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Abstract

Batch effect correction has been recognized to be indispensable when integrating single-cell RNA sequencing (scRNA-seq)
data from multiple batches. State-of-the-art methods ignore single-cell cluster label information, but such information can
improve the effectiveness of batch effect correction, particularly under realistic scenarios where biological differences are
not orthogonal to batch effects. To address this issue, we propose SMNN for batch effect correction of scRNA-seq data via
supervised mutual nearest neighbor detection. Our extensive evaluations in simulated and real datasets show that SMNN
provides improved merging within the corresponding cell types across batches, leading to reduced differentiation across
batches over MNN, Seurat v3 and LIGER. Furthermore, SMNN retains more cell-type-specific features, partially manifested
by differentially expressed genes identified between cell types after SMNN correction being biologically more relevant, with
precision improving by up to 841.0%.
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Introduction
An ever-increasing amount of single cell RNA-sequencing
(scRNA-seq) data has been generated as scRNA-seq technologies
mature and sequencing costs continue dropping. However,
large-scale scRNA-seq data, for example those profiling tens
of thousands to millions of cells (such as the Human Cell
Atlas Project) [1], almost inevitably involve multiple batches
across time points, laboratories or experimental protocols. The
presence of batch effect renders joint analysis across batches
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challenging [2, 3]. Batch effect or systematic differences in gene
expression profiles across batches not only can obscure the true
underlying biology but also may lead to spurious findings. Thus,
batch effect correction, which aims to mitigate the discrepancies
across batches, is crucial and deemed indispensable for the
analysis of scRNA-seq data across batches [4].

Because of its importance, a number of batch effects cor-
rection methods has been recently proposed and implemented.
Most of these methods, including limma [5], ComBat [6] and
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svaseq [7], are regression-based. Among them, limma and Com-
Bat explicitly model known batch effect as a blocking term.
Because of the regression framework adopted, standard statis-
tical approaches to estimate the regression coefficients corre-
sponding to the blocking term can be conveniently employed. In
contrast, svaseq is often used to detect the underlying unknown
factors of variation, for instance, unrecorded differences in the
experimental protocols. Svaseq first identifies these unknown
factors as surrogate variables and subsequently corrects them.
For these regression-based methods, once the regression coeffi-
cients are estimated or the unknown factors are identified, one
can then regress out these batch effects accordingly, obtaining
residuals that will serve as the batch-effect corrected expres-
sion matrix for further analyses. These methods have become
standard practice in the analysis of bulk RNA-seq data. However,
when it comes to scRNA-seq data, one key underlying assump-
tion behind these methods, in which the cell composition within
each batch is identical, might not hold. Consequently, estimates
of the coefficients might be inaccurate. As a matter of fact, when
applied to scRNA-seq data, the corrected results derived from
these methods widely adopted for bulk RNA-seq data might be
even inferior to raw data without no correction, in some extreme
cases [8].

To address the heterogeneity and high dimensionality of
complex data, several dimension-reduction approaches have
been adopted. An incomplete list of these strategies includes
principal component analysis (PCA), autoencoder or force-based
methods such as t-distributed stochastic neighbor embedding
(t-SNE) [9]. Through those dimension reduction techniques, one
can project new data onto the reference dataset using a set of
landmarks from [8, 10–12] to remove batch effects between any
new dataset and the reference dataset. Such projection methods
require the reference batch that contains all the cell types across
batches. As one example, Spitzer et al. [11] employed force-
based dimension reduction and showed that leveraging a few
landmark cell types from bone marrow (the most appropriate
tissue in that it provides the most complete coverage of immune
cell types) allowed mapping and comparing immune cells across
different tissues and species. When applied to scRNA-seq data,
however, these methods suffer when cells from a new batch
fall out of the space inferred from the reference. Furthermore,
determining the dimensionality of the low dimensional
manifolds is still an open and challenging problem. To address
the limitations of existing methods, two recently developed
batch effect correction methods, MNN and Seurat v3, adopt the
concept of leveraging information of mutual nearest neighbors
(MNNs) across batches [8, 12] and demonstrate superior per-
formance over alternative methods [8, 12]. However, this MNN-
based strategy ignores cell-type information and suffers from
potentially mismatching cells from different cell types/states
across batches, which may lead to undesired correction results.
For example, under the scenario depicted in Figure 1b, MNN
leads to cluster 1 (C1) and cluster 2 (C2) mis-corrected due to
mismatching single cells in the two clusters/cell-types across
batches.

To address the above issue, here, we present SMNN, a
supervised machine learning method that explicitly incorpo-
rates cell-type information. SMNN performs nearest neighbor
searching within the same cell type, instead of global searching
ignoring cell-type labels (Figure 1a). Cell-type information,
when unknown a priori, can be inferred via clustering methods
[13–16].

Results
SMNN framework

The motivation behind our SMNN is that single-cell cluster or
cell-type information has the potential aid the identification of
most relevant nearest neighbors and subsequently improves
batch effect correction. A preliminary clustering before any
correction can provide knowledge regarding cell composition
within each batch, which serves as the cellular correspondence
across batches (Figure 1a). With this clustering information, we
can refine the nearest neighbor searching space within a certain
population of cells that are of the same or similar cell type(s) or
state(s) across all batches.

SMNN takes a natural two-step approach to leverage cell-type
label information for enhanced batch effect correction (Figure 1c
and Supplementary Section 1). First, it takes the expression
matrices across multiple batches as input and performs cluster-
ing separately for each batch. Specifically, in this first step, SMNN
uses Seurat v3 [17] where dimension reduction is conducted
via PCA to the default of 20 PCs, and then graph-based clus-
tering follows on the dimension-reduced data with resolution
parameter of 0.9 [18, 19]. Obtaining an accurate matching of the
cluster labels across batches is of paramount importance for
subsequent nearest neighbor detection. SMNN requires users
to specify a list of marker genes and their corresponding cell-
type labels to match clusters/cell types across batches. We,
hereafter, refer to this cell type or cluster matching as cluster
harmonization across batches. Because not all cell types are
necessarily shared across batches, and no prior knowledge exists
regarding the exact composition of cell types in each batch,
SMNN allows users to take discretion in terms of the marker
genes to include, representing the cell types that are believed to
be shared across batches. Based on the marker gene information,
a harmonized label is assigned to every cluster identified across
all the batches according to two criteria: the percentage of cells
in a cluster expressing a certain marker gene and the average
gene expression levels across all the cells in the cluster. After
harmonization, cluster labels are unified across batches. This
completes step one of SMNN. Note that if users have a priori
knowledge regarding the cluster/cell-type labels, the clustering
step could be bypassed completely.

With the harmonized cluster or cell-type label information
obtained in the first step, SMNN, in the second step, searches
MNNs only within each matched cell type between the first
batch (which serves as the reference batch) and any of the
other batches (the current batch) and performs batch effect
correction accordingly. Compared with MNN or Seurat v3, where
the MNNs or anchor cells are searched globally, SMNN iden-
tifies neighbors from the same cell population or state. After
MNNs are identified, similar to MNN, SMNN first computes
batch effect correction vector for each identified pair of cells
and then calculates, for each cell, the cell-specific correction
vectors by exploiting a Gaussian kernel to obtain a weighted
average across all the pair-specific vectors with MNNs of the
cell under consideration. The correction vectors obtained from
shared cell-types will be applied to correct all cells including
those belonging to batch-specific cell types (detailed in Sup-
plementary Section 2). Each cell’s correction vector is further
scaled according to the cell’s location in the space defined by the
correction vector and standardized according to quantiles across
batches, in order to eliminate ‘kissing effects’. ‘Kissing effects’
refer to the phenomenon that only the surfaces of cell-clouds
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scRNA-seq batch effect correction via SMNN 3

Figure 1. Overview of SMNN. Schematics for detecting MNNs between two batches under a non-orthogonal scenario (a) in SMNN and (b) in MNN. (c) Workflow of SMNN.

Single cell clustering is first performed within each batch using Seurat v3; and then SMNN takes user-specified marker gene information for each cell type to match

clusters/cell types across batches. With the clustering and cluster-specific marker gene information, SMNN searches MNNs within each cell type and performs batch

effect correction accordingly.

across batches are brought in contact (rather than fully merged),
commonly observed with naïve batch effect correction [8] (an
example detailed in Supplementary Section 3 and visualized in
Supplementary Figure S1). At the end of the second step, SMNN
returns the batch-effect corrected expression matrix including
all genes from the input matrix for each batch, as well as the
information regarding nearest neighbors between the reference
batch and the current batch under correction. This step is carried
out for every batch other than the reference batch so that all
batches are corrected to the same reference batch in the end.

Simulation results

Since MNN has been shown to excel alternative methods [4,
8], we here focus on comparing our SMNN with MNN. We first
compared the performance of SMNN to MNN in simulated data.
In our simulations, SMNN demonstrates superior performance
over MNN under both orthogonal and non-orthogonal scenarios
(Figures 2 and 3 and Supplementary Figures S2–S4). We show t-
SNE plot for each cell type before and after MNN and SMNN cor-
rection under both the orthogonal and non-orthogonal scenar-
ios. Under orthogonality, the two batches partially overlapped in
the t-SNE plot before correction, suggesting that the variation
due to batch effect was indeed much smaller than that due to
biological effect. Both MNN and SMNN successfully mixed single
cells from two batches (Supplementary Figure S3). However, for
cell types 1 and 3, there were still some cells from the second
batch left unmixed with those from the first batch after MNN
correction (Supplementary Figure S3a and c). Under the non-
orthogonal scenario, the differences between two batches were

more pronounced before correction, and SMNN apparently out-
performed MNN (Supplementary Figure S4), especially in cell
type 1 (Supplementary Figure S4a). Moreover, we also computed
Frobenius norm distance [20] for each cell between its sim-
ulated true profile before introducing batch effects and after
SMNN and MNN correction. The results showed an apparently
reduced deviation from the truth after SMNN correction than
MNN (Figure 3). We have also simulated data using the original
simulation framework in Haghverdi et al. [8], which does not
allow precise control of orthogonality (detailed in Materials and
Method section) and seems to simulate data closer to those
under orthogonal cases (Supplementary Figure S5a). Applying
SMNN and MNN to such simualted data, we also found that
SMNN showed slight advantages (Supplementary Figure S5b).
These results suggest that SMNN provides improved batch effect
correction over MNN under both orthogonal and non-orthogonal
scenarios.

Real data results

For performance evaluation in real data, we first carried
out batch effect correction on two hematopoietic datasets
(Supplementary Table S1) using four methods: our SMNN,
published MNN, Seurat v3 and LIGER. Figure 4a–e shows UMAP
plot before and after correction. Notably, all four methods can
substantially mitigate discrepancy between the two datasets.
Comparatively, SMNN better mixed cells of the same cell type
across batches than the other three methods and seemed to
better position cells from batch-specific cell types with respect
to other biological-related cell types (Supplementary Figure S6
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Figure 2. Heatmap of gene expression matrices for simulated data under non-orthogonal scenario. (a–d) 3D biological space with rows of each heatmap representing

biological factors and columns corresponding to single cells. (e–h) High dimensional gene expression profiles with rows corresponding to genes and columns again

representing single cells. (a, e and i) Correspond to the batch 1 and (b, f and j) correspond to batch 2. (c and g) Provide a visualization for the direction of batch effects in

low-dimension biological space and high-dimension gene expression spaces, respectively. (d and h) Sum of (b) and (c) and sum of (f) and (g), respectively, are ‘observed’

data for cells in batch 2 in low and high dimensional space. (i and j) Are the cosine-normalized data for batch 1 and original batch 2. Note ‘original’ is in the sense that

no batch effects have been introduced to the data yet. (k and l) Are the MNN and SMNN corrected results, respectively.

Figure 3. Frobenius norm distance between two batches after SMNN and MNN correction in simulation data under orthogonal (left) and non-orthogonal scenarios

(right).
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scRNA-seq batch effect correction via SMNN 5

Figure 4. Performance comparison between SMNN and MNN in two hematopoietic datasets. (a) UMAP plots for two hematopoietic datasets before batch effect

correction. Solid and inverted triangle represent the first and second batch, respectively; and different cell types are shown in different colors. (b–e) UMAP plots

for the two hematopoietic datasets after correction with MNN, Seurat v3, LIGER and SMNN. (f) Logarithms of F-statistics for merged data of the two batches.

and S7), especially for common myeloid progenitor (CMP) and
megakaryocyte-erythrocyte progenitor (MEP) cells, which were
wrongly corrected by MNN due to sub-optimal nearest neighbor
search ignoring cell-type information (Supplementary Figure
S8). Correspondingly, SMNN corrected data exhibits the lowest
F value than that from the other three methods. Specifically, F
value is with reduced by 81.5–96.6% on top of MNN, Seurat v3
and LIGER, respectively (Figure 4f). Furthermore, we compared
the distance for the cells between batch 1 and 2 and found
that, compared with data before correction, both MNN and
SMNN reduced the Euclidean distance between the two batches
(Supplementary Figure S9). In addition, SMNN further decreased
the distance by up to 8.2% than MNN [2.8%, 4.3% and 8.2% for
cells of type CMP, MEP and granulocyte-monocyte progenitor
(GMP) cells, respectively]. Under scenarios where we only have
partial cell-type information, SMNN still better mixed cells of
the same cell type across batches (detailed in Supplementary
Section 3; Supplementary Figure S10a–c and e–g) and manifested
the best/lowest F values, compared with uncorrected and MNN-
corrected data (Supplementary Figure S10d and h). These results
suggest improved batch effect correction by SMNN, compared
with unsupervised correction methods.

SMNN identifies differentially expressed genes that are
biologically relevant

We then compared the differentially expressed genes (DEGs)
among different cell types identified by SMNN and MNN. After
correction, in the merged hematopoietic dataset, 1012 and 1145
up-regulated DEGs were identified in CMP cells by SMNN and
MNN, respectively, when compared with GMP cells, while 1126

and 1108 down-regulated DEGs were identified by the two meth-
ods, respectively (Figure 5a and Supplementary Figure S11a).
Of them, 736 up-regulated and 842 down-regulated DEGs were
shared between SMNN and MNN corrected data. Gene ontology
(GO) enrichment analysis showed that the DEGs detected only by
SMNN were overrepresented in GO terms related to blood coag-
ulation and hemostasis, such as platelet activation and aggrega-
tion, hemostasis, coagulation and regulation of wound healing
(Figure 5b). Similar DEG detection was carried out to detect genes
differentially expressed between CMP and MEP cells. About 181
SMNN-specific DEGs were identified out of the 594 up-regulated
DEGs in CMP cells when compared with MEP cells (Figure 5c),
and they were found to be enriched for GO terms involved in
immune cell proliferation and differentiation, including regu-
lation of leukocyte proliferation, differentiation and migration,
myeloid cell differentiation and mononuclear cell proliferation
(Figure 5d). Lastly, genes identified by SMNN to be up-regulated
in GMP when compared with MEP cells were found to be involved
in immune processes, whereas up-regulated genes in MEP over
GMP were enriched in blood coagulation (Supplementary Figure
S11e–h). Comparatively, the GO terms enriched for MNN-specific
DEGs seem not particularly relevant to corresponding cell func-
tions (Supplementary Figure S12). These cell-function-relevant
SMNN-specific DEGs indicate that SMNN can maintain some cell
features that are missed by MNN after correction.

In addition, we considered two sets of ‘working truth’: first,
DEGs identified in uncorrected batch 1 and, second, DEGs iden-
tified in batch 2, and we compared SMNN and MNN results to
both sets of working truth. The results showed that, in both
comparisons (one comparison for each set of working truth),
fewer DEGs were observed in SMNN-corrected batch 2, but higher
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Figure 5. Comparison of DEGs, identified in the merged dataset by pooling batch 1 data with batch 2 data after SMNN and MNN correction. (a) Overlap of DEGs up-

regulated in CMP over GMP after SMNN and MNN correction. (b) Feature-enriched GO terms and the corresponding DEGs up-regulated in CMP over GMP. (c) Overlap of

DEGs up-regulated in CMP over MEP after SMNN and MNN correction. (d) Feature-enriched GO terms and the corresponding DEGs up-regulated in CMP over MEP.

precision and lower false negative rate in each of the three
cell types than those in MNN results (Figure 6 and Supplemen-
tary Figures S13–S15). When compared with the uncorrected
batch 1, 3.6–841.0% improvements in precision were observed
in SMNN results than MNN (Figure 6 and Supplementary Figure
S14). Similarly, SMNN increased the precision by 6.2–54.0% on
top of MNN when compared with uncorrected batch 2 (Supple-
mentary Figure S15). We also performed DEG analysis at various
adjusted P-value thresholds, and the results showed that the
better performance of SMNN is not sensitive to the P-value
cutoff we used for DEG detection (detailed in Supplementary
Section 3; Supplementary Figure S16). Such an improvement in
the accuracy of DEG identification indicates that higher amount
of information regarding cell structure was retained after SMNN
correction than MNN.

We also identified DEGs between T cells and B cells in the
merged human peripheral blood mononuclear cells (PBMCs) and
T cell datasets after SMNN and MNN correction, respectively
(Supplementary Figure S17). Compared with B cells, 3213
and 4180 up-regulated DEGs were identified in T cells by
SMNN and MNN, respectively, 2203 of which were shared
between the two methods (Supplementary Figure S17e). GO
enrichment analysis showed that the SMNN-specific DEGs were
significantly enriched for GO terms relevant to the processes of
immune signal recognition and T cell activation, such as T cell
receptor signaling pathway, innate immune response-activating
signal transduction, cytoplasmic pattern recognition receptor
signaling pathway and regulation of autophagy (Supplementary
Figure S17f). In B cells, 5422 and 3462 were found to be up-
regulated after SMNN and MNN correction, where 2765 were
SMNN-specific (Supplementary Figure S17g). These genes were

overrepresented in GO terms involved in protein synthesis and
transport, including translational elongation and termination,
ER to Golgi vesicle-mediated transport, vesicle organization
and Golgi vesicle budding (Supplementary Figure S17h). These
results again suggest that SMNN more accurately retains or
rescues cell features after correction.

SMNN more accurately identifies cell clusters

Finally, we examined the ability to differentiate cell types after
SMNN and MNN correction in three datasets
(Supplementary Table S1). In all three real datasets, Adjusted
Rand Index (ARI) after SMNN correction showed 7.6–42.3%
improvements over that of MNN (Figure 7), suggesting that
SMNN correction more effectively recovers cell-type specific
features.

Discussion
In this study, we present SMNN, a batch effect correction method
for scRNA-seq data via supervised MNN detection. Our work is
built on the recently developed method MNN, which has showed
advantages in batch effect correction than existing alternative
methods. On top of MNN, our SMNN relaxes a strong assump-
tion that underlies MNN: that the biological differentiations are
orthogonal to batch effects [8]. When this fundamental assump-
tion is violated, especially under the realistic scenario that the
two batches are rather different, MNN tends to err when search-
ing nearest neighbors for cells belonging to the same biological
cell type across batches. Our SMNN, in contrast, explicitly con-
siders cell-type label information to perform supervised MNN
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Figure 6. Reproducibility of DEGs (between CMP and GMP), identified in uncorrected batch 1 and in SMNN or MNN-corrected batch 2. (a) Reproducibility of DEGs up-

regulated in CMP over GMP, detected in batch 1, versus SMNN (left) or MNN-corrected (right) batch 2. (b) TPR of the DEGs (between CMP and GMP) identified in batch 2

after SMNN and MNN correction. (c) Reproducibility of DEGs up-regulated in GMP over CMP, identified in the uncorrected batch 1, and in SMNN (left) or MNN-corrected

(right) batch 2. (d) TPR of the DEGs up-regulated in GMP over CMP identified in batch 2 after SMNN and MNN correction.

Figure 7. Clustering accuracy in three datasets after batch effect correction. ARI

is employed to measure the similarity between clustering results before and after

batch effect correction.

matching, thus empowered to extract only desired neighbors
from the same cell type.

A notable feature of our SMNN is that it can detect and match
the corresponding cell populations across batches with the help
of feature markers provided by users. SMNN performs clustering
within each batch before merging across batches, which can
reveal basic data structure, i.e. cell composition and proportions
of contributing cell types, without any adverse impact due to
batch effects. Cells of each cluster are labeled by leveraging their
average expression levels of certain marker(s), thus enabling us
to limit the MNN detection within a smaller search space (i.e.
only among cells of the same or similar cell type or status). This

supervised approach eliminates the correction biases incurred
by pairs of cells wrongly matched across cell types. We bench-
marked SMNN together with three state-of-the-art batch effect
correction methods, MNN, Seurat v3 and LIGER, on simulated
and three published scRNA datasets. Our results clearly show
the advantages of SMNN in terms removing batch effects. For
example, our results for the hematopoietic datasets show that
SMNN better mixed cells of all the three cell types across the two
batches (Figure 4a–e) and reduced the differentiation between
the two batches by up to 96.6% on top of the corrected results
from the three unsupervised methods (Figure 4f), demonstrating
that our SMNN method can more effectively mitigate batch
effect. Additionally, cell population composition can also be a
critical factor in batch effect correction. Our results by analyzing
batches with varying cell type compositions (detailed in Supple-
mentary Section 3; Supplementary Figure S18) suggest that our
SMNN is robust to differential cell composition across batches.

More importantly, the wrongly matched cell pairs may wipe
out the distinguishing features of cell types. This is mainly
because, for a pair of cells from two different cell types, the
true biological differentiations between them would be con-
sidered as technical biases and subsequently removed in the
correction process. Compared with MNN, SMNN also appears
to more accurately recover cell-type specific features: clustering
accuracy using SMNN-corrected data increases substantially in
all the three real datasets (by 7.6–42.3% when measured by
ARI) (Figure 7). Furthermore, we observe power enhancement in
detecting DEGs between different cell types in the data after
SMNN correction than MNN (Figures 5 and 6 and Supplementary
Figures S11–S15). Specifically, the precision of the DEGs identi-
fied by SMNN were improved by up to 841.0% and 54.0% than
those by MNN when compared with the two set of working
truth, respectively (Figure 6c and d and Supplementary Figures
S14 and S15). Moreover, GO term enrichment results show that
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the up-regulated DEGs identified only in SMNN-corrected GMP
and MEP cells were involved in immune process and blood
coagulation, respectively (Supplementary Figure S11f and h),
which accurately reflect the major features of these two cell
types [21]. Similarly, DEGs identified between T and B cells after
SMNN correction are also biologically more relevant than those
identified after MNN correction (Supplementary Figure S17f and
h). These results suggest that SMNN can eliminate the overcor-
rection between different cell types and thus maintains more
biological features in corrected data than MNN. Efficient removal
of batch effects at reduced cost of biological information loss,
manifested by SMNN in our extensive simulated and real data
evaluations, empowers valid and more powerful downstream
analysis.

In summary, extensive simulation and real data benchmark-
ing suggest that our SMNN can not only better rescue biolog-
ical features and thereof provide improved cluster results but
also facilitate the identification of biologically relevant DEGs.
Therefore, we anticipate that our SMNN is valuable for integrated
analysis of multiple scRNA-seq datasets, accelerating genetic
studies involving single-cell dynamics.

Materials and methods
Simulation framework

We simulated two scenarios, orthogonal and non-orthogonal, to
compare the performance of MNN and SMNN. The difference
between the two scenarios lies in the directions of the true
underlying batch effect vectors with respect to those of the
biological effects.

Baseline simulation

Our baseline simulation framework, similar to that adopted in
Haghverdi et al. [8], contains two steps:

First, data are initially generated in low (specifically
three) dimensional biological space. Data in each batch are
independently generated from a Gaussian mixture model
to represent a low dimensional biological space, with each
component in the mixture corresponding to one cell type.
Equations (1) and (2) below show formulae to generate two
batches of such initial data, represented by matrices sets of
vectors {Xk : k = 1, ..., n1} and {Yl : l = 1, ..., n2}, in low dimensional
biological space.

Xk ∼
3∑

i=1

w1iN (μ1i, I3) , with
3∑

i=1

w1i = 1, and w11, w12, w13 ≥ 0,

for k = 1, 2, . . . , n1 (1)

Yl ∼
3∑

j=1

w2jN
(
μ2j, I3

)
, with

3∑
j=1

w2j = 1, and w21, w22, w23 ≥ 0,

for l = 1, 2, . . . , n2, (2)

where μ1i is the three-dimensional vector specifying cell-type
specific means for the ith cell type in the first batch, reflecting
the biological effect; similarly for μ2j; n1 and n2 are the total
number of cells in the first and second batch, respectively; w1i

and w2j are the different mixing coefficients for the three cell
types in the two batches and I3 is the three-dimensional identity
matrix with diagonal entries as ones and the rest entries as

zeros. In our simulations, we set n1 = 1000, n2 = 1100 and

(w11, w12, w13) = (0.3, 0.5, 0.2) (3)

(w21, w22, w23) = (0.25, 0.5, 0.25) . (4)

Secondly, we project the low dimensional data with batch
effect to the high dimensional gene expression space. We map
both datasets to G = 50 dimensions by linear transformation
using the same random Gaussian matrix P, to simulate high-
dimensional gene expression profiles.

∼
Xk = PXk, for k = 1, 2, . . . , n1 (5)

∼
Yl = PYl, for l = 1, 2, . . . , n2. (6)

Here, P is a G × 3 Gaussian random matrix with each entry
simulated from the standard normal distribution.

Introduction of batch effects.
In Haghverdi et al. [8], batch effects are directly introduced

in the high dimensional gene expression space. Specifically, a

Gaussian random vector b =
(
b1, b2, . . . , bG

)T
is simulated and

added to the second dataset via the following:

XObserved,k = ∼
Xk + ε1,k, for k = 1, 2, . . . , n1 (7)

YObserved,l = ∼
Yl + b + ε2,l, for l = 1, 2, . . . , n2, (8)

where
∼

Xk and
∼
Yl are projected high-dimensional gene expression

profiles; ε1,k and ε2,l are independent random noises added to the
expression of each ‘gene’ for each cell in the two batches.

In our simulations, we adopt a different approach: we
introduce batch effects in the low dimensional biological space.

Specifically, we simulate a bias vector c =
(
c1, c2, c3

)T
in the

biological space

XObserved,k = ∼
Xk + ε1,k = PXk + ε1,k, for k = 1, 2, . . . , n1 (9)

YObserved,l = ∼
YSMNN,l + ε2,l = P (Yl + c) + ε2,l

= PYl + Pc + ε2,l, for l = 1, 2, . . . , n2. (10)

Our simulation framework can be viewed as a reparametrized
version of the model in Haghverdi et al. [8]. For each batch effect
b of the model in Haghverdi et al. [8], there exist multiple pairs of
projection matrix P and vector c such that b = Pc, and for any
vector c in our model, there is a corresponding vector b = Pc

given a fixed projection matrix P. In particular,(b)l =
(
Pc

)
l

=∑G
i=1 Plici ∼ N

(
0,

∑G
i=1 ci

2
)
. In other words, for any simulated

setting in Haghverdi et al. [8], we can find at least one equivalent
setting in our model, and vice versa. Although our simulation
framework is largely similar to that in Haghverdi et al. [8], the
two differ in the following two aspects:

First, the low dimensional biological space is three-
dimensional in ours and two-dimensional in Haghverdi et al. [8].

Second, we introduce batch effects c in low dimensional
biological space and then projected to high dimensional space
(Equation 10), while Haghverdi et al. [8] directly introduce batch
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effects b in the high dimensional gene expression space (Equa-
tion 8). We made such changes so that we can simulate both the
orthogonal and non-orthogonal scenarios in a more straightfor-
ward manner that the extent of orthogonality can be controlled
(equation 11). The orthogonality is defined in the sense that
biological differences (that is, mean difference between any two
clusters/cell-types) are orthogonal to those from batch effects.

Our framework allows flexible modelling of the biological
effects and batch effects in the same low dimensional biologi-
cal space and allows us to control the extent of orthogonality.
Specifically, the batch effect c is added to mean vectors of three
cell types in batch 1 to get the mean vectors of three cell types
for batch 2.

μ2i = μ1i + c, for i = 1, 2, 3. (11)

Note that
(
μ1j − μ1i

)
c = 0, for i �= j ∈

{
1, 2, 3

}
represents the

orthogonal scenario that variation from batch effect is orthogo-
nal to mean difference between any two clusters/cell-types, and(
μ1j − μ1i

)
c �= 0, for i �= j ∈

{
1, 2, 3

}
in the non-orthogonal case.

Leveraging the simulation framework described before, we
simulate two scenarios via the following:

(i) In the orthogonal case, we set c =
(
0, 0, 2

)T

(a) μ11 =
(
5, 0, 0

)T
, μ12 =

(
0, 0, 0

)T
, μ13 =

(
0, 5, 0

)T

(b) μ21 =
(
5, 0, 2

)T
, μ22 =

(
0, 0, 2

)T
, μ23 =

(
0, 5, 2

)T

(ii) In the non-orthogonal case, we set c =
(
0, 5, 2

)T

(a) μ11 =
(
5, 0, 0

)T
, μ12 =

(
0, 0, 0

)T
, μ13 =

(
0, 5, 0

)T

(b) μ21 =
(
5, 5, 2

)T
, μ22 =

(
0, 5, 2

)T
, μ23 =

(
0, 10, 2

)T

Performance evaluation

MNN and SMNN share the goal to correct batch effects. Mathe-
matically, using the notations introduced in baseline simulation,
the goal translates into de-biasing vector c (which would be
effectively reduced to b in the orthogonal case). Without loss
of generality and following MNN, we treat the first batch as the

reference and correct the second batch
{
YObserved,l : l = 1, . . . , n2

}
to the first batch

{
XObserved,k : k = 1, . . . , n1

}
. Denote the corrected

values from MNN and SMNN as
{
ŶMNN,l : l = 1, . . . , n2

}
and{

ŶSMNN,l : l = 1, . . . , n2

}
, respectively.

To measure the performance of the two correction methods,
we utilize the Frobenius norm [20] to define the loss function

L
(

Ŷ,
∼
Y

)
=

∥∥∥∥∼
Y − Ŷ

∥∥∥∥
F

=
√√√√ n2∑

l=1

∥∥∥∥ ∼
Yl − Ŷl

∥∥∥∥
2

=
√√√√ n2∑

l=1

G∑
g=1

∣∣∣∣ ∼
Yl,g − Ŷl,g

∣∣∣∣
2

,

(12)

where
∼
Y =

[ ∼
Y1, . . . ,

∼
Yk, . . . ,

∼
Yn2

]
,Ŷ =

[
Ŷ1, . . . , Ŷk, . . . , ˆYn2

]
. Note

that
∼
Y is the simulated true profiles introduced in Equations

(5) and (6) before batch effects, and noises are introduced in
Equations (7) and (8). Since MNN conducts cosine normalization

to the input and the output, we use cosine-normalized
∼
Y when

calculating the above loss function.

Real data benchmarking

To assess the performance of SMNN in real data, we com-
pared SMNN to alternative batch effect correction methods:
MNN [8], Seurat v3 [17] and LIGER [22] to two hematopoietic
scRNA-seq datasets, generated using different sequencing plat-
forms, MARS-seq and SMART-seq2 (Supplementary Table S1)
[10, 23]. The first batch produced by MARS-seq consists of 1920
cells of six major cell types, and the second batch generated
by SMART-seq2 contains 2730 of three cell types, where three
cell types, CMP, GMP and MEP cells, are shared between these
two batches (here the two datasets). Batch effect correction
was carried out using all four methods, following their default
instructions. Cell-type labels were fed to SMNN directly accord-
ing to the annotation from the original papers. To better compare
the performance between MNN and SMNN, only the three cell
types shared between the two batches were extracted for our
downstream analyses. The corrected results of all the three cell
types together, as well as for each of them separately, were
visualized by UMAP using umap-learn method [24]. In order to
qualify the mixture of single cells using both batch correction
methods, we calculated: (i) F statistics under two-way multivari-
ate analysis of variance (MANOVA) for merged datasets of the
two batches. F statistics quantifies differences between batches,
where smaller values indicating better mixing of cells across
batches and (ii) the distance for the cells within each cell type
in batch 2 to the centroid of the corresponding cell group in
batch 1.

To measure the separation of cell types after correction, we
additionally attempted to detect DEGs between different cell
types in both SMNN and MNN corrected datasets. The corrected
expression matrices of the two batches were merged and DEGs
were detected by Seurat v3 using Wilcoxon rank sum test [17].
Genes with an adjusted P-value <0.01 were considered as differ-
entially expressed. GO enrichment analysis was performed for
the DEGs exclusively identified by SMNN using clusterProfiler [25].
Because there is no ground truth for DEGs, we further identified
DEGs between different cell types within corrected batch 2 and
then compared them to those identified in uncorrected batch 1
and uncorrected batch 2, which supposedly are not affected by
the choice of batch effect correction method. True positive rate
(TPR) was computed for each comparison.

Additionally, we also performed batch effect correction on
another two tissues/cell lines, pancreas [26, 27] and PBMCs [28],
again using both SMNN and MNN. DEGs were detected between
T cells and B cells in the merged PBMC and T cell datasets
after SMNN and MNN correction, respectively. Furthermore, sin-
gle cell clustering was applied to batch-effects corrected gene
expression matrices in all the three real datasets following the
pipeline described in Haghverdi et al. [8]. Cell-type labels before
correction were considered as ground truth, and ARI [29] was
employed to measure the clustering similarity before and after
correction

ARI
(
Lq, Ls

)=
∑

q,s

(
nqs

2

)
−
[∑

q

(
nq

2

) ∑
s

(
ns

2

)] /(
n
2

)

1
2

[∑
q

(
nq

2

)
+∑

s

(
ns

2

)]
−
[∑

q

(
nq

2

) ∑
s

(
ns

2

)] /(
n
2

) ,

(13)
where nq and ns are the single cell numbers in cluster q and s,
respectively; nqs is the number of single cells shared between
clusters q and s; and n is the total number of single cells. ARI
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ranges from 0 to 1, where a higher value represents a higher level
of similarity between the two sets of cluster labels.

Data and software availability

SMNN is compiled as an R package and freely available at https://
yunliweb.its.unc.edu/SMNN/ and https://github.com/yycunc/
SMNN. The data we adopted for benchmarking at from following:
(i) two Mouse hematopoietic scRNA-seq datasets from [10] (GEO
accession number GSE81682) and [23] (GEO accession number
GSE72857); (ii) two human pancreas scRNA-seq datasets from
[26] (GSE81076) and [27] (GSE85241) and (iii) two 10X Genomics
datasets of PBMCs and T cells from [28] (https://support.10xge
nomics.com/single-cell-gene-expression/datasets/).

Key Points
• Batch effect correction has been recognized to be crit-

ical when integrating scRNA-seq data from multiple
batches due to systematic differences in time points,
generating laboratory and/or handling technician(s),
experimental protocol and/or sequencing platform.

• Existing batch effect correction methods that leverage
information from mutual nearest neighbors (MNNs)
across batches (for example, implemented in MNN or
Seurat) ignores cell-type information and suffers from
potentially mismatching single cells from different
cell types across batches, which would lead to unde-
sired correction results, especially under the scenario
where variation from batch effects is non-negligible
compared with biological effects.

• To address this critical issue, here, we present SMNN,
a supervised machine learning method that first
takes cluster/cell-type label information from users or
inferred from scRNA-seq clustering, and then searches
MNNs within each cell type instead of global search-
ing.

• Our SMNN method shows clear advantages over three
state-of-the-art batch effect correction methods and
can better mix cells of the same cell type across
batches and more effectively recover cell-type specific
features, in both simulations and real datasets.
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