate that the type I error rates of TOWA are
under control in the presence of population stratification and
it is more powerful than AWDS and WDS for most scenarios
we considered.

Methods

Notation

Consider a sample of n individuals from an admixed pop-
ulation. We assume admixture has occurred between two
ancestral populations, and each individual is genotyped at M
SNPs in a genomic region (a gene or a pathway). Denote yi

(1 for case and 0 for control) as the trait value and Di as the
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observed genotype of the ith individual. We define⎧⎨
⎩

xij k = 1, if the kth allele of the ith individual at the j th
SNP is the minor allele

xij k = 0, otherwise⎧⎪⎪⎨
⎪⎪⎩

aij k = 1, if the kth allele of the ith individual at the j th
SNP is from the first ancestral population

aij k = 0, if the kth allele of the ith individual at the j th
SNP is from the second ancestral population,

and bij k = 1 – aij k, where k = 1, 2 in xij k, aij k, and bij k. Let
Ai = (Ai1, Ai2, . . . , AiM) denote the ancestral status of the
ith individual, where Aij = 0, 1, 2, 3 represents (aij 1, aij 2) =

(0, 0), (0, 1), (1, 0), (1, 1) correspondingly. Let p ij k, k = 1, 2,
denote the probability of the kth allele being from the first
ancestral population. This probability can be estimated using
HAPMIX [Price et al., 2009], which has an option (DIPLOID
for HAPMIX MODE) that gives 16 probabilities of all
4 × 4 values of ancestry and genotype for each individual,
from which one can infer the corresponding local ancestry
for each allele by calculating the corresponding conditional
probabilities.

Model for a Homogenous Population

For a homogenous population, we can test the effect of a
weighted combination of M variants using logistic regression

logit(Pr(yi = 1)) = α + β

M∑
j =1

wj X ij ,

where Xij is the genotype of the ith individual at the jth SNP,
and w1, . . . , wM are the weight functions.

Model for an Admixed Population

To use the logistic regression framework for an admixed
population, we need to account for the population ancestry of
each allele. When the ancestral status of each allele is known,
we can modify the logistic regression model as

logit(Pr(yi = 1)) = α + β1

M∑
j =1

(xij 1aij 1 + xij 2aij 2)w1j

+ β2

M∑
j =1

(xij 1bij 1 + xij 2bij 2)w2j , (1)

where the weight functions w11, . . . , w1M and w21, . . . , w2M

will be determined later according to some optimal criteria.

Testing Genetic Association in Both Ancestral Populations
Simultaneously

We are interested in testing H0 : β1 = β2 = 0. Significant
results indicate that the test region is associated with the
disease in at least one of the two ancestral populations.

When the ancestral status is unknown, we need to account
for the uncertainty of the ancestral status. In this situation,
the likelihood function contributed by the ith individual can
be written as

p i = Pr(yi= 1|Di) =
∑

Ai

Pr(yi = 1|Di, Ai) Pr(Ai|Di)

=

3∑
Ai1=0

· · ·
3∑

AiM =0

exp(δi)

1 + exp(δi)
Pr(Ai|Di),

where δi = α + β1
∑M

j =1(xij 1aij 1 + xij 2aij 2)w1j +

β2
∑M

j =1(xij 1bij 1 + xij 2bij 2)w2j . The log-likelihood is given by

log L =

n∑
i=1

(yi log p i + (1 – yi) log(1 – p i)).

In Appendix, we have shown that the score statistic for
testing H0 : β1 = β2 = 0 is given by

Tscore = (wT
1 u1, wT

2 u2)

(
wT

1 Aw1 wT
1 Cw2

wT
1 Cw2 wT

2 Bw2

)–1

× (wT
1 u1, wT

2 u2)T/σ̂2,

where u1 =
∑n

i=1(yi – ȳ)xi , u2 =
∑n

i=1(yi – ȳ)zi , A =
∑n

i=1
(xi – x̄)(xi – x̄)T , B =

∑n
i=1(zi – z̄)(zi – z̄)T , C =

∑n
i=1(xi –

x̄)(zi – z̄)T , σ̂2 = 1
n

∑n
i=1 (yi – ȳ)2, xi = (xi1, . . . , xiM)T , xij =

xij 1p ij 1 + xij 2p ij 2, zi = (zi1, . . . , ziM)T , and zij = xij 1(1 –

p ij 1) + xij 2(1 – p ij 2).
One potential problem with the score statistic Tscore is that

for rare variants, it could be problematic to use A , B , and C to
estimate the variance-covariance matrix of the genotypes of
the first ancestral population, the variance-covariance matrix
of genotypes of the second ancestral population, and the
covariance matrix between genotypes of the first and second
ancestral populations due to the sparsity of the rare variants.
Following Pan [2009] and Sha et al. [2012], we replace A by
A0 = diag(A), B by B 0 = diag(B), and C by C0 = 0. Then, the
score test statistic becomes

T0(w1, w2) = σ
–2

(
wT

1 u1uT
1 w1

wT
1 A0w1

+
wT

2 u2uT
2 w2

wT
2 B 0w2

)
.

The statistic T0(w1, w2) reaches its maximum σ–2(uT
1 A –1

0

u1 + uT
2 B 0

–1u2) when (w1, w2) = (A –1
0 u1, B 0

–1u2), suggesting
the weight is optimal. We define the statistic TOWA as

TTOWA = uT
1 A –1

0 u1 + uT
2 B –1

0 u2 =

M∑
j =1

(
u2

1j

v1j

+
u2

2j

v2j

)
,

where u1j =
∑n

i=1 (yi – ȳ) xij , u2j =
∑n

i=1 (yi – ȳ) zij , v1j =∑n
i=1 (xij – x̄j )2, and v2j =

∑n
i=1 (zij – z̄j )2.

We use a permutation test to evaluate the significance of
TTOWA . Let T0

TOWA denote the observed value of the test statis-
tic TTOWA based on the original data. In each permutation,
we randomly shuffle y1, . . . , yn and denote the value of the
corresponding test statistic by Tp er

TOWA . We perform the per-
mutation procedure many times. The P-value of the test can
be calculated as the proportion of the number of permuta-
tions with Tp er

TOWA ≥ T0
TOWA .
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Table 1. Tests compared in this article

TOWA Testing the effect of the Optimally Weighted combination of rare
variants in Admixed populations (proposed in this article) which is
able to test the combined effects of two ancestral populations. It is
robust to the directions of the effects of causal variants and can
control for population stratification.

TOWAAFR Testing the effect of the Optimally Weighted combination of rare
variants in AFR ancestral population (proposed in this article) which
is able to test the association in the AFR ancestral population. It is
robust to the directions of the effects of causal variants and can
control for population stratification.

TOWAEUR Testing the effect of the Optimally Weighted combination of rare
variants in EUR ancestral population (proposed in this article) which
is able to test the association in the EUR ancestral population. It is
robust to the directions of the effects of causal variants and can
control for population stratification.

WDS The weighted dosage score test (proposed by Li et al. [2010]).
AWDSAFR The ancestry-based weighted dosage test to test the association in the

AFR ancestral population (proposed by Mao et al. [2013]).
AWDSEUR The ancestry-based weighted dosage test to test the association in the

EUR ancestral population (proposed by Mao et al. [2013]).

Testing Genetic Association in Each Ancestral Population

In addition to testing the combined effects of the two ances-
tral populations, we can also test association in each ancestral
population. To test the association in the first ancestral pop-
ulation H0 : β1 = 0, we change Equation (1) to

logit(Pr(yi = 1)) = α + β1

M∑
j =1

(xij 1aij 1 + xij 2aij 2)w1j ,

which leads to the test statistic

T(1)
TOWA =

M∑
j =1

(
u1j

2

v1j

)
.

A significant result from this test statistic indicates that the
test region is associated with the disease in the first ances-
tral population. Association analysis in the second ancestral
population can be performed in a similar fashion.

The R code of the TOWA method is available at
Shuanglin Zhang’s homepage http://www.math.mtu.edu/˜
shuzhang/software.html.

Comparisons of Methods

AWDS proposed by Mao et al. [2013] is the only method
thus far dealing with population stratification for rare vari-
ants in admixed populations. AWDS is similar to the WDS
test in WHaT [Li et al., 2010]. Both of these methods take
into account the direction of association. The key difference
is that AWDS is able to adjust for local ancestry in the tested
region, and thus can control for population stratification. In
order to evaluate the performance of TOWA, we compare the
type I error rate and power of TOWA with AWDS and WDS.
Table 1 summarizes the tests that are compared in this article.

Simulation

Simulation of Admixed Haplotypes

To evaluate the performance of the proposed method,
we conducted extensive simulations following the simula-
tion setup of Mao et al. [2013]. The 1000 Genomes data
(http://www.sph.umich.edu/csg/abecasis/MACH/download/
1000G-2010-08.html) provide a good resource to form
sequenced admixed samples with African and Caucasian
ancestry. The downloaded dataset includes 348 AFR (78YRI +

67LWK + 24ASW + 5PUR) phased haplotypes and 566
EUR (90 CEU + 92TSI + 43GBR + 36 FIN + 17MXL +

5PUR) phased haplotypes. The number of overlapping
SNPs between AFR and EUR is 8,952,982. We simulated
20,000 haplotypes of admixed individuals with African and
Caucasian ancestry using the phased haplotypes of AFR
and EUR. We employed a two-stage approach proposed
by Price at al. [2009]. At the first stage, we determined the
ancestry state for each marker from chromosomes 1 to 22.
For admixed populations, a person’s genome is a mosaic of
ancestral chromosomes. Therefore, a person’s genome can be
partitioned into different ancestry blocks. The breakpoints
between the ancestry blocks were determined by the recom-
bination events. We assumed that the probability 1 – e–λd of
the recombination events follows a Bernoulli distribution,
where d denotes the genetic distance (in Morgan) between
adjacent SNPs and λ represents the number of generations
since admixture. We set λ = 6 in our simulation. The ancestry
of each block was assigned as AFR ancestry with probability
p or EUR with probability 1 – p , where p follows a beta
distribution with mean 0.8 and standard deviation 0.1.
This allows us to generate an admixed population with an
average of 20% Caucasian and 80% African ancestries that is
similar to the population in African Americans [Smith et al.,
2004]. At the second stage, we generated 20,000 admixed
haplotypes based on the ancestry state of each marker across
chromosomes 1–22.

Since we have phased haplotype pool from AFR and EUR
and we know the ancestry state for each block at the first stage,
we can assign a haplotype for each ancestry block following
the rule below. For a given ancestry block, if its ancestry state
was AFR, we sampled a haplotype from the haplotype pool of
AFR and assigned the sequence in that block to the admixed
haplotype. We used similar procedure for an ancestry block
of EUR ancestry. We repeated this procedure many times and
generated a pool of 20,000 admixed haplotypes for each of the
22 autosomal chromosomes. Then, we randomly selected two
haplotypes and assigned them to an individual and generated
10,000 individuals’ two haplotypes.

Assignment of Disease Status

We considered a sample of n individuals from the simu-
lated admixed population and determined the disease status
for each individual following the simulation setup in Mao
et al. [2013]. First, we partitioned the genome into 44,620
nonoverlapping segments with 200 SNPs in each segments.
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In a given segment among SNPs with minor allele frequencies
in the range (0.001, 0.05), we randomly selected c SNPs as
causal variants. We followed Mao et al. [2013] by defining the
genotype relative risk (GRR) of an individual at variant j of
population a descent as

G RRa
j =

[
PARa

j

(1 – PARa
j )f a

j

](–1)I {ξa
j =1}

,

where PAR represents the population attributable risk; f de-
notes the adjusted minor allele frequency at variant j of pop-
ulation a ancestry; ξa

j = 1/10 indicates that the rare allele at
SNP j decreases/increases disease risk in population a. We set
1 for GRR in noncausal SNPs. GRR can differentiate the risk
of rare variants based on their ancestry state, which means
that two individuals carrying the same allele may have differ-
ent disease risk if they have different ancestral populations.
We assigned an individual’s disease status according to the
equation below

P (Z = 1|xij k, aij k)

= b0 ×
200∏
j =1

2∏
k=1

(
G RRAFR

j

)I {xAFR
ij k =1,aAFR

ij k =1}

× (
G RRE UR

j

)I {xE UR
ij k =1,aE UR

ij k =1}
,

where k = 1, 2. xij k denotes if the allele k for individual i at
marker j in population AFR (or EUR) is minor allele; aij k

indicates if the allele k for individual i at marker j is from
AFR (or EUR). b0 is the baseline penetrance and is assigned
as 10%. We repeated the sampling procedure until the desired
number of cases and controls was obtained.

To evaluate the type I error rate of each method, we ran-
domly selected 2,000 individuals from the simulation pool,
and designated 1,000 as cases and other 1,000 as controls.
This ensures that there is no systematic difference with re-
gard to their global ancestry but there may exist local ancestry
difference. For power comparisons, we considered two sce-
narios: (1) risk variants only, in which all variants increase
the disease risk, and (2) mixture of risk and protective vari-
ants. In the two scenarios, we assumed: (1) the risk of causal
variants in AFR and EUR is different; (2) PARs in AFR and
in EUR for causal variants is the same. We further considered
two models for the risk variants only case: (1) one-sided dis-
ease model in which the causal variants were from only one
ancestral population; (2) two-sided disease model in which
causal variants were from both ancestral populations. For
the one-sided disease model, we selected 20 causal variants
from AFR and EUR, respectively. We considered four differ-
ent values (0.002, 0.003, 0.004, and 0.005) for PAR in AFR
and four different values (0.008, 0.012, 0.016, and 0.02) for
PAR in EUR. For the two-sided disease model, we selected 40
causal variants in total among which 20 causal variants were
from AFR and another 20 causal variants were from EUR. We
considered four different scenarios for the two-sided disease
model (PARAFR = 0.003 and PAREUR = 0.004; PARAFR = 0.003
and PAREUR = 0.008; PARAFR = 0.001 and PAREUR = 0.012;
PARAFR = 0.002 and PAREUR = 0.012). For the mixture of risk

Table 2. Type I error rates of TOWA, TOWAAFR, and TOWAEUR

Type I error

Category TOWA TOWAAFR TOWAEUR

I (0.001–0.003) 0.034 0.046 0.032
II (0.01–0.02) 0.042 0.050 0.042
III (0.03–0.05) 0.056 0.054 0.056

Significance level is assessed at 5%. The three categories indicate the mean local
ancestry difference between cases and controls.

and protective variants case, we assumed that causal variants
of one ancestral origin contributed to disease risk. We selected
20 causal variants, among which we considered the number
of protective variants as 0, 5, 10, and 20, respectively. In each
simulation scenario, P-values were estimated by 10,000 per-
mutations and powers were evaluated using 1,000 replicated
samples in a prespecified segment at a significance level of
0.05.

Results

Comparison of Type I Error Rates

In order to assess the impact of local ancestry difference
on type I errors of the proposed method, we estimated the
type I error rates by considering three different scenarios.
We randomly selected 2,000 individuals from the simulation
pool which was generated as aforementioned, and designated
1,000 as cases and other 1,000 as controls. The genome of a
randomly selected individual was partitioned into 44,620 seg-
ments of 200 SNPs. The local ancestry of each segment is the
average of ancestry proportions across all SNPs within the
segment. The local ancestry differences of the 44,620 200-
SNP segments based on one simulation run range from 0 to
0.0427. In order to evaluate the performance of the proposed
method in the situation when small, medium, and large lo-
cal ancestry differences exist, we classified the mean local
ancestry difference into three categories: I (0.001–0.005), II
(0.01–0.02), and III (0.03–0.05). Five hundred segments were
retained from each category. We repeated the simulation pro-
cedure 20 times and obtained a total of 10,000 segments for
each of the three categories. In each category, we analyzed
10,000 segments using TOWA, TOWAAFR, and TOWAEUR.
P-values were estimated by 10,000 permutations and type I
error rates in each category were evaluated using 10,000
P-values for the 10,000 segments at a significance level of
0.05 for each category. The type I error rates of each test are
shown in Table 2. Our results indicate that the type I error
rates for all the tests are under control.

Comparison of Power Under the Risk-Variant Only
and One-Sided Disease Model

Figure 1 shows that TOWAAFR is the most powerful test
if all causal variants were from AFR and TOWAEUR is the
most powerful test if all causal variants were from EUR.
AWDSAFR is less powerful than TOWA and is much less
powerful than TOWAAFR when all causal variants were from
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Figure 1. Power comparison under the risk-variant only and one-sided disease models. (A) Power of the six tests under risk-variant only models
and all causal variants were from AFR. (B) Power of the six tests under risk-variant only models and all causal variants were from EUR. Significance
was assessed at the 5% level.

AFR. AWDSEUR is less powerful than TOWA and is much less
powerful than TOWAEUR when all causal variants were from
EUR. The power of TOWAAFR is more than twice the power
of AWDSAFR when all causal variants were from AFR and PAR
was small. The power loss of AWDS is due to AWDS splitting
data into two parts: training data and testing data. AWDS used
30% data as training set to classify variants as risk, protective,
or neutral variants, and only 70% of the data were used in
the association test, which reduces the power of AWDS sub-
stantially. Under the risk-variant only and one-sided disease
model, TOWAAFR (or TOWAEUR) is based on a more accurate

null hypothesis than TOWA. Therefore, TOWAAFR (or
TOWAEUR) is more powerful than TOWA when all causal
variants were from AFR (or EUR). In the range of PARs,
we considered, for each ancestry population (AFR or EUR),
the corresponding TOWAAFR- (or TOWAEUR) and AWDS-
type tests consistently have higher power than the WDS test
though the latter has inflated type I error rate in admixed pop-
ulations. This pattern is expected because WDS is designed
for the collective effect of causal variants ignoring their ances-
try while TOWA and AWDS can test rare variant associations
in each ancestral population of an admixed population.
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Figure 2. Power comparison under the risk-variant only and two-sided disease models. Power of the six tests under risk-variant only models
considering 40 causal variants with 20 causal variants from AFR and 20 causal variants from EUR. Significance was assessed at the 5% level.

Comparison of Power Under the Risk-Variant Only
and Two-Sided Disease Model

We considered four different scenarios under the risk-
variant only model assuming a total of 40 causal variants with
20 causal variants from AFR and 20 from EUR, respectively.
For simplicity, we chose moderate PARs: PARAFR = 0.003
and PAREUR = 0.004; PARAFR = 0.003 and PAREUR = 0.008;
PARAFR = 0.001 and PAREUR = 0.012; and PARAFR = 0.002
and PAREUR = 0.012. Figure 2 shows that TOWA is about
30% more powerful than AWDSAFR when PARAFR = 0.003
and PAREUR = 0.004, PARAFR = 0.003 and PAREUR = 0.008.
When PARAFR = 0.002 and PAREUR = 0.012, both TOWA and
TOWAEUR are about 10% more powerful than AWDSEUR and
70% more powerful than AWDSAFR. When PARAFR = 0.001
and PAREUR = 0.012, TOWAEUR is 10% more powerful than
AWDSEUR and 80% more powerful than AWDSAFR. AWDS-
type tests (AWDSAFR/AWDSEUR) lost power dramatically in
detecting association when there is one population ancestry
AFR or EUR with less contribution to disease risk because
AWDS-type tests can only test the effect of one single ances-
tral population. TOWA is able to test the combined effects
of two ancestral populations. In addition, TOWA can use
all the information in the whole sample in testing for as-
sociation. However, AWDS-type tests only use 70% of the
information from the dataset in testing for association due
to the splitting procedure of their method. In the two-sided
disease model, WDS is still less powerful than TOWAAFR and
AWDSAFR when the side of AFR had larger contribution to
disease risk (PARAFR = 0.003). This pattern is expected be-
cause WDS is designed for the collective effect of causal vari-
ants ignoring their ancestry while TOWAAFR and AWDSAFR

specifically test for associations in the AFR ancestral
population.

Comparison of Power When Both Risk and Protective
Variants Are Present

In order to clearly demonstrate the difference of the powers
among different tests, we chose moderate PARs for AFR as
0.003, 0.004, and 0.005; for EUR as 0.012, 0.016, and 0.02
under one-sided disease model. We fixed the number of causal
variants at 20 and chose the number of protective variants as
0, 5, 10, and 20, respectively. We set the same three PAR values
for protective variants along with the risk variants. Figure 3
shows that although the power of all the tests is negatively
correlated with the number of protective variants, TOWAAFR

is the most powerful test when causal variants are from AFR
and TOWAEUR is the most powerful test when causal variants
are from EUR. In general, all the corresponding TOWA-type
tests outperform the corresponding AWDS tests and the WDS
test despite that the WDS test has inflated type I error rate in
admixed populations.

Impact of Uncertainty in Ancestry Probability Estimation

In the aforementioned analyses, we assumed the ancestry
states in the tested region are known. In real studies, we
need to estimate the ancestry states in the tested region using
ancestry informative markers’ genotypes in that region.

Several software packages are available for estimating the
ancestry states, including ANCESTRYMAP [Patterson et al.,
2004], MALDSOFT [Montana et al., 2004], ADMIXPRO-
GRAM [Zhu et al., 2006], SABER [Tang et al., 2006], LAMP
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Figure 3. Power comparison under the mixture of risk and protective variants models. We fixed the number of causal variants as 20 for
all scenarios. (A–C) Causal variants were all from AFR ancestry background; (D–F) causal variants were all from EUR ancestry background.
Significance was assessed at the 5% level.

[Sankararaman et al., 2008], HAPAA [Sundquist et al., 2008],
HAPMIX [Price et al., 2009], and SEQMIX (local-ancestry in-
ference for sequenced admixed individuals) [Hu et al., 2013].
The choice of which program to use will depend on the nature
of the data. The current state-of-the-art method is HAPMIX,
which can yield an estimated ancestry that has as high as 98%
correlation with the true ancestry. We chose to use HAP-
MIX to estimate local ancestries in the tested region given
its high quality and its ability to provide allele-specific an-
cestry estimation. In order to verify the quality of HAPMIX,
we have tested the software by using 200 individuals across
5,000 consecutive SNPs on chromosome 22. All the AFR and
EUR haplotypes from the 1000 Genome Project are severed
as references in our testing. As expected, the inferred ancestry
states with HAPMIX are more than 98% identical to the true

states. Ideally, we should use programs such as HAPMIX to
estimate local ancestry probabilities for all of the 10,000 sim-
ulated individuals’ genomes. However, these programs are
computationally intensive and it is not feasible to run these
programs on all simulated datasets. To circumvent this diffi-
culty, we added uncertainties to the ancestry states according
to the error model [Mao et al., 2013] in Table 3, which indices
similar patterns of uncertainties for local ancestry estimates
as HAPMIX.

We re-evaluated the type I error rates and power for TOWA,
TOWAAFR, and TOWAEUR based on two risk-variant only and
one-sided disease models by incorporating random errors in
local ancestry estimates in the simulated datasets following
the error model in Table 3. As presented in Table 4, the
type I error rates of TOWA, TOWAAFR, and TOWAEUR are
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Table 3. Error model for ancestry probability estimation

True ancestry Probability with
probability uncertainty

Without recombination events P(A = AFR) = 0 e1

P(A = EUR) = 1 1 – e1

P(A = AFR) = 1 1 – e1

P(A = EUR) = 0 e1

With recombination events P(A = AFR) = 0 e2

P(A = EUR) = 1 1 – e2

P(A = AFR) = 1 1 – e2

P(A = EUR) = 0 e2

e1 is generated from uniform (0, 0.01). It is used when there is no recombination
between different ancestral populations. e2 is generated from uniform (0.3, 0.7). It is
used when there are recombinations between different ancestral populations. A is the
ancestry state of an allele.

acceptable when we used the ancestry probabilities instead
of the true ancestry states in association studies. The type
I error of TOWA with estimated ancestry and with mean
local ancestry difference in category III is slightly excessive as
0.062, possibly due to inaccurate estimation of local ancestry.
This indicates how to accurately estimate local ancestry is
critical to perform TOWA. The powers of TOWA, TOWAAFR,
and TOWAEUR are reduced slightly (<5%) when using the
ancestry probabilities instead of the true ancestry states.

Application to the Hematocrit Dataset

We applied the proposed methods to a combined dataset
on hematocrit (HCT) from Candidate-gene Association Re-
source (CARe) and Women’s Health Initiative (WHI) [Reiner
et al., 2011]. Exome sequence data were available on a total
of 1,692 African American participants of the two cohorts
(Duan et al., 2013; Fu et al., 2013). Among them, 1,314 par-
ticipants have HCT phenotypes (in percentage). HCT, also
known as packed cell volume, which is the volume percentage
(%) of red blood cells in blood. Previous genome-wide asso-
ciation study identified strong association between HCT and
a common SNP rs7312105 on gene CACNA1C (Harst et al.,
2012; P-value = 4 × 10–9), a gene on chromosome 12 encoding
an alpha-1 subunit of a voltage-dependent calcium channel.
Calcium channels mediate the influx of calcium ions into the
cell upon membrane polarization. An abnormally high HCT,
usually called polycythemia, is a life-threatening disorder.

In order to evaluate the performance of the proposed
methods in real data, we applied TOWA to the HCT
exome-sequencing data and tested association between gene

Table 5. Real data analysis of CACNA1C

TOWA TOWAAFR TOWAEUR AWDSAFR AWDSEUR

Variants (MAF < 0.05) 0.065 0.041 0.219 0.076 0.228

P-values of TOWA and AWDS are based on 10,000 permutations and 10,000
bootstrap samples, respectively.

CACNA1C and HCT. We assigned individuals with HCT >

41.7 as cases (n = 376) and those with HCT < 41.7 as con-
trols (n = 938). The allele-specific population ancestry in the
CACNA1C region was inferred using HAPMIX for all cases
and controls. We used 1000 Genomes Project phased hap-
lotypes of EUR and AFR as reference. Due to the limitation
of the HAPMIX, we can only infer ancestry for 259 SNPs
on CACNA1C that have both EUR and AFR reference panels
in the 1000 Genomes Project. The average African ancestries
for cases and controls are 0.6302 (SD = 0.13) and 0.6247
(SD = 0.16), respectively. Our analysis was performed on 22
less common SNPs with MAF < 0.05. As shown in Table 5,
TOWAAFR revealed marginal association for the African side
between rare variants in CACNA1C and HCT.

Discussion

Population stratification has long been recognized as an is-
sue in genetic association studies. Unrecognized population
stratification can lead to both false-positive and false-negative
findings and can obscure true association signals if not ap-
propriately corrected. For rare variants, this problem can be
even more serious since the spectrum of rare variation can be
very different in diverse populations. It has been shown that
there exists noticeable local ancestry difference in samples
collected from admixed populations even when their global
ancestry patterns are similar [Mao et al., 2013]. Global an-
cestry adjustment is not sufficient for correcting population
stratification induced by local ancestry difference and could
lead to inflated type I errors for even a small disparity of local
ancestry [Mao et al., 2013; Qin et al., 2010; Wang et al., 2011].
In this article, we proposed a novel method, TOWA, to cor-
rect for population stratification. TOWA takes into account
the local ancestry of each allele in the tested region, and thus
allows the local ancestry difference among study subjects to
be appropriately modeled.

TOWA corrects for population stratification by incorporat-
ing local ancestry state of the tested variants in the test statis-
tic. How to efficiently and accurately estimate local ancestry

Table 4. Type I error and power of TOWA when (1) true ancestry state was known; (2) ancestry state was estimated with uncertainty

True ancestry Estimated ancestry

TOWA TOWAAFR TOWAEUR TOWA TOWAAFR TOWAFEUR

Type I Category I 0.034 0.044 0.043 0.040 0.045 0.046
Category II 0.042 0.046 0.045 0.050 0.048 0.050
Category III 0.056 0.055 0.054 0.062 0.057 0.060

Power PARAFR = 0.003 0.777 0.859 0.050 0.773 0.855 0.046
PAREUR = 0.012 0.964 0.058 0.984 0.960 0.053 0.941

Uncertainty was introduced according to the error model in Table 3. Significance was assessed at the 5% level.
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is critical to perform TOWA. Several software packages are
available for estimating the ancestry states, including ANCES-
TRYMAP [Patterson et al., 2004], MALDSOFT [Montana
et al., 2004], ADMIXPROGRAM [Zhu et al., 2006], SABER
[Tang et al., 2006], LAMP [Sankararaman et al., 2008], HA-
PAA [Sundquist et al., 2008], HAPMIX [Price et al., 2009],
and SEQMIX [Hu et al., 2013]. The current state-of-the-art
method is HAPMIX, which can yield an estimated ances-
try that has as high as 98% correlation with the true ancestry
[Price et al., 2009]. However, we note that the software is time
consuming. If a larger number of haplotypes are present in
the reference panels, it may take months or years to com-
plete. In addition, due to the extremely low MAFs of many
variants in the sequence data, some observed rare variants
in admixed populations may not be present in the reference
panel. To circumvent these issues, one may need to preselect
a subset of SNPs or ancestral informative markers covering
the whole genome and then use HAPMIX to estimate the
ancestry states of the subset of SNPs. The ancestry states for
those nonselected SNPs can be interpolated by the inferred
ancestry states of the flanking SNPs. When there is a switch
of ancestry states between two preselected SNPs, one can an-
alyze the original set of SNPs in that region and pinpoint
the switch point of ancestry states. If sequencing data are
available, one may also consider using SEQMIX [Hu et al.,
2013], a recently developed tool, which can accurately infer
local ancestry in exome-sequenced or targeted sequenced ad-
mixed individuals via the use of off-target sequence reads.
Off-target reads generated during exome-sequencing exper-
iments can be combined with on-target reads to accurately
estimate the ancestry of each chromosomal segment in an
admixed individual. With SEQMIX, accurate ancestry calls
(squared correlation between true ancestry and SEQMIX re-
sult is �0.9) can be generated with as little as 0.1-fold coverage
of the nontargeted part of the genome.

For a genome-wide rare variants analysis, the computa-
tional time of the proposed method is acceptable though the
P-value is determined by the permutation method. In order
to estimate the computational time needed using TOWA in a
genome-wide rare variants analysis, we performed a whole-
genome scan using TOWA. We partitioned the whole genome
into 44,620 nonoverlapping regions with 200 SNPs in each
region. We used 1,000 permutations to estimate the P-value
of TOWA for each region. For a sample with 1,000 cases and
1,000 controls, the computational time of P-value estimation
of TOWA for all the 44,620 regions was 45 h using a 2.40 GHz
single central processing unit (CPU) with 58 MB average
memory. If we use parallel computing with 100 CPUs, the
computational time for a whole-genome scan with TOWA
would be 27 min.

The method proposed in this article is applicable for qual-
itative traits. We can use the similar idea for qualitative traits
to develop a method for quantitative traits. For a quantitative
trait, a linear regression can be used to model the relationship
between the trait and genetic variants. For an admixed pop-
ulation, we can incorporate the ancestry status of each allele
of an SNP into the linear regression model. Then, a score test

can be developed to test the association between a combina-
tion of rare variants and the trait in admixed populations.
However, the performance of the method for quantitative
traits needs further investigation.

Appendix
In the following discussion, we assume that, for given

genotypes, the ancestral statuses in different variants are

independent. That is, Pr(Ai|Di) =
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= ȳ(1 – ȳ)(1 – 2ȳ)
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i w1

)

– E
d2 log L

dβ2
1

∣∣∣∣
β1=0,β2=0,α=α̂
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