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Abstract

Batch effect correction is an essential step in the integrative analysis of multiple single-cell RNA-sequencing (scRNA-seq)
data. One state-of-the-art strategy for batch effect correction is via unsupervised or supervised detection of mutual nearest
neighbors (MNNs). However, both types of methods only detect MNNs across batches of uncorrected data, where the large
batch effects may affect the MNN search. To address this issue, we presented a batch effect correction approach via iterative
supervised MNN (iSMNN) refinement across data after correction. Our benchmarking on both simulation and real datasets
showed the advantages of the iterative refinement of MNNs on the performance of correction. Compared to popular
alternative methods, our iSMNN is able to better mix the cells of the same cell type across batches. In addition, iSMNN can
also facilitate the identification of differentially expressed genes (DEGs) that are relevant to the biological function of certain
cell types. These results indicated that iSMNN will be a valuable method for integrating multiple scRNA-seq datasets that
can facilitate biological and medical studies at single-cell level.
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INTRODUCTION
With the rapidly improving technologies and decreasing
sequencing costs, large-scale single-cell RNA-sequencing
(scRNA-seq) studies examining tens of thousands to even
millions of cells are becoming increasingly common [1, 2].
Integrated analyses of cells across multiple studies (or batches)
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enable an increase in the sample size for more powerful analysis
and more comprehensive understanding of various biological
questions and processes [3–7]. In addition, re-using published
scRNA-seq datasets not only maximizes the value of existing
data but also substantially reduces the costs of generating
new data. However, existing datasets may be produced across
multiple time points via different experimental protocols, and/or
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by various laboratories, eliciting the systematic differences
between different batches (also known as ‘batch effects’), which
present grand challenges to the integrative analyses across
multiple datasets [8]. Proper batch effect correction is vital to
prevent spurious findings and/or to ensure identification of
biological signals, such as novel cell type(s) and differentially
expressed genes (DEGs) [8–10].

To address this problem, a number of methods have recently
been developed for batch effect correction [11–20]. The correction
strategy based on mutual nearest neighbor (MNN) detection has
been widely used in several state-of-the-art methods, such as
MNNcorrect [11] and Seurat v3 [15], and has shown promising
performance. However, these unsupervised MNN methods
tend to incorrectly match the neighboring cells belonging
to different cell types across batches and lead to undesired
corrected results (Figure 1A and B; Supplementary Section 1;
Supplementary Figure S1, see Supplementary Data available
online at http://bib.oxfordjournals.org/). To address this issue, we
previously developed SMNN, a supervised batch effect correction
method, which incorporates the cell-type information to restrict
the detection of MNNs within the same cell type across batches
[18]. Benchmarking results in both simulated and real datasets
demonstrated that SMNN outperforms the unsupervised
methods, MNNcorrect and Seurat v3, in terms of reducing
differences across batches and improving the maintenance
of cell-type-specific features [18]. However, SMNN searches for
MNNs from original expression matrices. The number of MNNs
can be rather small in the presence of substantial batch effects,
which may lead to insufficient or inaccurate correction.

To address this issue, we propose a new iterative strategy that
searches for MNNs from the corrected data, where the system-
atic differences across batches are expected to be smaller than
in the original data, thus improving the correction. According
to our results, as the number of iterations of MNN refining and
batch effect correction increased, more MNNs were obtained
across batches (Figure 1C). Specifically, 24.8% more neighbors
were found, on average, when searching MNNs from the first-
iteration-corrected data than from the original data (Figure 1D).
Furthermore, with one more iteration of correction, the num-
ber of identified MNNs increased by an additional 9.5% over
the amount detected in the second iteration. However, neither
fourth nor fifth iterations result in substantial changes to the
MNN numbers found across batches. More importantly, in two
sets of real data, the optimal correction was achieved after three
iterations, and in another two datasets, the best results were
reached after two or four iterations, respectively, depending on
the batch effect size (Figure 1E).

Motivated by these findings, we present iSMNN, an itera-
tive supervised batch effect correction method, which performs
multiple iterations of MNN refining and batch effect correction
rather than one-iteration correction with the MNNs detected
from the original expression matrix. With the further refined
MNNs from corrected data, iSMNN improves the correction accu-
racy compared to those methods using the one-iteration correc-
tion from the original data.

RESULTS
Overview of iSMNN

In the current implementation of iSMNN, we first input a
harmonized label for each shared cell type across all the batches,
either based on prior knowledge (e.g., known cell types and
their corresponding marker genes) or inferred via unsupervised
clustering followed by annotation of clusters within each

batch, as described in SMNN [18]. With the harmonized
cell type labels, iSMNN, following the Seurat v3 procedure
(detailed in https://satijalab.org/seurat/v3.2/integration.html),
selects the top 2000 most informative genes across batches
(detailed in Supplementary Section 2, see Supplementary Data
available online at http://bib.oxfordjournals.org/), and carries out
dimensional reduction jointly across batches via diagonalized
canonical correlation analysis (CCA). iSMNN then performs the
first iteration of batch effect correction where MNNs are only
searched within each matched cell type across batches. Batch
effect correction is performed accordingly based on the MNNs
identified. To further improve the performance after the first
iteration, iSMNN implements multiple iterations of batch effect
correction (Figure 2). In each iteration, iSMNN matches MNNs
of the same cell type across batches in the corrected results
from the last iteration, and then refines the correction with the
updated MNN information. The performance after each iteration
of correction, measured by the degree of mixing for cells of the
same cell type across batches, is quantified by the F statistic
from a two-way multivariate analysis of variance (MANOVA),
where a smaller F value indicates a better mixing of cells across
batches. The iterative MNN searching and batch effect correction
continue until the F measure starts to increase. The iteration of
correction yielding the smallest F measure is deemed as the
optimal iteration, and the corresponding results are the iSMNN
output.

Benchmarking in simulated data

We first assessed the performance of iSMNN using simulated
data. We first considered the case where two batches are com-
pletely separated from each other in the UMAP space before any
correction is performed (Figure 3A; Supplementary Figure S2A,
see Supplementary Data available online at http://bib.oxfordjou-
rnals.org/). After correction, all the three methods, iSMNN,
MNNcorrect and Seurat v3 (denoted as ‘Seurat’ for brevity
unless version number is otherwise specified) successfully
mitigated the discrepancy between the two batches (Figure 3B–
D). In particular, we found that iSMNN properly mixed the
cells of the same cell type across the two batches (Figure 3D;
Supplementary Figure S2D, see Supplementary Data available
online at http://bib.oxfordjournals.org/). However, in both
MNNcorrect- and Seurat-corrected results, there were still
a large proportion of cells from cell types 2 and 3 of the
second batch left unmixed with those from the first batch
(Figure 3B and C; Supplementary Figures S2A, B and F–H;
Supplementary Figures S3, see Supplementary Data available
online at http://bib.oxfordjournals.org/), and in Seurat-corrected
results, some cells from cell type 2 of the second batch (green
unfilled triangles in Figure 3C) were mixed with those from cell
type 3 of the first batch (blue filled triangles). Moreover, across
all 30 simulations, iSMNN achieved a substantially reduced F
measure compared to Seurat and MNNcorrect (Figure 3E). Specif-
ically, for the example shown in Figure 3, the F value of iSMNN
was 98.9% and 97.9% lower than that of Seurat and MNNcorrect,
respectively (Supplementary Figure S2E, see Supplementary
Data available online at http://bib.oxfordjournals.org/). We
further showed that iSMNN still outperforms Seurat and
MNNcorrect under the scenarios where only partial cell type(s)
are shared between batches or when the batches have a
moderate or extreme difference in cell group composition
(Supplementary Figures S4 and S5; detailed in Supplemen-
tary Section 4, see Supplementary Data available online at
http://bib.oxfordjournals.org/). These results suggest that iSMNN
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Figure 1. Motivating real examples. (A) Histogram of the proportion of mismatched MNNs (i.e. MNNs from a mismatched cell type) in the five sets of integration. (B)

Histogram of the proportion of MNNs of a certain cell from a mismatching cell type in the hematopoietic datasets. (C) Ratio of the number of MNNs detected in each

iteration of batch effect correction, compared to the first iteration, in the five real datasets. (D) The average percentage changes in MNNs detected between the next two

iterations of correction. (E) Logarithms of F statistic for the corrected data after each iteration in the five real datasets. Detailed information of the five real datasets is

provided in Supplementary Table S1 (see Supplementary Data available online at http://bib.oxfordjournals.org/). The red arrows above indicate where best performance

is attained.

Figure 2. Schematics of iSMNN.

provides improved batch effect correction over alternative
methods.

Benchmarking in real data

Using real data (listed in Supplementary Table S1, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/),
we further evaluated the performance of iSMNN by comparing
its F statistic to those from six state-of-the-art methods
(MNNcorrect, Seurat, Harmony [21], Scanorama [13], BBKNN
[22] and SMNN [18]). The results showed that iSMNN consis-
tently performed the best across all six sets of evaluations
(Figures 4–6; Supplementary Figures S6–S10, see Supplementary
Data available online at http://bib.oxfordjournals.org/), except
for cardiac batches 2 and 3, where Harmony’s performance is

slightly better than iSMNN and SMNN (Supplementary Figure S9,
see Supplementary Data available online at http://bib.oxfordjou-
rnals.org/). When examining the average ranking across these
analyses, iSMNN ranks first, outperforming all alternative
methods, followed by Harmony and Seurat (Figure 4).

For the two hematopoietic datasets, iSMNN can better
merge cells across the two batches from the three shared cell
types, namely, common myeloid progenitor (CMP), granulocyte-
monocyte progenitor (GMP) and megakaryocyte-erythrocyte
progenitor (MEP) cells, as well as better distinguish the batch-
specific cell types, such as multipotent progenitor (MPP) and
multipotent long-term hematopoietic stem cells (LTHSC) cells,
from the three shared cell types, than the alternative methods
(Figure 5A–H). Notably, the F statistic of iSMNN was 56.9–99.1%
lower than that of the alternative methods (Figure 5I). For the
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Figure 3. Performance comparison among iSMNN, Seurat and MNNcorrect in simulation data. (A–D) correspond to the UMAP plots for the (A) uncorrected, (B) Seurat-,

(C) MNNcorrect- and (D) iSMNN-corrected results, respectively. (E) Boxplot of the logarithms of F statistic for the merged data of the two batches before and after

correction.

datasets of human peripheral blood mononuclear cells (PBMCs)
and T cells, iSMNN exhibited a better mixing of T cells from
the two batches and a smaller number of misclassified cells
across different cell types (Supplementary Figure S6, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
These results suggest that iSMNN improves batch effect
correction.

We further compared the performance between iSMNN
and the alternative correction methods in three cardiac cell
datasets (see MATERIALS AND METHODS for details). In the
dataset we generated in this study (batch 1), we identified one
group of cardiomyocytes (CMs) and five major cell types of non-
myocytes (Supplementary Figure S11, see Supplementary Data
available online at http://bib.oxfordjournals.org/). The five non-
myocyte types were also present in the two batches from our
previous study (batches 2 and 3), while the two CM groups
were exclusively detected in batch 1. When we performed
integrative analysis on batches 1 and 3 without batch effect
correction, fibroblasts from the two batches were obviously
separated in the UMAP space (Figure 6A and E). After batch
effect correction, all of the correction methods successfully
brought cells from the two batches together (Figure 6B–D;
Supplementary Figure S8, see Supplementary Data available
online at http://bib.oxfordjournals.org/). However, in the merged
dataset, both Seurat and Harmony failed to distinguish CMs
from the endothelial cells (ECs) (Figure 6F and G). In contrast,
iSMNN correction showed clear boundaries among different
cell types (Figure 6H), and compared to alternative methods,

iSMNN-corrected results exhibited smaller distance between
two batches (Supplementary Figure S8F, see Supplementary
Data available online at http://bib.oxfordjournals.org/) and
higher consistency within both CM and EC groups according
to the average Silhouette Index (Figure 6O). We then compared
the DEGs between the CM and EC clusters identified by iSMNN
and Seurat (Figure 6I–N; Supplementary Figures S12 and S13, see
Supplementary Data available online at http://bib.oxfordjournals.org/).
Compared to ECs, a total of 143 and 126 DEGs were detected
to be upregulated in CMs by iSMNN and Seurat, respectively,
with 81 DEGs identified by both methods (Figure 6I). Expression
profiling in batch 1, which was not affected by batch effect
correction, showed that 51 out of 52 (98.1%) iSMNN-specific
DEGs expressed in batch 1 indeed had higher expression
levels in CMs than ECs, while only 77.6% (38 of 49) of the
Seurat-specific DEGs were found to be upregulated in CMs
(Figure 6J and L). In addition, Gene Ontology (GO) enrichment
analysis revealed that the 62 iSMNN-specific DEGs are mainly
involved in heart-related biological processes, such as adenosine
triphosphate (ATP) biosynthesis and metabolic processes,
purine ribonucleotide metabolic process, and calcium ion
transmembrane transporter activity (Figure 6M). In contrast,
Seurat-specific DEGs were found to be related to immune
processes, which do not seem relevant to the biological function
of CMs (Supplementary Figure S12, see Supplementary Data
available online at http://bib.oxfordjournals.org/). To further
validate DEGs specifically detected by iSMNN, we performed
immunohistochemistry (IHC) for one CM-upregulated gene
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Figure 4. Rank of the seven batch effect correction methods based on their

performance in benchmarking datasets measured by F statistic. The methods

are ordered according to the average rank across all datasets.

alpha B crystallin (Cryab) together with one CM-representative
marker cardiac troponin T (cTnT) and EC-representative marker
platelet endothelial cell adhesion molecule 1 (Pecam1). The stain-
ing results showed that anti-cTnT and anti-Pecam1 antibody can
well demarcate CMs and ECs, respectively. Furthermore, Cryab+
cells are also positive for cTnT but are not positive for Pecam1
(Figure 6P), suggesting that Cryab is specifically expressed in
CMs but not in ECs. A similar comparison between iSMNN
and MNNcorrect can be found in Supplementary Section 4 and
Supplementary Figure S14 (see Supplementary Data available
online at http://bib.oxfordjournals.org/). Taken all together,
these results indicate that iSMNN retains more cell-type-
specific features that are missed by alternative methods after
correction.

DISCUSSION
In this study, we present iSMNN, a supervised batch effect
correction method for scRNA-seq data via multiple iterations
of MNN refinement. This work builds on our previously
developed SMNN method, which has showed advantages in
batch effect correction via supervised MNN detection over
unsupervised correction methods. Extending beyond SMNN,
our iSMNN updates MNN detection iteratively and uses
these MNNs for refined batch effect correction. Compared
to the original data, systematic differences across batches
are noticably reduced after each iteration, thus empowering
the identification of more and better-matched MNNs for
improved batch effect correction in later iterations (Figure 1C
and D). The procedure stops when the mixing performance
of single cells of the same cell type across batches starts

to deteriorate. This multiple-iteration approach substan-
tially mitigates the MNN detection biases incurred by large
batch effects between the original expression matrices and
improves the correction accuracy over a one-iteration approach
(Figure 1E).

Our benchmarking on three real scRNA-seq datasets clearly
shows that iSMNN can more effectively mitigate batch effects
than alternative methods (Figures 4–6; Supplementary Figures S6–
S10, see Supplementary Data available online at http://bib.oxfor-
djournals.org/). For example, in the two cardiac datasets (cardiac
batches 1 and 3), iSMNN reduced differentiations across batches
substantially more than MNNcorrect and Seurat (Figure 6A–H;
Supplementary Figure S8, see Supplementary Data available
online at http://bib.oxfordjournals.org/). Importantly, iSMNN
also better maintains cell-type distinguishing features. For the
two cardiac datasets, iSMNN identified a more homogenous
cluster for CMs than Seurat (Figure 6H and O) and appears to
more accurately recover features specific to each cell type in
terms of both gene expression profile and functional relevance.
In particular, 98.1% of the CM-upregulated DEGs exclusively
identified by iSMNN were observed to be more highly expressed
in CMs than ECs, a 26.4% improvement when compared to
Seurat (Figure 6J and L). In addition, the CM-overexpressed DEGs
specifically identified by iSMNN demonstrate biological function
more relevant to CMs compared to those specifically identified
by Seurat (Figure 6M). IHC staining further validates that iSMNN-
detected CM DEG Cryab was indeed specific to CM (Figure 6P).
These results suggest that iSMNN can accurately maintain the
cell-type-specific features after batch effect correction, which
empowers valid downstream analysis and eliminates spurious
findings. Furthermore, although iSMNN performs supervised
MNN detection, we show that it is robust to the incompleteness
of cell type annotation. In principle, a comprehensive annotation
of cell types is desired for MNN search and refinement. However,
our results show that iSMNN is able to effectively mitigate
batch effects with the harmonized cluster labels for only a
subset of cells from the major cell types/clusters. When only
partial cell type information is available, iSMNN still better
mixes cells of the same cell type across batches than most of
the alternative methods (Supplementary Figure S15; detailed
in Supplementary Section 4, see Supplementary Data available
online at http://bib.oxfordjournals.org/).

As a multi-iteration procedure, iSMNN can potentially result
in over-correction, with the performance deteriorating instead
of improving in later iterations. One plausible reason is that
as the iteration increases, the cells contributing to MNNs tend
to concentrate disproportionately at certain areas (darker spots
in Supplementary Figure S16B and C, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Such dispro-
portionate concentrations are undesirable because they may
render the cells contributing to MNNs better mixed after correc-
tion. However, the other cells not represented by MNNs will be
‘corrected’ farther away from the MNNs selected, which will lead
to an increased F statistic and worse correction performance.
Therefore, we select, as default, the first local minimum of F
statistic as the final corrected results of iSMNN. This default
option is reasonable since we find that once the F statistic starts
to increase, it never decreases below the first local minimum,
suggesting the first local minimum is likely to well represent the
global minimum. Since the computational cost of iSMNN is low
(<20 min for a 10-iteration correction of two batches each con-
taining 5000 cells; Supplementary Figure S17, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/), we
provide users another two iteration options: in the first option,
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Figure 5. Performance comparison between iSMNN and alternative methods in the hematopoietic data. (A–D) UMAP plot for the (A) uncorrected, (B) MNNcorrect-,

(C) Seurat-, (D) Harmony-, (E) Scanorama-, (F) BBKNN-, (G) SMNN- and (H) iSMNN-corrected results. (I) Logarithms of F statistic for the merged data before and after

correction.

iSMNN runs for a fixed number of iterations (default = 10) and
takes the output with the lowest F statistic as the optimal correc-
tion results; in the second option, after the first local minimum
is observed, an additional number of iterations (default = 3) is run
to allow leveraging possible further decrease of F statistic after
the first local minimal value.

By leveraging iterative MNN refining, iSMNN demonstrates
advantages in removing batch effects while maximally retaining
cell-type-specific biological features. We anticipate that iSMNN
will be a valuable method for integrating multiple scRNA-seq
datasets, which facilitates biological and medical studies at
single-cell level.
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Figure 6. Performance comparison between iSMNN and alternative correction methods, MNNcorrect and Seurat, in two batches of cardiac data (batches 1 and 3). (A–D)

UMAP plot for the (A) uncorrected, (B) Seurat-, (C) Harmony- and (D) iSMNN-corrected results for the two batches. (E–H) UMAP plots for the (E) uncorrected, (F) Seurat-,

(G) Harmony- and (H) iSMNN-corrected results for the cell types across batches. (I) Overlap of DEGs upregulated in the CM cluster over the EC cluster after iSMNN and

Seurat correction. (J–L) Heatmap showing gene expression profile of the DEGs upregulated in the CM cluster over the EC cluster, identified by (J) iSMNN specifically,

(K) both iSMNN and Seurat and (L) Seurat specifically in cardiac batch 1. (M, N) Feature-enriched GO terms for the overexpressed DEGs in CM cluster over EC cluster

that were identified by (N) iSMNN specifically and (M) both iSMNN and Seurat. (O) Average Silhouette Index for the CM and EC clusters defined by iSMNN and Seurat,

respectively. (P) IHC staining for the typical CM marker cTnT, typical EC marker Pecam1 and one DEG Cryab specifically identified by iSMNN.

MATERIALS AND METHODS
Simulation framework

To assess the performance of iSMNN, we first performed sim-
ulation analysis following the framework described in Yang
et al. [18]. Briefly, two batches Xk and Yl were first simulated
in a three-dimensional biological space following a Gaussian
mixture model, where each component represents one cell type
(Equations (1) and (2)).

Xk ∼
3∑

i=1

w1iN (μ1i, I3) , with
3∑

i=1

w1i = 1, and w11, w12, w13 ≥ 0, for k

= 1, 2, . . . , n1, (1)

Yl ∼
3∑

j=1

w2jN
(
μ2j, I3

)
, with

3∑

j=1

w2j = 1, and w21, w22, w23 ≥ 0, for l

= 1, 2, . . . , n2, (2)

where μ1i is the three-dimensional vector specifying cell-type-
specific means for the i-th cell type in the first batch, reflecting
the biological effect; similarly μ2j for the second batch; n1 and
n2 are the total numbers of cells in the first and second batch,
respectively; w1i and w2j are the different mixing coefficients
for the three cell types in the two batches and I3 is the three-
dimensional identity matrix where diagonal entries are all ones
and the rest entries are all zeros. In our simulations, we set n1 =
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1000, n2 = 1100, (w11, w12, w13) = (0.3, 0.5, 0.2) and (w21, w22, w23) =
(0.25, 0.5, 0.25).

Next, batch effects were introduced to the three-dimensional
biological space, where the vector of batch effects c was added
to mean vectors of the three cell types in batch 1 to obtain the
mean vectors of the three cell types for batch 2 (Equation (3)).

μ2i = μ1i + c, for i = 1, 2, 3. (3)

In this study, we set c = (0, 5, 2)T, (μ11, μ12, μ13) = ((5, 0, 0)T,
(0, 0, 0)T, (0, 5, 0)T) and (μ21, μ22, μ23) = ((5, 5, 2)T,
(0, 5, 2)T, (0, 10, 2)T). Finally, we projected the three-dimensional
data with batch effects to the 2000 dimensional gene expression
space by linear transformation using the same random Gaussian
matrix P within each batch (Equations (4) and (5)).

∼
Xk = PXk, for k = 1, 2, . . . , n1, (4)

∼
Yl = PYl, for l = 1, 2, . . . , n2. (5)

Here P is a 2000 × 3 Gaussian random matrix with each entry
simulated from the standard normal distribution.

The simulation procedure was repeated 30 times with differ-
ent random seeds. Both iSMNN and Seurat were applied to each
set of simulated data. The merged results of the two batches
before and after correction were visualized by UMAP [23], and
the performance of each method was quantified by F statistic.

Real data benchmarking

We also evaluated iSMNN’s performance in real datasets. iSMNN
and six alternative correction methods: MNNcorrect, Seurat,
Harmony, Scanorama, BBKNN and SMNN were first applied
to two published scRNA-seq datasets: (1) two hematopoietic
samples generated using MARS-seq and SMART-seq2, respec-
tively [24, 25] and (2) immune cells from human PBMCs and T
cells from pancreas sequenced by 10X Chromium [2] (detailed
in Supplementary Table S1, see Supplementary Data available
online at http://bib.oxfordjournals.org/). For both datasets, cell
type labels were assigned according to the annotations described
in Haghverdi et al. [11] as well as the expression profile of the
canonical markers. The performance of the three methods was
compared by F statistic.

We also applied iSMNN and alternative approaches to
three batches of scRNA-seq data for cardiac cells from adult
murine heart (Supplementary Table S1, see Supplementary
Data available online at http://bib.oxfordjournals.org/). Batch 1
corresponds to the data we most recently generated [NCBI Gene
Expression Omnibus (GEO) with accession number GSE161138;
see Supplementary Section 5 for experimental details, see Sup-
plementary Data available online at http://bib.oxfordjournals.
org/], and batches 2 and 3 correspond to cells sequenced in
our another study (submitted for publication) (GEO accession
number GSE157444). Given how the data for the three batches
were generated, the batch effects between batches 1 and 2/3
is more pronounced than that between batches 2 and 3. Thus,
we assessed iSMNN and alternative approaches on three sets of
integration under two scenarios: (1) batch 1 versus batch 2 and
batch 1 versus batch 3, and (2) batch 2 versus batch 3, where the
scenario (1) corresponds to setting that batch effects are larger
and (2) that the batch effects are smaller. The performance of all
methods was again measured by F statistic.

In addition, to measure how well the different cell types
separate from each other after correction, we first performed
unsupervised clustering on iSMNN, Seurat and MNNcorrect
corrected datasets, respectively, using the FindClusters function
of Seurat [15], and we assigned a cell type label to each cluster
according to the expression profiles of canonical markers
(Supplementary Table S2, see Supplementary Data available
online at http://bib.oxfordjournals.org/). Then, we carried out
differential expression analysis between the clusters of CMs and
ECs in iSMNN-, Seurat- and MNNcorrect-corrected data (detailed
in Supplementary Section 6, see Supplementary Data available
online at http://bib.oxfordjournals.org/). Genes with a log(fold-
change) > 0.25 and an adjusted P-value < 0.05 were considered
DEGs. GO enrichment analysis was performed for three sets
of DEGs: (1) those identified by both iSMNN and Seurat, (2)
those identified exclusively by iSMNN and (3) those detected
exclusively by Seurat, respectively, using clusterProfiler package
[26].

To further validate whether the DEGs we identified in CMs
are truly more highly expressed than in ECs, we implemented
IHC staining for one DEG specifically identified by iSMNN, Cryab.
Briefly, hearts of 3-month-old mice were sequentially perfused
with 10 mM KCl, PBS and perfusion buffer (0.5% PFA/5% sucrose
in PBS), then fixed in perfusion buffer overnight at 4◦C. After
dehydration in gradient concentration of sucrose, the heart was
then embedded with OCT. The embedded blocks were subse-
quently sliced and cryosections were stored at −80◦C. Before
staining, sections (7 μm) were defrosted at room temperature
for 5 min. The sections were washed twice in PBST (PBS + 0.1%
Tween) and permeabilized with 0.2% Trition X-100 for 15 min at
RT. After permeabilization, sections were blocked with 5% BSA
in PBS for 1 h at RT and then stained with primary antibodies
against Cryab (Proteintech, 15808-1-AP, 1:200), cTnT (Sigma, MS-
295-P, 1:200) and Pecam1 (BD, 550274, 1:50) in 1% BSA overnight
at 4◦C. The next day, after washing three times with PBS, the
sections were incubated with the secondary antibody for 1 h
in the dark at RT followed by washing three additional times
with PBS. Finally, the sections were mounted in Prolong Gold
Antifade Mountant with DAPI (Invitrogen). The photos were
taken using EVOS.

DATA AND SOFTWARE AVAILABILIY
iSMNN is compiled as an R package and is freely available at
https://github.com/yycunc/iSMNN and https://yunliweb.its.u
nc.edu/iSMNN. We adopted the following data for benchmark-
ing: (1) two mouse hematopoietic scRNA-seq datasets from
Nestorowa et al. [24] (GEO accession number GSE81682) and
Paul et al. [25] (GEO accession number GSE72857), (2) two 10X
Genomics datasets of PBMCs and T cells from Zheng et al. [2]
(https://support.10xgenomics.com/single-cell-gene-expression/
datasets/) and (3) three cardia datasets of adult murine hearts,
one of which was generated in this study (GEO accession number
GSE161138) and the other two from Wang et al. (submitted for
publication) (GEO accession number GSE157444).

Key Points
• MNN detection has been recognized as a sensible

approach for batch effect correction in scRNA-seq
data. Among MNN based methods, the supervised ver-
sion (e.g. implemented in our SMNN method) explic-
itly leverages cell type or state label information and
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demonstrates superior performance over its unsuper-
vised counterpart.

• However, SMNN searches for MNNs from the origi-
nal expression matrices. The number of MNNs can
be rather small in the presence of substantial batch
effects, which may lead to insufficient or inaccurate
correction.

• To address this issue, we propose iSMNN, which per-
forms iterative MNN refinement and batch effect cor-
rection. With the iteratively refined MNNs from batch-
effect-partially corrected data, iSMNN improves the
correction accuracy compared to those using a simple
one-iteration correction on the original data.

• Our iSMNN method shows clear advantages over two
state-of-the-art batch effect correction methods and
can better mix cells of the same cell type across
batches and more effectively recover the cell-type-
specific features in both simulations and real datasets.
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