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ABSTRACT

Summary: Despite its great capability to detect rare variant associ-

ations, next-generation sequencing is still prohibitively expensive

when applied to large samples. In case-control studies, it is thus

appealing to sequence only a subset of cases to discover variants

and genotype the identified variants in controls and the remaining

cases under the reasonable assumption that causal variants are usu-

ally enriched among cases. However, this approach leads to inflated

type-I error if analyzed naively for rare variant association. Several

methods have been proposed in recent literature to control type-I

error at the cost of either excluding some sequenced cases or

correcting the genotypes of discovered rare variants. All of these

approaches thus suffer from certain extent of information loss and

thus are underpowered. We propose a novel method (BETASEQ),

which corrects inflation of type-I error by supplementing pseudo-

variants while keeps the original sequence and genotype data intact.

Extensive simulations and real data analysis demonstrate that, in most

practical situations, BETASEQ leads to higher testing powers than

existing approaches with guaranteed (controlled or conservative)

type-I error.

Availability and implementation: BETASEQ and associated R files,

including documentation, examples, are available at http://www.unc.

edu/*yunmli/betaseq

Contact: songyan@unc.edu or yunli@med.unc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Recent advances in next-generation sequencing technologies

have made it possible to detect rare variant associations in gen-

etic studies of complex diseases. While rare variants tend to exert
stronger effects on complex traits than common variants (Cohen

et al., 2004; Fearnhead et al., 2004; Gorlov et al., 2008; Pritchard,

2001), accurate detection of rare variant association typically

requires sequencing at least hundreds or thousands of individuals

at high coverage, which remains cost prohibitive for most inves-
tigators. In the literature, a two-stage design is often adopted in

rare variant association studies (Prokopenko et al., 2009;

Raychaudhuri et al., 2011; Sanna et al., 2011) to reduce costs.
In the two-stage design, a subset of individuals are sequenced in

stage 1 to discover variants, and the identified variants are then

genotyped on the remaining individuals in stage 2. With a fixed
budget, this two-stage design enjoys the advantage of increased

sample size at potentially influential variants and thus may

achieve a higher testing power than a one-stage approach in
which all individuals used for association analysis are sequenced.

Under the reasonable assumption that causal variants are en-
riched in cases, it is appealing to sequence only cases to improve

power of association testing in the two-stage design. However, as
has been shown (Li and Leal, 2009), sequencing only cases leads

to inflated type-I error if stage 1 (sequence) and stage 2 (geno-

type) data are simply combined, because this partial sequencing
strategy causes the distribution of detected (and thus tested) vari-

ants to be different between cases and controls. Several methods

have been proposed to correct this inflated type-I error. Among
them, using genotyped samples only (GSO) (Liu and Leal, 2012)

and removing one variant carrier from the sequenced sample per
variant nucleotide site (ROPS) (Longmate et al., 2010) manage

to control type-I error by dropping all or a subset of cases

sequenced in stage 1. GSO and ROPS do not make full use of
the genetic information in a sample and thus inevitably incur loss

in efficiency. A more powerful method, SEQCHIP (Liu and

Leal, 2012), was proposed recently to correct the inflation cre-
ated by such two-stage partial sequencing design. Instead of dis-

carding some sequenced cases, SEQCHIP corrects genotypes of
sequenced individuals in terms of the genotypes of genotyped

individuals, such that the corrected genotypes of sequenced indi-

viduals follow an almost identical distribution as those among
genotyped individuals. SEQCHIP does not drop any individuals

in the analysis and thus is potentially more efficient than GSO

and ROPS. However, SEQCHIP suffers from abandoning some
identified rare variants during the correction process and is thus

still underpowered. Moreover, the minor allele frequency (MAF)
in SEQCHIP can be slightly underestimated, which may further

impair the performance of SEQCHIP.
Clearly and intrinsically, the inflated type-I error is due to only

a portion of cases being sequenced. Motivated by the intuition

that more variants would be discovered if the un-sequenced in-
dividuals were also sequenced, we propose BETASEQ, a beta

distribution-based method, to correct inflation of type-I error*To whom correspondence should be addressed.
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when sequencing only a subset of cases. Unlike existing methods,
BETASEQ keeps all original sequence and genotype data intact

and corrects inflation of type-I error by supplementing pseudo-

variants to the original data. The pseudo-variants are meant to

mimic the extra variants that would be discovered under the

counterfactual situation where individuals genotyped in stage 2

were also sequenced. Since no sequencing information is
dropped, BETASEQ has the potential to be more powerful

than existing methods. The number of pseudo-variants added

by BETASEQ and their MAFs are estimated on the basis

of the algorithm proposed by Ionita-Laza et al. (2009).

BETASEQ can work with any existing rare variant association

methods (Ionita-Laza et al., 2011; Lee et al., 2012; Li et al., 2010;

Liu and Leal, 2010; Madsen and Browning, 2009; Morris and
Zeggini, 2010; Price et al., 2010; Zawistowski et al., 2010;

Wu et al., 2011) that use genotypes or imputed genotypes as

input data. Moreover, unlike SEQCHIP, BETASEQ can be

applied in situations where not only cases but also a small

number of controls are sequenced. Extensive simulations were

carried out to evaluate the performance of BETASEQ and
SEQCHIP with three typical rare variant association methods:

the cumulative minor-allele test (CMAT) (Zawistowski et al.,

2010), extensions of the aggregated number of rare variants

(ANRV) test (Morris and Zeggini, 2010) and the variable thresh-

old (VT) test (Price et al., 2010). In addition, we also applied

both BETASEQ and SEQCHIP to a real sequencing dataset

(Nelson et al., 2012) from the population-based CoLaus study
(Firmann et al., 2008) with the three rare variant association

tests. Results from simulations and real data application demon-

strate the advantages of the proposed method over existing ones

and establish that BETASEQ is effective for combining sequence

and genotype data from the two stages for rare variant associ-

ation testing.

2 METHODS

Suppose there is a dataset of NA cases and NO controls. Without loss of

generality, we assume NA � NO. In this article, we will focus on the

situation where rare variants in a genomic region increase susceptibility

to disease and assume all variants are biallelic. NE cases and NE controls

(NE � NV and NS ¼ NE þNV) are randomly selected and sequenced to

discover variants in stage 1 then in stage 2 the remaining NG ¼ NA �NE

cases and NU ¼ NO �NV controls are genotyped at the variant sites

identified in the NS sequenced individuals. Our BETASEQ algorithm is

composed of three key steps. First, following Ionita-Laza et al. (2009), we

assume the spectrum of MAFs of the variants follows a scaled beta dis-

tribution and estimate its parameters from the NS sequenced individuals.

Second, we estimate the number and MAFs of pseudo-variants which

would be discovered if the un-sequenced NG þNU individuals were also

sequenced and add these pseudo-variants. Lastly, we compare the distri-

butions of rare variants among cases and that among controls and sup-

plement additional rare variants into controls by criteria specified in

section 2.3. A theoretical justification of BETASEQ can be found in

Appendix A of supplementary materials.

2.1 Step I: estimate the parameters of scaled

beta distribution

The spectrum of MAFs is assumed to follow a scaled beta distribution.

As shown in the literature (Ionita-Laza et al., 2009; Wright, 1951), the

scaled beta distribution is a good approximation for the spectrum of

MAFs at biallelic markers under a neutral selection and mutation-drift

equilibrium. It is mathematically convenient and has been frequently used

(Coram and Tang, 2007; Ionita-Laza et al., 2009; Ionita-Laza and Laird,

2010; Wright, 1951). We hereby follow Ionita-Laza et al. (2009) to esti-

mate the parameters of the scaled beta distribution from variants dis-

covered among sequenced individuals. Assume the total number of

biallelic variants in the given genomic region is an unknown scalar T.

Let f be the unobserved MAF at a variant site, and let X be the number

of minor alleles at that site observed among the sequenced NS individuals

(that is, among 2�NS alleles, minor allele count is X). By Hardy–

Weinberg equilibrium, X � Binð2NS, fÞ. f is assumed to follow a scaled

beta distribution and its density takes the following form:

pðfÞ ¼
2ð2fÞa�1ð1� 2fÞb�1

Bða, bÞ
, 0 � f � 0:5 ð1:1Þ

where a, b are parameters and Bða, bÞ is beta function. Let nx be the

number of variants with exactly X minor alleles observed. a and b can

be estimated by maximizing the following likelihood function based on

variants detected in the NS sequenced individuals:

Lða, bÞ ¼
YNS

x¼1

½PtrðxÞ�nx ð1:2Þ

where

PtrðxÞ ¼ Pðxjx � 1Þ ¼
PðxÞ

PNS

x¼1

PðxÞ

ð1:3Þ

and

PðxÞ ¼

Z 0:5

0

2NS

x

� �
fxð1� fÞ2NS�xpðfÞdf ð1:4Þ

PðxÞ is the probability that exactly x minor alleles are observed at a

variant site and PtrðxÞ follows a zero-truncated beta-binomial distribution

for X � 1. The existing optimization package in R or SAS can be used to

maximize the likelihood function and the integrals in the likelihood func-

tion can be calculated by Gaussian quadrature in terms of the scaled beta

distribution in equation (1.1).

In the original Ionita-Laza et al. (2009), the proportion of individuals

carrying at least one minor allele at a variant site is assumed to follow a

beta distribution. Since supplementing pseudo-variants entails the MAF

distribution, our algorithm further assumesMAF fð0 � f � 0:5Þ to follow

a scaled beta distribution.

2.2 Step II: add pseudo-variants by the scaled

beta distribution

With a and b estimated, Ionita-Laza et al. (2009) provided a method to

predict the number of potential variants that would be detected if the un-

sequenced individuals were also sequenced for any given minimum fre-

quency. However, to generate these pseudo-variants, we need not only the

number but also the MAFs of these pseudo-variants. While MAFs of ‘all’

single nucleotide polymorphisms (SNPs) in the genetic region follow the

scaled beta distribution, MAFs of pseudo-variants to be added (variants

missed by partial sequencing) do not necessarily follow the same

distribution.

Based on the algorithm of Ionita-Laza et al. (2009), we propose to

estimate the MAFs of the pseudo-variants and generate them from the

scaled beta distribution in the following way. First, split ½0, 0:5� (domain

of variant MAFs) into equally spaced intervals each with length �, denote

the intervals by �1, :::,�Kf g,K ¼ 0:5=�. Next, estimate the number of

potentially discovered variants t�j, j ¼ 1, :::,K for each small interval �j

(details to follow). Afterward, for each small interval �j, generate t�j

minor allele frequencies f1, :::, ft�j

� �
from a uniform distribution bounded
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by the interval �j. Finally, within each small interval �j, generate the

minor alleles of t�j variants among the un-sequenced individuals in terms

of f1, :::, ft�j

� �
based on binomial distributions with size 2ðNG þNUÞ and

success probability fi, i ¼ 1, :::, t�j. Note that if fi is so small such that no

minor alleles are generated then that variant is simply dropped.

The choice of interval length �. The choice of � cannot be arbitrary and

should depend on the size of the un-sequenced individuals (NG þNU). As

illustrated in Appendix B of supplementary materials, given the value of

NG þNU, if � is too small then inadequate rare variants will be generated,

which will consequently cause the algorithm to fail to control type-I error

even after we supplement extra rare variants in step III; if � is too large

then we might produce too many rare variants such that type-I error will

become over-corrected and testing power will be suppressed.

Conceivably, a good � should allow the first MAF interval ½0, �Þ to max-

imally generate variants with only one minor allele observed in the

NG þNU individuals. Here we propose to obtain an optimal � by max-

imizing the expectation of the probability of observing one minor allele

over the first MAF interval ½0, �Þ in the NG þNU individuals. That is,

�opt ¼ argmax
�

Z �

0

2ðNG þNUÞ

1

� �
f 1� fð Þ

2ðNGþNUÞ�1

�
df ð1:5Þ

Estimation of the number of pseudo-variants. Following Ionita-Laza et al.

(2009), let r ¼ ðNG þNUÞ=NS denote the ratio between the number of un-

sequenced individuals and the sequenced. t�j (the number of potential

variants to be discovered in the MAF interval �j if the rNS individuals

were sequenced) can be estimated by

t�j ¼ T̂

Z fuj

flj
ð1� fÞ2NSpðfÞ � T̂

Z fuj

flj
ð1� fÞ2ðrþ1ÞNSpðfÞdf ð1:6Þ

where T̂ is an estimator of T (the total number of biallelic variants in the

given genomic region) and fuj, flj are the upper and lower bounds of the

interval �j. The details of derivation for T̂ and equation (1.6) can be

found in Appendix C and D of supplementary materials.

2.3 Step III: supplement additional pseudo-variants

2.3.1 Why should we supplement additional pseudo-
variants? Overall, step II works well and is capable of predicting the

number of pseudo-variants closely to the truth, especially when r is small

(r � 1) and MAFs are not very low (MAF 41=ð2NSÞ). However, step II

cannot completely predict the number of potential variants with

extremely low MAFs especially when r41 (similar observation was

reported in Ionita-Laza et al., 2009) for the following reasons: (i) beta

distribution is only an approximation of the spectrum of MAFs and

cannot completely predict the number of extremely low frequency vari-

ants; (ii) the number of sequenced individuals is usually smaller than that

of un-sequenced ones and it is unstable to extrapolate beyond the limit of

the actually sequenced data. Consequently, t�j will be underestimated

when r increases or �j falls at the very low end of the MAF spectrum.

Because of the underestimation of t�j, under null hypothesis, the spec-

trum of rare variants can still differ considerably between cases and

controls even after step II.

For the reasons above, it is impossible to make precise prediction

regarding MAF distribution among controls from sequenced individuals

without making additional assumptions. Intuitively, a simple way to elim-

inate the difference in the low end of the MAF spectrum between cases

and controls is to add some additional variants into un-sequenced con-

trols. Based on this intuition, in step III, an algorithm is developed to add

additional pseudo-variants into un-sequenced controls as a further

remedy for step II. Calculations in step III are based on combination

of real variants discovered among the sequenced individuals and pseudo-

variants added by step II.

2.3.2 Type of additional pseudo-variants. In step III, we only add

pseudo-variants into un-sequenced controls and the focus is on rare vari-

ants that are found exclusively in cases or exclusively in controls. These

variants usually have the lowest MAFs and thus suffer most from the

underestimation of t�j and contribute most to the MAF spectrum differ-

ence between cases and controls. Under the null hypothesis, if all cases

and controls were sequenced, rare variants present only among controls

can be assumed to distribute similarly as their counterparts among cases

for a balanced design where the numbers of cases and controls are the

same or similar. Based on this assumption, the algorithm supplements

additional variants into the un-sequenced NU controls by comparing rare

variants exclusively found in cases with those in controls. The details of

the algorithm are described in 2.3.2, 2.3.3 and 2.3.4.

2.3.3 The procedure of adding additional pseudo-variants. In our

algorithm, step III always adds minor alleles of additional variants to un-

sequenced controls, which are compared with a group of cases of the

same size M. If NA (the number of cases) equals to NU (the number of

un-sequenced controls), then M ¼ NA ¼ NU and add extra variants to

the un-sequenced M controls by comparing with the MAF spectrum

of the M cases. If NA5NU, let Y ¼ NU and the algorithm iterates be-

tween the next two stages: (i) let M ¼ NA choose the first M un-

sequenced controls out of the Y un-sequenced controls and add extra

variants to the chosen M controls based on the MAF spectrum of the

M cases; (ii) afterward, letY ¼ Y�M, for the remaining Y un-sequenced

controls if NA5Y, then go back to stage (i), otherwise proceed to stage

(iii): let M ¼ Y and add additional variants to the remaining M un-

sequenced controls by comparing with the M cases, which are randomly

selected out of the NA cases. Under the rare scenario where NA4NU, let

Y ¼ NU and simply follow stage (iii) above. The MAFs and number of

additional pseudo-variants to be added for each pair of M cases and M

un-sequenced controls are specified in the following sections 2.3.4, 2.3.5

and 2.3.6.

2.3.4 The MAFs of additional pseudo-variants. For the purpose

of comparison, in step III, MAFs are estimated separately for M cases

and M un-sequenced controls. For a group of size M, the estimable

MAFs of variants are discrete and can only take values from

set F ¼ 1=ð2MÞ, 2=ð2MÞ, :::, 1=2
� �

. Given the value of NS (num-

ber of sequenced individuals), 1=ð2NSÞ is the minimum MAF that

can be estimated from the observed data. Define

F1=2NS
¼ f : f 2 F and f � 1=ð2NSÞ
� �

, the number of variants exclusively

found in controls with MAF 2 F1=2NS
is thus likely to be underestimated

in step II. Based on the analysis above, our algorithm adds additional

variants for any MAF f if f 2 F1=2NS
. Under the rare scenario where

1=ð2MÞ41=ð2NSÞ, additional variants with MAF ¼ 1=ð2MÞ will be sup-

plemented in the same manner detailed below in sections 2.3.5 and 2.3.6.

2.3.5 The numbers of additional pseudo-variants. For each

MAF ¼ f satisfying conditions described above that needs additional

variant supplementation, let Zf,U denote the number of variants with

MAF ¼ f and found exclusively among M un-sequenced controls and

let Zf,A be the counterpart among M compared cases. The additional

variants with MAF ¼ f are supplemented into the M controls by the

following two criteria: (i) additional variants of MAF ¼ f will be added

only if Zf,U5Zf,A after step II; (ii) additional variants with MAF ¼ f in

M controls are added such that Zf,U ¼ Zf,A.

2.3.6 The way to add additional pseudo-variants. To make newly

added variants found exclusively among M un-sequenced controls, we

randomly assign the calculated number of minor alleles (determined by

MAF f and M) of the newly added variants to the M controls and set

genotypes of these variants to major allele homozygote for all other

individuals.
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After step III, the number of variants with every estimable MAF

satisfying the conditions in 2.3.3 is equal to or greater than that in M

cases, which could result in overcorrection of type-I error especially

when r is big. We note that under the alternative hypothesis, some

bona fide MAF spectra differences between cases and controls would

be removed by step III and power is reduced to a certain extent due to

the loss of bona fide frequency differences. Specifically, testing power will

decrease as r increases. This is not surprising since low testing power is

expected when only a small portion of individuals are sequenced. We

provide an example in Appendix E of supplementary materials to show

the number and MAFs of pseudo-variants added by BETASEQ in

each step.

3 SIMULATIONS

3.1 Simulation design

Extensive simulations under a range of settings were carried out

to evaluate the performance of the proposed and existing meth-

ods. Genotypes were generated using COSI (Schaffner et al.,

2005), which mimics the linkage disequilibrium pattern, local

recombination rate and the population history for Europeans

using a coalescent model. In all settings, genotypes were deter-

mined by simulating 10 000 chromosomes for a 1 MB region. We

randomly generated 100 sets of the 1 MB region and each set

contains �20 K SNPs on average. The middle 2 K SNPs were

chosen from the �20 K variants for each of the 100 sets. The

number of actually observed variants for any given dataset

depends on the sample size and is expected to be52K. We con-

sidered four scenarios of sample size: 500 cases/500 controls, 400

cases/600 controls, 1000 cases/1000 controls and 750 cases/1250

controls. For each scenario, 10 datasets were simulated from

each of the 100 sets and a total number of 1000 replicates were

created. Let q be the percentage of sequenced cases, following the

simulation design in Liu and Leal (2012), in each of the 1000

replicates, we sequenced q¼ 5, 10, 30, 50, 70 and 90% of cases to

discover variants, and the detected variants were genotyped in

the remaining individuals. Considering some controls may also

be sequenced in practice, we also conducted simulations in which

90% of cases and 10% of controls were sequenced for all the

sample size scenarios.
The case/control status under alternative hypothesis was gen-

erated in the same way as in Wu et al. (2011). For each dataset,

5% of variants that have MAF53% were selected to be causal.

The case/control status y for each individual was determined

using the following logistic model:

logitðy ¼ 1Þ ¼ �0 þ �1G1 þ �2G2 þ :::þ �hGh ð1:7Þ

where G1,G2, :::,Gh are genotypes of h causal variants and betas

are the effect sizes of the causal rare variants. �0 is the disease

prevalence and was set to be 1%. The magnitude of each �j was
chosen in a way to make rarer variants have greater effects. Here

�j was set to cj log10 MAFjj and c ¼ ln 5=4.
Type-I errors and powers of three rare variant association

tests, VT, ANRV and CMAT, were calculated under

BETASEQ and SEQCHIP. We used the VT, ANVR and

weighted sum statistics (WSS) functions implemented in the

SEQCHIP R package (Liu and Leal, 2012) to carry out these

three rare variant tests (CMAT is regarded as an extension of

weighted sum statistics method in the SEQCHIP R package and

thus named WSS). GSO and ROPS have been demonstrated

inferior to SEQCHIP (Liu and Leal, 2012) and thus were not

evaluated in this article. For each of these tests, variants with

observed MAF 53% were considered as rare. One-sided tests

were performed, that is, the alternative hypothesis states that

more causal alleles are in cases than in controls. The P-values

for CMAT and VT were obtained empirically using 1000 per-

mutations. Significant level � was set to 0.05 throughout the

simulation study. Only results for settings 400 cases/600 controls

and 750 cases/1250 controls are presented in the main text. Those

for 500 cases/500 controls and 1000 cases/1000 controls show

similar patterns and are displayed in Appendix F of supplemen-

tary materials.
We also conducted simulations to compare BETASEQ and

SEQCHIP when genetic effect does not depend on MAF. The

results can be found in Appendix G of supplementary materials.

Moreover, we also performed simulations under a more stringent

significant threshold (0.001). Results can be found in

Supplementary Appendix H. Furthermore, to demonstrate the

performance of BETASEQ and SEQCHIP for quadratic test, we

applied SKAT on the datasets corrected by BETASEQ

and SEQCHIP and display the results in Supplementary

Appendix I. In addition, we also evaluated the effect of the

size of collapsing unit in Supplementary Appendix J. Finally,

since each method is more powerful than the other in most set-

tings where it is less conservative, we also compared the powers

when Type-I error was controlled at exactly 0.05 for both meth-

ods. Supplementary Appendix K presents these true power re-

sults when we used empirical significance threshold to control

Type-I error at exactly 0.05.

3.2 Type-I error

Table 1 shows the type-I errors of the VT, ANRV and CMAT

tests when only cases are sequenced and the data are corrected by

SEQCHIP and BETASEQ. Table 2 presents the type-I errors of

the VT, ANRV and CMAT tests when all cases and controls are

sequenced. As indicated in Table 1, the type-I errors of the three

tests in all the settings are controlled under 0.05. Compared with

Table 2, both BETASEQ and SEQCHIP in Table 1 are conser-

vative. As q (percentage of sequenced cases) increases from 5 to

90%, the conservativeness of BETASEQ is substantially miti-

gated, whereas SEQCHIP tends to be increasingly more conser-

vative. For example, when 5% cases are sequenced in a sample of

750 cases and 1250 controls, the type-I errors for VT, ANRV and

CMAT under SEQCHIP are 0.044, 0.026 and 0.028, whereas

when 90% cases are sequenced in the same scenario, the type-

errors for VT, ANRV and CMAT reduce to 0, 0 and 0, respect-

ively. This conservativeness makes the powers of the three tests

under SEQCHIP decline as q increases and we will elaborate

this issue in later paragraphs. More detailed explanation for

difference between SEQCHIP and BETASEQ can be found

in Supplementary Appendix L of supplementary materials.

Supplementary Table S8 in Supplementary Appendix M presents

the type-I errors of the three tests when 90% of cases and 10% of

controls are sequenced and data are integrated by BETASEQ.

As shown in Supplementary Table S8, type-I errors are well

controlled in all the scenarios.
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3.3 Power results

We evaluate the performance of the two data integration meth-

ods, namely SEQCHIP and BETASEQ, for VT, ANRV and

CMAT in four different sample size settings. As shown in

Figure 1, BETASEQ outperforms SEQCHIP in most of the scen-

arios. In many settings when q ¼ 50% or 90%, the powers under

BETASEQ are close to those by sequencing all individuals in a

sample (noted as Complete in Fig. 1). Under BETASEQ, the

powers of VT, ANRV and CMAT keep growing as q (percentage

of sequenced cases) increases from 5 to 90% in all the scenarios.

For example, when sample size is 750 cases and 1250 controls,

the powers of VT, ANRV and CMAT are 0.340, 0.441 and 0.437

when only 5% of cases are sequenced; the three powers rise to

0.552, 0.639 and 0.658 when q ¼ 50% and up to 0.64, 0.685 and

0.703, respectively, when 90% of cases are sequenced. In the

same scenario, the full powers (Complete) of VT, ANRV and

CMAT are 0.775, 0.758 and 0.786, respectively, when all cases

and controls are sequenced. Thus in the setting of 750/1250

cases/controls, with only 18.75% of all individuals being

sequenced (50% of cases being sequenced), we can obtain

�80% of maximal possible powers when using BETASEQ to

integrate sequence and genotype data. Similarly in the same set-

ting under BETASEQ, �90% of possible full powers can be

achieved by sequencing only 33.75% of all individuals (90% of

cases being sequenced). In contrast, when SEQCHIP is used the
powers of all three tests show a mixed pattern: they grow as q
increases from 5 to 10% and after that, they decrease as q rises

up to 90% (Fig. 1). SEQCHIP outperforms BETASEQ in many
scenarios when q � 10%, but its performance deteriorates and
becomes increasingly inferior to BETASEQ as q increases.

Taking the scenario of 750 cases and 1250 controls, for example,
under SEQCHIP, if 5% of the cases are sequenced, the powers of
VT, ANRV and CMAT are 0.454, 0.484 and 0.506; the three

powers increase to 0.472, 0.517 and 0.540 when q ¼ 10%; they
fall to 0.342, 0.394 and 0.387 when q ¼ 50% and finally down to
0.24, 0.291 and 0.246, respectively, when q ¼ 90%. The reason

for the decline in power is discussed in details in Supplementary
Appendix L of supplementary materials and in appendix of Liu

and Leal (2012). Briefly speaking, SEQCHIP relies on the accur-
ate estimation of MAFs. However, SEQCHIP tends to slightly
underestimate MAF (a rigorous proof using probability theory

can be found in appendix of Liu and Leal, 2012). When q is small
and when not many rare variants are detected, this underestima-
tion of MAFs does not result in severe consequences. When q

increases and more cases are sequenced, the biases in MAF esti-
mation accumulate, become increasingly serious and thus reduce
the power of rare variant association tests, despite the fact

that more causal rare variants are discovered at the same time.
Moreover, as demonstrated in Figure 1, the highest powers
under SEQCHIP are uniformly lower than those under

BETASEQ. Supplementary Figure S7 of Appendix M presents
the powers of the three tests when 90% of the cases and 10%
of the controls are sequenced in four sample size scenarios and

BETASEQ is applied to correct data. As can be seen, BETASEQ
is robust, as the powers in Supplementary Figure S7 are almost

the same as those when 90% of the cases and no controls are
sequenced.

4 REAL DATA ANALYSIS

We applied BETASEQ and SEQCHIP to a targeted sequencing
dataset from the CoLaus study. Two thousand fifty-nine CoLaus

subjects were sequenced at relatively high depth (medium depth
�27) in the exons of 202 genes (Nelson et al., 2012). Our primary
outcome of interest is anxiety. Among the 2059 subjects, 290

subjects did not have anxiety information and thus were
dropped. Seven out of 202 genes on chromosome X were also

excluded from analysis. The final data contained 604 cases/1165
controls and 195 genes. We adjusted for eight covariates in the
analysis: gender, age, age2, and the top five principal components

constructed from CoLaus genomewide genotype data
(Affymetrix 5.0) to control population stratification. Among
the three rare variant association tests, ANRV itself can adjust

continuous and discrete covariates while VT and CMAT cannot.
For these two methods, we used BiasedUrn (Epstein et al., 2012),
a permutation procedure to adjust covariates in rare variant

association test, to adjust for the eight covariates (number of
permutation was set to be 1000 in BiasedUrn). Variants with
missingness410% were removed. Same as in our simulations,

variants with observed MAF53% were considered as rare and
one-sided tests were performed. A gene was considered to be
significant if its P50.05 and is among the five smallest

P-values by VT, ANRV and CMAT. We performed the three

Table 1. Type-I error evaluation for partially sequenced data

Sample size

cases/controls

q Type-I errors

VT ANRV CMAT

SEQ BETA SEQ BETA SEQ BETA

400/600 0.05 0.049 0.004 0.032 0.013 0.035 0.011

400/600 0.1 0.027 0.004 0.023 0.014 0.02 0.012

400/600 0.3 0.009 0.006 0.008 0.016 0.009 0.019

400/600 0.5 0.002 0.009 0.006 0.018 0.004 0.02

400/600 0.7 0.002 0.017 0.003 0.018 0.002 0.021

400/600 0.9 0 0.019 0.002 0.022 0.002 0.026

750/1250 0.05 0.044 0.006 0.026 0.023 0.028 0.018

750/1250 0.1 0.022 0.006 0.020 0.027 0.019 0.021

750/1250 0.3 0.005 0.007 0.005 0.029 0.004 0.023

750/1250 0.5 0.002 0.01 0.002 0.035 0 0.031

750/1250 0.7 0 0.034 0 0.044 0 0.045

750/1250 0.9 0 0.037 0 0.048 0 0.046

aSEQ is SEQCHIP, BETA is BETASEQ. bq is the percentage of sequenced cases.

Table 2. Type-I error evaluation for completely sequenced data

Sample size cases/controls Type-I errors

VT ANRV CMAT

400/600 0.042 0.045 0.053

750/1250 0.046 0.055 0.059
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rare variant tests under Complete (all cases and controls are

sequenced), BETASEQ and SEQCHIP. Hundred percent of

the cases were sequenced and the discovered variants were geno-

typed on the controls under BETASEQ and SEQCHIP.

Table 3 shows the significant genes under Complete,

BETASEQ and SEQCHIP. As shown in Table 3, two genes (A

and B) were identified as significant by all the three tests when all

the individuals were sequenced (Complete). Gene A was also

identified by BETASEQ as significant. SEQCHIP failed to

identify both A and B but identified another gene C as signifi-

cant. For gene A, the P-values of the three tests are (0.014, 0.024,

0.076) under SEQCHIP; for gene B, the P-values are (0.36, 0.191,

0.157) under BETASEQ and (0.37, 0.236, 0.172) under

SEQCHIP. For gene C, which was identified as significant

under SEQCHIP, the P-values are (0.06, 0.048, 0.05) under

BETASEQ and (0.059, 0.032, 0.038) under Complete. These sig-

nificant genes could still be false positives because we defined

significant genes according to a combination of nominal thresh-

old of 0.05 and the rank among the tested genes instead of using

stringent multiple testing correction methods. But our results

suggest better concordance between BETASEQ and the oracle

(that is, those under complete sequencing when all individuals

are sequenced) results. Qqplots and the correlations of P-values

with the oracle values are also displayed in Supplementary

Appendix N.

5 DISCUSSION

In this article, to control type-I error of rare variant association

testing, a novel method is proposed to correct partially

sequenced data in case-control studies, in which only a subset

of individuals (mainly cases) are sequenced to detect variants and

the discovered variants are genotyped in the remaining individ-

uals. Different from all the existing methods in literature, which

drop either some sequenced cases or some detected variants to

control type-I errors, our method BETASEQ conducts an in

silico sequencing on the un-sequenced individuals by supplement-

ing pseudo-variants into them, such that the spectrum of MAFs

in controls becomes approximately the same as that in cases.

Meanwhile, the original sequence and genotype data are kept

Fig. 1. Comparisons of BETASEQ and SEQCHIP when sample sizes are 400 cases/600 controls and 750 cases/1250 controls. VT, ANRV and CMAT

are used to test the rare variant association. The powers were calculated under a significance level of � ¼ 0:05 with 1000 simulated datasets
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intact. All the existing rare variant association methods that use

genotypes or imputed genotypes as input data can be applied

directly on the dataset corrected by BETASEQ. Besides the situ-

ations where only cases are sequenced, BETASEQ can be applied

when not only cases but also a small number of controls are

sequenced. BETASEQ can also be applied when study sample

is stratified by some confounders and cases within each subgroup

are partially selected out to sequence. In that situation,

BETASEQ can be used within each subgroup stratified by

confounders.
We demonstrated the performance of BETASEQ by three

typical rare variant association tests: VT, ANVR and CMAT.

Extensive simulations showed that when BETASEQ is used to

correct partially sequenced data, the inflation of type-I errors of

all the three variant association tests is well corrected. Type-I

errors under BETASEQ can be conservative when q (percentage

of sequenced cases) is small. But the conservativeness alleviates

substantially as q increases. The powers of the three tests under

BETASEQ increase with q and are higher than those under

SEQCHIP in most scenarios. When SEQCHIP is used to inte-

grate sequence and genotype data, type-I errors keep decreasing

and eventually become conservative as q increases; meanwhile

powers increase first and then decrease. Under SEQCHIP,

there exists an optimal fraction of cases to sequence to maximize

testing power (Liu and Leal, 2012). Sequencing a larger number

of samples may discover more causal variants but does not

necessarily improve testing power. The optimal q depends on

the underlying disease model and other factors of the settings

and needs to be decided on a case by case basis (Liu and Leal,

2012), which renders explanation difficult and limits the practical

utility of SEQCHIP.
In this article, we assume rare variants in a genomic region

are deleterious. If rare variants are protective or exert effects in

both directions, sequencing only cases may decrease testing

power. If rare variants are assumed to be protective, we

should sequence only controls in stage 1 because causal vari-

ants are enriched in controls. Under that situation, our algo-

rithm can still be applied by supplementing pseudo-variants to

cases. If we assume rare variants exert effects in both direc-

tions, it is more appropriate to sequence both cases and con-

trols in stage 1 for causal variant detection. In that case,

variant ascertainment bias and subsequently Type-I error con-

trol are likely no longer issues. Because BETASEQ (and all

other correction methods reviewed including SEQCHIP) is pro-

posed under the design where corrections are unidirectional, we

have found, not surprisingly, that one-sided tests benefit more

from our method than quadratic methods like SKAT

(Supplementary Appendix I).

There is still room to improve the algorithm of supplementing

pseudo-variants into un-sequenced individuals. Currently, our

method is based on a parametric beta distribution to approxi-

mate the MAF spectrum of biallelic variants in a given genomic

region. In some situations, real MAF spectrum can depart from

the beta distribution assumption and then prediction of potential

SNPs may become inaccurate. A nonparametric approach may

be adopted to improve prediction accuracy. Moreover, in step III

of our algorithm, we simply make the number of variants with

MAFs satisfying the criteria in 2.3.4 in M controls equivalent to

the counterpart in M cases, which can be conservative especially

when percentage of sequenced cases is small. A more flexible

supplementing scheme in step III might be developed to further

improve testing power. However, the current algorithm strives

for a balance at this point between simplicity/parsimony and

efficiency, and already demonstrates satisfactory performance

compared with existing approaches. Finally, BETASEQ correc-

tion is specific to the unit of analysis because the number of

variants and their MAF distribution vary from one region to

the next (thus specific to each analysis unit). For genome-wide

usage, one can apply BETASEQ to different analysis units

independently and in parallel.
In summary, results from the extensive simulations and real

data analysis suggest that our proposed method is more efficient

than existing methods. As rare variants are precious in rare vari-

ant association analysis, our method provides a more effective

way to test rare variant association by not dropping any genetic

information generated when only part of the individuals are

sequenced in two-stage case-control studies.
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