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Abstract

Multiple statistical methods for aggregate association testing have been developed for whole-genome sequencing (WGS) data. Many
aggregate variants in a given genomic window and ignore existing knowledge to define test regions, resulting in many identified
regions not clearly linked to genes, and thus, limiting biological understanding. Functional information from new technologies (such
as Hi-C and its derivatives), which can help link enhancers to their effector genes, can be leveraged to predefine variant sets for
aggregate testing in WGS data. Here, we propose the eSCAN (scan the enhancers) method for genome-wide assessment of enhancer
regions in sequencing studies, combining the advantages of dynamic window selection in SCANG (SCAN the Genome), a previously
developed method, with the advantages of incorporating putative regulatory regions from annotation. eSCAN, by searching in putative
enhancers, increases statistical power and aids mechanistic interpretation, as demonstrated by extensive simulation studies. We also
apply eSCAN for blood cell traits using NHLBI Trans-Omics for Precision Medicine WGS data. Results from real data analysis show that
eSCAN is able to capture more significant signals, and these signals are of shorter length (indicating higher resolution fine-mapping
capability) and drive association of larger regions detected by other methods.

Keywords: rare-variant aggregation test, regulatory region scanning, whole-genome sequencing

Introduction
In genome-wide association studies (GWAS), most
significantly associated variants are located outside
coding regions of genes, making it difficult to interpret
the biological function of associated variants. Statistical
power to detect rare variant associations in noncod-
ing regions, which is of increasing importance with
the advent of large-scale whole-genome sequencing
(WGS) studies, is also limited with a standard single
variant GWAS approach. Aggregate testing is necessary
to increase statistical power to detect rare variant
associations; linking noncoding variants to their likely
effector genes is necessary for interpretation of identified
aggregate signals. Many standard methods for aggregate
analysis of the noncoding genome are agnostic to
regulatory and functional annotation [for example,
standard sliding window analysis, where all variants in a
given location bin (for example a 5 kb or 10 kb window)
are analyzed, followed by analysis of a subsequent

partially overlapping window until each chromosome is
assessed in full] [1–3]. SCANG has recently been proposed
as an improvement on conventional sliding window
procedures, with the ability to detect the existence and
locations of association regions with increased statistical
power [4]. SCANG allows sliding windows to have differ-
ent sizes within a pre-specified range and then searches
all the possible windows across the genome, increasing
statistical power. However, since SCANG tests all possible
windows, it can ‘randomly’ identify some regions across
the genome regardless of their biological functions.
Identified regions could often cross multiple enhancer
regions with distinct functions, thus impeding the iden-
tification of biologically important enhancers and their
target genes. This cross-boundary issue may also lead to
a higher false positive rate in a fine-mapping sense. The
whole region/chromosome in which the detected regions
are located may not be a false positive, but locations of
the detected regions will not match the true association
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regions. Moreover, SCANG applies Sequence Kernel Asso-
ciation Test (SKAT) to all candidate windows, but com-
puting P-values in SKAT requires eigen decomposition [5].
This analysis method is therefore very time-consuming
and has high computational costs, which may not be
feasible for increasingly large genome-wide studies.

In addition to sliding window approaches, many anal-
yses of WGS data rely on aggregate tests of predefined
variant sets, attempting to link the most likely regulatory
variants (as defined by tissue-specific histone marks,
open chromatin data, sequence conservation, etc.) to
genes prior to association testing, with variants assigned
to genes based on either physical proximity or chromatin
conformation [1, 3]. There are increasing data available
to define these tissue-specific regulatory regions, which
are known to show enrichment for GWAS-identified
noncoding variant signals [6–8]. Recent biotechnological
advances based on Chromatin Conformation Capture
(3C), such as promoter capture Hi-C (PC-HiC) data, can
also better link gene promoters to enhancers based
on their physical interactions in 3D space [9]. We here
propose an extension of SCANG which combines the
advantages of both scanning and fixed variant set
methods (Figure 1, illustration). Our eSCAN (or ‘scan
the enhancers’ with ‘enhancers’ as a shorthand for any
potential regulatory regions in the genome) method
can integrate various types of functional information,
including chromatin accessibility, histone markers and
3D chromatin conformation. There can be a significant
distance between a gene and its regulatory regions;
simply expanding the size of the window to include
kilobases of genomic data around each gene will include
too many non-causal SNPs, giving rise to power loss as
well as to difficulties in results’ interpretation [9]. Our
proposed framework can enhance statistical power for
identifying new regions of association in the noncoding
genome. We particularly focus on integration of 3D
spatial information, which has not yet been fully
exploited in most WGS association testing studies.
Our method allows users to input broadly defined
regulatory/enhancer regions and then select those which
are most likely relevant to a given phenotype, in a
statistically powerful framework.

Given our incomplete understanding of chromatin
conformation and enhancer annotation, an annotation
agnostic approach such as SCANG does have some
advantages in that no prior information is needed for
rare variant testing. However, our simulations and the
real data example presented here demonstrate the
advantages of our eSCAN method, which can flexibly
accommodate multiple types of annotation information
and shows significant power gains over SCANG as well as
a lower false positive rate in different scenarios for both
continuous and dichotomous traits. These advantages
are demonstrated in our application of eSCAN to TOPMed
WGS analyses of four blood cell traits in the Women’s
Health Initiative (WHI) study, with replication in Jackson
Heart Study (JHS).

Materials and methods
eSCAN framework
eSCAN takes as input the genotype and phenotype of
interest of study samples as well as a list of pre-defined
regulatory genomic regions (e.g. enhancer regions). The
eSCAN procedure can be split into two steps. First is
the enhancer-screening step, where set-based P-values
for each enhancer are calculated by fastSKAT utilizing
different weights and then the P-values are combined by
the Cauchy method via aggregated Cauchy association
test (ACAT) [4]. eSCAN then defines potential significant
enhancers using estimated significance threshold, either
an empirical estimation based on Monte Carlo simula-
tion or an analytical estimation by extreme value distri-
bution [10]. Second, eSCAN performs a dynamic sliding
window scanning within each of the potential significant
enhancers to further narrow down the associated region.

Step A: one set-based P-value for each enhancer
by omnibus FastSKAT
eSCAN considers each putative enhancer region as a
searching window and first calculates P-values for each
window using fastSKAT. FastSKAT applies randomized
singular value decomposition (SVD) to rapidly analyze
much larger regions than standard SKAT [11], which
makes it computationally feasible to deal with long super
enhancer regions.

FastSKAT calculates the test statistics Q in the same
way SKAT does [11]. It differs from the standard SKAT
test in its approximation of the null distribution of Q
by using the basic Satterthwaite approximation with an
additional remainder term,

Q ∼
k∑

i=1

λiχ
2
1 + akχ

2
vk

,

where λ1, λ2, . . . , λk are the largest k eigenvalues of the
covariance matrix of the genotypes. And, the scaling and
degree of freedom in the remainder term is obtained by
moment-matching.

ak =
(∑p

i=k+1
λi

2
)

(∑p
i=k+1

λi

) , and vk =
(∑p

i=k+1
λi

)2

(∑p
i=k+1

λi
2
) .

FastSKAT requires only k leading eigenvalues rather
than full eigenvalues. And the leading eigenvalues
calculation is implemented by the random projection
approach, which powerfully combines probability and
matrix theory. The computation can be split into the
following two stages. The first stage is dimension
reduction, constructing a new matrix whose rank is
lower than the input matrix but accurately approximates
its range. The second stage is to implement a standard
factorization, such as QR decomposition and SVD, of the
dimension-reduced matrix obtained from the first stage.

For the choice of weights when calculating the test
statistic Q, following SCANG, we adopted two commonly
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Figure 1. An illustration of eSCAN.

used weights, Beta (1,1) and Beta (1,25). Beta (1,1) cor-
responds to equal weights for all variants, while Beta
(1,25) results in up-weighting rarer variants based on
the assumption that rarer variants tend to exert larger
effects [12]. A set-based P-value is obtained by combining
P-values from the above two sets of weights using the
Cauchy method via ACAT [13]:

p′ = 1
2

−
arctan

(
Q′

)

π
, where

Q′ = 1
2

{
tan

[(
0.5 − p(

1,1

))
π

]
+ tan

[(
0.5 − p(

1,25

))
π

]}
,

where p(1,1) and p(1,25) denote the P-values of fastSKAT
using a1 = a2 = 1 and a1 = 1 and a2 = 25 in the beta
distribution density function.

Step B: empirically or analytically estimating the
significance threshold
After obtaining a single P-value for each enhancer
region, eSCAN next computes the significance threshold.
Frequent physical overlaps between enhancers as well
as linkage disequilibrium (LD) among variants across
enhancers in sequencing data tend to elicit high corre-
lation between the P-values of these enhancers, making
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the classic Bonferroni correction for multiple testing too
conservative, leading to power loss. Therefore, we con-
sider alternative methods to estimate the significance
threshold. Specifically, we provide both an empirical
and an analytical approach to derive the significance
threshold.

The classic Monte Carlo method based on a common
distribution of test statistics is inappropriate, given that
the mixture of chi-square distributions in fastSKAT is a
set-based one, which means the test statistics in differ-
ent enhancers would follow different null distributions.
Hence, we adopt a Monte Carlo method on the basis of
the common distribution of P-values, which is similar to
that in the SCANG paper [4]. We present the following
statistical framework to estimate the threshold.

(i) An n × 1 pseudo-residual vector
∼
e is generated from

a multivariate normal distribution N(0, In).

(ii) A p × 1 pseudo-score vector
∼
U is calculated by

∼
U =

G′P1/2∼
e, where G is the n × p genotype matrix; n

is sample size; p is the number of rare variants
across all enhancers in sequencing data. P = V −
V

∼
X(

∼
X

′
V

∼
X)

−1 ∼
X

′
V is the projection matrix defined in

the SKAT paper [5], where
∼
X is a design matrix

containing the intercept term. When the phenotype
is continuous, V = σ 2

0 I, where σ 2
0 is the estimate

of the variance of error term under the global null
hypothesis. When the phenotype is dichotomous,
V = diag( ˆμ01(1 − ˆμ01), ˆμ02(1 − ˆμ02), . . . , ˆμ0n(1 − ˆμ0n)),
where μ̂0i = logit−1

(α̂ + α̂′Xi). Note that although
pseudo-scores differ across iterations, they follow
the same distribution N(0, G′PG).

(iii) Given the pseudo-score U = (
∼
U1,

∼
U2, . . . ,

∼
Up), we cal-

culate single set-based P-value
∼
p for each enhancer

by running the omnibus test, as described in step A
above. For the computational formula of Q, simply

substitute
∼
Uj for Uj. It is worth noting that although

the individual score statistic Qcalculated from an
observed phenotype might not be normally dis-
tributed, the set-based test statistics Q follows the

same distribution as
∼
Q obtained from pseudo-score

does. Consequently, pseudo P-value
∼
p and observed

P-value share the same distribution as well.
(iv) Take the minimum

∼
pmin among the pseudo P-values

∼
p for each enhancer.

(v) Repeat steps (i)–(iv) B times; get {∼pmin .b, 1 < b < B}.
Then, to control the genome-wide type I error rate
at the α level, we choose as the empirical threshold

the αth quantile of B
∼
p

′
mins, where B is the number of

iterations.

We can then select the enhancers whose observed P-
values are below the empirical threshold and can define
them as detected potentially causal enhancers.

In addition, we provide an analytical estimation of
the significance threshold using the Gumbel distribution,

which is also based on the common distribution of P-
values following the WGScan method [10]. In order to
estimate the parameters of the Gumbel distribution, a
resampling approach is still needed. The difference is
that here the resampling is used to estimate the first and
second moments of the Gumbel distribution. In practice,
we implement the following step instead of the step (v)
above.

5∗. Repeat steps (i)–(iv) B times; get {∼pmin .b, 1 < b < B}.
Use their sample mean and variance to approximate the
first and second moments of the Gumbel distribution.

Then calculate ν̂ and ζ̂ by E(X) = ν + ζγ and

Var(X) = π2
6 ζ 2, where γ ≈ 0.57721 is the Euler-

Mascheroni constant. Calculate significance threshold
α∗ = exp{ζ̂ log[− log(1 − α)] − ν̂}.
Simulations under the null model
We first evaluate the performance of eSCAN under the
null model (Figure 2A). The sequencing data used in
our simulations are provided in the SCANG package,
where 20 000 chromosomes for a 5 Mb region (repre-
senting the whole genome, in the interest of computa-
tional efficiency) were simulated using COSI, leveraging
its calibrated model to closely resemble the LD patterns
from African Americans [4, 14]. Only rare variants whose
Minor Allele Frequency (MAF) is <0.05 were used for both
eSCAN and SCANG analyses. For each simulation, 400
enhancers are randomly generated with lengths of 3, 4
or 5 kb (each has a probability of 1/3) across the genome
where the enhancers are allowed to overlap with each
other. On average, each simulated enhancer had a length
of 4025 bp and contained 122 variants with MAF below
the pre-specified threshold, 5%.

We simulated continuous/dichotomous phenotype
data using the following models:

Continuous phenotype : y = 0.5X1 + 0.5X2 + ε, (1)

Dichotomous phenotype : logitP
(
y = 1

)

= α0 + 0.5X1 + 0.5X2, (2)

where X1 is a continuous covariate simulated from a
standard normal distribution, X2 is a binary covariate
generated from a Bernoulli distribution with p = 0.5, ε is
an error term following a standard normal distribution
and α0 is a parameter to set the prevalence to 1%.

For both continuous and dichotomous simulations, we
applied eSCAN to 1000 replicates with sample sizes of
2500, 5000 and 10 000, respectively, and set the genome-
wide type I error rate at 0.05. The empirical type I error
rate was estimated by the proportion of rejections under
the null where a rejection was declared if eSCAN reported
at least one enhancer as significant.

Simulations under the alternative model
To assess eSCAN under the alternative model, i.e. power
and false positive rate, 10% of enhancers were randomly
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Figure 2. Simulation framework and performance comparison of eSCAN and SCANG for continuous outcome at various sample sizes. We evaluated the
performance of eSCAN for continuous outcome at various sample sizes. The total sample sizes considered were 2500, 5000 and 10 000. At each sample
size, we compared three methods: eSCAN and two versions of SCANGs: enhancer-based SCANG (aggregating enhancers across the genome) and default
SCANG (scan the whole genome). We evaluated power and false positive rate at both variant level and enhancer level. (A) An illustration of simulation
framework. (B) Power at the variant level (a.k.a. causal variant detection rate). (C) Power at enhancer level (a.k.a. causal enhancer detection rate). (D)
False positive rate at variant level. (E) False positive rate at enhancer level.

selected as causal from the 400 simulated enhancer
regions (Figure 2A). Within each causal enhancer, 20% of
variants were randomly chosen as causal variants with
effect sizes βs, whose distributional specification is pro-
vided below (Supplementary Figure S1 available online
at https://academic.oup.com/bib). Then, we used these
causal variants to create phenotypes together with the
covariates described above:

Continuous phenotype : y =0.5X1 + 0.5X2 + β1G1
c + · · ·

+ βsGs
c + ε, (3)

logit
(
P

(
y = 1

)) = α0 + 0.5X1 + 0.5X2 + β1G1
c + · · · + βsGs

c,
(4)

where G1
c, G2

c, · · · , Gs
care the genotypes of the s causal

rare variants in the causal enhancers. βs are effect sizes
of the causal variants. α0, X1, X2 and ε remain the same as
defined in Equations (1) and (2). Based on the assumption
that rarer variants tend to exert larger effects, for both
traits, we set βi = c | log10MAFi |, a decreasing function of
MAF of the ith variant, where cis a parameter to control
the magnitude of effect size. For continuous traits, c =
0.18, giving a β = 0.90 for variants with MAF= 1 × 10−5

and a smaller effect size β = 0.36 for less rare variants
with MAF= 1 × 10−2; for dichotomous traits, c = 0.255,
giving an odds ratio (OR)= 3.579 for variants with MAF=
1 × 10−5 and a smaller OR= 1.665 for less rare variants
with MAF= 1 × 10−2.
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We then applied eSCAN and SCANG to each simulated
scenario to benchmark their performances in terms
of power and false positive rate. In order to evaluate
the value of aggregating variants residing in enhancer
regions, we additionally applied an enhancer-based
SCANG that scans the subset of variants which reside
in enhancer regions. In both applications of SCANG, the
ranges of sliding window size Lmin and Lmax were set
to be 10th quantile and 90th quantile of the empirical
distribution of the number of rare variants within the
enhancers, respectively. For other parameters, such as
skip-length of searching windows in the SCANG, we
adopted the package default. We then compared eSCAN
with the two SCANGs (default SCANG and enhancer-
based SCANG), using four metrics (more details below),
namely, causal-variant detection rate, causal-enhancer
detection rate, variant false positive rate and enhancer
false positive rate (defined below).

We further evaluated eSCAN in more simulation sce-
narios to verify eSCAN’s robustness to the proportion of
causal enhancers and the proportion of causal variants
within the causal enhancers. We set the percentage of
causal enhancers across the genome to be 5%, 10% and
15%, respectively, with a fixed proportion of 20% causal
variants within causal enhancers. We next conducted
simulations for the percentage of causal variants being
10%, 15% and 20%, respectively, where the proportion of
causal enhancers was fixed to be 10%.

To evaluate the methods under alternative models, we
here define four criteria to evaluate the performance
of the methods under the alternative model. For power
assessment, we adopted two criteria. As a power metric
at variant level, causal-variant detection rate is calcu-
lated as the number of detected causal variants divided
by the total number of causal variants, where a causal
variant is deemed as detected if it is located in one of
the detected enhancers or regions, which is similar to the
power calculations performed in Li et al. [4]. As an estima-
tion of power at enhancer level, causal-enhancer detec-
tion rate is similarly calculated as the number of detected
causal enhancers divided by the total number of causal
enhancers. In eSCAN, the detected causal enhancers are
the output directly obtained from our method, but this
is not the case in SCANG since the detected regions
given by SCANG would not be expected to match the
enhancer boundaries in an exact way. We here define a
causal enhancer as detected if the overlapping fraction
of the causal enhancer and one of the detected regions
are >0.5, where the overlapping fraction is the number
of variants included in both the causal enhancer and
the detected region, which is divided by the number of
variants located in the causal enhancer.

Likewise, we used two criteria for the assessment of
false positive rate, one at the variant level and the other
at the enhancer level. The variant false positive rate is
the number of false-identified variants divided by the
total number of non-causal variants, where a variant
is deemed as false-identified if it is located in one of

the detected regions, while in fact it does not reside
within any causal enhancer. Similarly, the enhancer
false positive rate is calculated as the number of false-
identified enhancers over the total number of non-causal
enhancers, where an enhancer is false-identified if it is
detected but is not causal.

Application to blood cell traits using TOPMed
WGS in WHI study with replication in HS
To assess the performance of eSCAN in real data,
we applied eSCAN and enhancer-based SCANG for
the association analysis of white blood cell (WBC)
count, platelet (PLT) count, hemoglobin (HGB) and
hematocrit (HCT) using the WGS data in 10 727 unrelated
individuals (defined as kinship coefficient < 0.2 with
all other included individuals) from WHI. We consider
only uncommon variants with MAF < 0.05. Jointly called
genotypes from >30× WGS data were available for both
cohorts (WHI and replication cohort JHS) through the
TOPMed consortium; detailed methods are available
at https://www.nhlbiwgs.org/topmed-whole-genome-se
quencing-methods-freeze-8. The design of WHI [15] has
been described in detail previously. Exclusion criteria
for phenotypes were: WBC > 200 × 109/l, HGB > 20 g/dl,
HCT > 60% and PLT > 1000 × 109/l. For WHI, we adjusted
for the first 11 principal components (PCs), created by
pcair function from the GENESIS R package, along with
age and square of age [16]. We additionally adjusted
for the cardiovascular disease case/control status for
TOPMed sample selection and, for WBC, the Duffy null
variant rs2814778, a noncoding variant residing in gene
ACKR1, Atypical Chemokine Receptor 1 (Duffy blood
group). This variant, common in individuals of African
ancestry, explains 7–20% of the variation in WBC among
African Americans [17, 18]. Because of its huge effect
size, this variant is conventionally included as a covariate
when performing association analysis with WBC among
African Americans to avoid severe inflation of test
statistics due to LD [19].

For eSCAN, enhancers were defined using PC-HiC data
in the corresponding cell types when testing for dif-
ferent blood cell traits. Specifically, we considered PC-
HiC data in WBC type (including neutrophils, monocytes
and lymphocytes) for WBC, erythroblasts for HGB and
HCT, and megakaryocytes for PLT [20]. Specifically, we
considered a genomic region as an enhancer if (1) it
interacts with a promoter region identified by PC-HiC
(bait region), or (2) it, although initially considered as
a promoter candidate by PC-HiC (i.e. with some bait
designed to cover the region), interacts with another
gene’s promoter region, where the promoter region is
defined as +/−500 bp from the transcriptional starting
site [21]. Definition of enhancers with eSCAN is flexi-
ble and can be guided by the regulatory region anno-
tation and chromatin conformation data available for
relevant cell types for a given trait. For enhancer-based
SCANG, we implemented association tests for the sub-
set of rare variants falling into any enhancer region as
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Table 1. Genome-wide empirical type I error rates of eSCAN
from simulation studies, shown for different sample sizes and
trait distributions

Sample size n = 2500 n = 5000 n = 10 000

Continuous traits 0.003 0.002 0.001
Dichotomous traits 0.001 0.001 0.002

defined using PC-HiC annotation. For the default SCANG,
due to the limited computational feasibility, we only
performed the analysis for WBC. The range of searching
window sizes was set by specifying the minimum and
maximum numbers of variants in searching windows
between Lmin = 140 and Lmax = 220 for WHI (Supple-
mentary Section 1). For other parameters, such as skip-
length of searching windows in the SCANG, we adopted
the package defaults. We also applied STAAR [22] and
EPACTS [37] for association with the same set of hema-
tological traits using the exact same list of enhancer
regions used for eSCAN analysis. For EPACTS, we per-
formed three different tests, including collapsing burden
test using EMMAX (emmaxCMC), variable-threshold bur-
den test using EMMAX (emmaxVT) and SKAT test using
EMMAX (mmskat). To replicate our findings, we tested
the significant signals identified in WHI in 1970 JHS sam-
ples [23]. The design of JHS has been described in detail
previously [23]. We adjusted for the first 11 PCs created
by pcair function from the GENESIS R package along with
sex, age and square of age for JHS. The association of
eSCAN was performed following the same procedure as
applied to WHI.

Results
Simulation results
We first evaluated the performance of eSCAN using sim-
ulated data under the null model. On average, each
simulated enhancer had a length of 4025 bp and con-
tained 122 variants with MAF <5%. For both continuous
and dichotomous simulations, we applied eSCAN to 1000
replicates with sample sizes of 2500, 5000 and 10 000,
respectively, and set the genome-wide type I error rate
at 0.05. Under all scenarios, our method has a well-
controlled genome-wide type I error rate (Table 1).

To assess eSCAN under the alternative model,
we applied eSCAN and two SCANGs, i.e. the default
SCANG and enhancer-based SCANG, to a wide range of
simulated scenario to benchmark their performances
in terms of power and false positive rate using four
metrics described above. For continuous traits, both the
enhancer-based SCANG and our eSCAN analyses showed
higher power than the default SCANG, at both the variant
level and the enhancer level (Figure 2B and C), for all
tested sample sizes, suggesting the benefit of aggregating
variants using enhancer information. Notably, the power
gain between eSCAN and enhancer-based SCANG is
much more pronounced than that between enhancer-
based SCANG and default SCANG. eSCAN increases the
variant-level power by 23.50%, 45.94% and 27.98% for
the three tested sample sizes, respectively, and boosts

the enhancer-level power by 17.60%, 45.47% and 24.14%,
respectively.

With respect to false positive rate, eSCAN showed a
remarkably lower false positive rate than those from
the two SCANG procedures at both the variant-level and
enhancer-level (Figure 2D and E). For the two SCANG
procedures, the false positive rates are high because of
the aforementioned cross-boundary issue accompanied
with the scanning procedure. Although the power of
SCANG increases as the sample size increases, indicating
its ability to detect more causal enhancers when more
individuals’ data are available, the false positive rate also
increases dramatically (Figure 2D and E). For a sample
size of 10 000, the enhancer-level false positive rate of
the default SCANG is up to 0.51. Numerically, as the
sample size increases from 5000 to 10 000, the increase
rate of enhancer-level false positive rate is 47.99%, close
to the power gain of 49.33%, suggesting results may
become less trustworthy. In contrast, eSCAN reduces
the false positive rate by 69%, 61% and 51% at the
enhancer-level for all tested sample sizes, respectively.
Similar reductions at the variant-level are observed
by 60%, 59% and 45%. These results demonstrate
eSCAN’s capabilities to powerfully and accurately detect
causal enhancers. The results from dichotomous traits
also show that eSCAN outperformed the two SCANG
approaches (Supplementary Figure S1 available online
at https://academic.oup.com/bib). We further evaluated
eSCAN in more simulation scenarios to verify eSCAN’s
robustness to the proportion of causal enhancers and
the proportion of causal variants within the causal
enhancers. Results show that these gains are robust
to choice of parameters (Supplementary Figures S1–
S3 available online at https://academic.oup.com/bib),
suggesting that the superiority of eSCAN is inherent and
is not accidentally driven by the choices of parameters
in the simulations.

Real data results for blood cell traits using
TOPMed
To assess the performance of eSCAN in real data, we com-
pared eSCAN to both enhancer-based SCANG and the
default SCANG using WGS data in 10 727 discovery sam-
ples from the WHI (Supplementary Table S1 available
online at https://academic.oup.com/bib). We only con-
sidered variants with a MAF.< 5% in each cohort. Win-
dows with a total minor allele count < 10 were excluded
from the analysis. To achieve a fair comparison, we first
applied eSCAN and enhancer-based SCANG for associa-
tion analysis between putative enhancers and four blood
cell traits measured at baseline in WHI, WBC, HGB, HCT
and PLT, with a genome-wide error rate at the level of 0.05
by Bonferroni correction in both methods. For enhancer-
based SCANG, we analyzed the subset of rare variants
falling into any enhancer region as defined using PC-HiC
annotation. For the default SCANG, due to the limited
computational feasibility, we only performed the analysis
for WBC.
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Overall, eSCAN detected 19 significant regions asso-
ciated with blood cell traits, while enhancer-based
SCANG only detected 7 regions (Table 2; Supplementary
Tables S2 and S3 and Supplementary Figures S4 and
S5 available online at https://academic.oup.com/bib).
Also, eSCAN showed consistently smaller P-values for
top regions compared with enhancer-based SCANG
(Supplementary Figure S4A–D available online at https://
academic.oup.com/bib; Table 2). Among the 19 genome-
wide significant regions detected by eSCAN in the
unconditional analysis, 4 were located within +/−500 kb
of known GWAS loci and were still significant at the
Bonferroni correction level of 0.05/4 after conditioning
on known blood cell trait GWAS loci [12, 20, 24–29]
(Table 2; Supplementary Table S4 available online at
https://academic.oup.com/bib). Also, out of 9 PLT signals
overlap with ATAC-seq peaks of erythroid cells [30],
significantly higher than the genome background (P-
value < 1.6e-22), suggesting that eSCAN-identified
regions are enriched in open chromatin regions as
compared to random genomic regions. To replicate our
findings, we tested the significant signals identified
in WHI in 1970 samples from the JHS cohort [23].
We observed that, out of the 19 significant regions
detected in WHI, 2 were nominally significant at 0.05
level in JHS, slightly enriched toward the end of small
P-value, compared to the expectation of barely one
signal (19 × 0.05) with P-value <0.05 under the null
distribution (Supplementary Table S6 available online
at https://academic.oup.com/bib). The lack of more
pronounced enrichment is likely due to the much smaller
sample size of the JHS replication cohort.

To more comprehensively compare the top regions
of eSCAN and two SCANG procedures, enhancer-
based SCANG and default SCANG, we relaxed the
significance level for WBC by using the empirical
threshold (Supplementary Figure S6 available online
at https://academic.oup.com/bib). The detected regions
by eSCAN are of shorter length and contain fewer
variants than those identified by the two SCANG
variants (Supplementary Figure S6B available online
at https://academic.oup.com/bib). Also, each region
identified by eSCAN contains a single regulatory element
based on annotation from PC-HiC. In contrast, regions
identified by SCANG can cross multiple regulatory
regions (Supplementary Figure S6C available online at
https://academic.oup.com/bib), which indicates that,
with the help of enhancer information, eSCAN can
more effectively narrow down variants and/or regulatory
regions associated with a trait of interest than SCANG.
We further investigated a segment on chr10, where two
signals were detected by enhancer-based SCANG and
four were detected by eSCAN. The two regions from
SCANG overlapped the four eSCAN signals. All four were
smaller in size than the SCANG detected regions. We
also note that each SCANG signal contains two eSCAN
signals (Figure 3A–C). We then removed the associated
variants in the overlapped regions between eSCAN and

SCANG (which are regions detected by eSCAN since, in
both cases, the eSCAN regions are subsets of the SCANG
regions), and re-did SCANG analysis using the retained
variants only. Both regions then became insignificant (P-
values> 0.02) using SCANG (Figure 3D), suggesting that
the sub-regions detected by eSCAN were most likely the
functional regions contributing to the original significant
signal.

The computational complexity of eSCAN depends on
the sample size, the number of considered enhancers
along a certain chromosome and the number of rare vari-
ants residing in enhancer regions. For WHI (n = 10 727),
eSCAN takes an average of 26 h to examine all the sets
of rare variants along one chromosome using our cluster
computing platform with one computing node and 8 Gb
of memory (Supplementary Figure S7 available online at
https://academic.oup.com/bib), while SCANG limited to
enhancer regions takes an average of 5.3 days as more
eigen decomposition steps are performed.

For comparison with other aggregation test methods,
we also applied the recently proposed STAAR to ana-
lyze the four blood cell traits in the WHI cohort as
well as a widely used software EPACTS with three dif-
ferent tests using EMMAX. As shown in Figure 4 and
Table 2, the results from eSCAN, STAAR and EPACTS with
mmSKAT test are largely consistent, but the eSCAN-
identified associated regions exhibit shorter size and
more significant signals than those from STAAR and
mmSKAT. In contrast, the two versions of burden tests
seem to be under-powered for detecting the associa-
tions. Additionally, we have assessed several other per-
formance aspects of eSCAN, including assessing signifi-
cance of other genomic regions (promoters and randomly
selected regions) and the choice of the number of PCs.
Details are provided in Supplementary Section 2.

Discussion
We propose here eSCAN, a novel aggregation method
for WGS analysis, which can integrate various types
of functional information to aggregate enhancers or
putative regulatory regions from WGS data and test for
association with phenotypes of interest. Our method has
several important advantages: (1) it has higher power
and lower false positive rate, enabling it to accurately
detect more significant signals than other methods
(Figure 2; Supplementary Figures S1–S3 available online
at https://academic.oup.com/bib); (2) the signals identi-
fied by eSCAN are of shorter sizes, which suggests eSCAN
can more accurately locate the associated variants; (3)
eSCAN boosts the biological interpretation of detected
signals by incorporating functional annotation and (4)
it is computationally efficient (Supplementary Figure S7
available online at https://academic.oup.com/bib).

The reason that eSCAN can improve the power for
detecting causal variants is that eSCAN restricts the
aggregation test only to variants from putative enhancer
regions, where the causal variants are mostly likely to
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Figure 3. A segment on chr10 where two signals were detected by SCANG and four by eSCAN. We further investigated a segment on chr10 where
two signals were detected by SCANG and four by eSCAN. The two regions from SCANG (chr10:113 767 467–113 773 998 with P-value = 2.66 × 10−7 and
chr10:113 774 365–113 779 787 with P-value = 7.81 × 10−7) overlapped the four eSCAN signals (A). Each of the four eSCAN signals is smaller in size than
the SCANG detected regions (B). Specifically, eSCAN detected chr10:113 770 735–113 773 147 with P-value = 2.84 × 10−6; chr10:113 773 148–113 774 046
with P-value = 6.59 × 10−6; chr10:113 774 047–113 775 910 with P-value = 9.55 × 10−6 and chr10:113 775 911–113 778 291 with P-value = 1.92 × 10−5. Each
SCANG signal contains two eSCAN signals (C). We then removed the associated variants in the overlapped regions between eSCAN and SCANG (which
are regions detected by eSCAN since, in both cases, the eSCAN regions are subsets of the SCANG regions) and re-did SCANG analysis using the retained
variants only. Both regions then became insignificant (P-values > 0.02) using SCANG (D), suggesting that the sub-regions detected by eSCAN were most
likely the functional regions contributing to the original significant signals.

Figure 4. Comparison of eSCAN with STAAR and three statistical tests, emmaxCMC, emmaxVT and mmSKAT, from EPACTS. (A) eSCAN identified
associated regions exhibit shorter size than the other four methods, which have the same region sizes. (B) eSCAN shows the greatest power for almost
every signal. STAAR and mmSKAT seem to have comparable power with eSCAN for most of the signals, but emmaxCMC and emmaxVT seem to be
under-powered. emmaxCMC: collapsing burden test using EMMAX; emmaxVT: variable-threshold burden test using EMMAX; mmSKAT: SKAT test using
EMMAX.
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Table 2. Significant results by eSCAN for blood cell traits in TOPMed WGS data

Chr Start End P-value P-value by STAAR
(start:end)

P-value by
emmax-
CMCa

P-value by
emmaxVTa

P-value by
mmSKATa

P-value by SCANG
(start:end)

Known
GWAS

Trait

5 178 360 123 178 360 224 4.12E-13 9.23E-10
(178 360 084:178 360 305)

6.54E-01 3.00E-01 2.03E-06 5.82E-02
(178 342 330:178 367 547)

No HGB

8 98 027 590 98 027 637 2.93E-10 1.05E-08
(98 026 570:98 027 915)

2.41E-03 3.90E-03 8.81E-11 9.24E-04
(98 023 407:98 078 162)

No HGB

9 32 404 673 32 404 681 2.52E-09 2.60E-08
(32 397 109:32 404 847)

8.29E-03 1.30E-02 5.05E-03 7.75E-03 (32 289 232:
32 422 553)

Yes HGB

16 14 511 231 14 511 242 3.30E-13 1.74E-08
(14 509 775:14 511 544)

6.21E-01 1.50E-01 3.61E-07 1.78E-03
(14 479 136:14 781 283)

No HGB

16 53 504 830 53 504 955 4.23E-10 6.57E-07
(53 504 703:53 505 714)

8.56E-02 1.12E-01 1.10E-08 1.04E-02
(53 483 984:53 535 907)

No HGB

17 37 034 266 37 034 294 1.46E-12 1.56E-08
(37 034 219:37 034 447)

1.87E-05 3.90E-05 8.20E-08 7.13E-04
(37 016 046:37 060 384)

No HGB

1 103 517 835 103 519 406 2.55E-14 2.54E-14 (103 517 128:103
522 214)

3.21E-05 1.20E-04 1.52E-15 1.26E-02
(103 476 276:103 518 492)

No PLT

1 37 598 029 37 598 031 3.69E-28 4.92E-27
(37 597 769:37 598 312)

8.24E-07 1.80E-06 9.19E-31 5.37E-03
(37 588 746:37 598 034)

No PLT

1 39 129 366 39 129 405 2.66E-13 6.32E-12
(39 128 051:39 129 395)

1.85E-06 1.50E-06 2.05E-11 2.42E-02
(39 127 407:39 129 821)

No PLT

6 148 155 373 148 156 204 4.14E-21 1.72E-09
(148 155 161:148 157 516)

1.48E-03 1.50E-06 1.04E-10 3.20E-02
(148 142 817:148 156 466)

No PLT

6 90 425 049 90 425 063 1.59E-14 3.80E-09
(90 423 754:90 425 200)

2.79E-04 7.50E-06 1.08E-10 4.86E-02
(90 422 386:90 424 684)

No PLT

9 113 408 473 113 408 481 6.24E-14 8.45E-12 (113
408 320:113 408 738)

7.21E-05 1.20E-04 1.22E-13 4.72E-04
(113 286 449:113 425 110)

No PLT

12 27 243 078 27 243 118 3.38E-24 9.66E-11
(27 242 306:27 243 091)

1.16E-03 1.30E-03 7.24E-12 1.16E-02
(27 239 926:27 242 793)

No PLT

15 75 460 930 75 460 980 1.60E-11 1.76E-07
(75 460 830:75 464 641)

4.96E-04 1.00E-07 2.88E-07 7.61E-03
(75 455 032:75 466 056)

No PLT

17 35 983 285 35 983 653 3.24E-15 3.29E-15
(35 982 416:35 983 367)

6.98E-01 5.80E-01 5.04E-01 2.14E-03
(35 974 330:36 042 136)

Yes PLT

1 35 979 790 35 979 828 2.41E-27 1.48E-19
(35 978 873:35 979 878)

1.24E-10 1.00E-07 1.85E-25 9.08E-03
(35 918 715:36 037 384)

Yes WBC

1 166 942 036 166 942 059 5.14E-16 1.14E-10
(166 941 439:166 942 948)

9.53E-02 1.40E-01 6.33E-15 2.68E-03
(166 881 863:167 002 809)

Yes WBC

10 51 377 912 51 377 918 5.84E-12 2.77E-09
(51 376 256:51 378 263)

1.03E-04 1.80E-04 1.06E-10 1.65E-02
(51 281 521:51 397 833)

No WBC

14 96 609 350 96 609 359 3.67E-13 2.70E-11
(96 608 711:96 610 505)

8.39E-03 1.70E-02 8.15E-15 5.06E-03
(96 599 488:96 619 536)

No WBC

Note. Chromosome, start position (hg38), end position (hg38); P-value in discovery samples (WHI); P-value of nearest region tested by STAAR, emmax-CMC,
emmaxVT, mmSKAT and enhancer-based SCANG, known GWAS loci within +/−500 kb, associated trait (HGB, PLT count and WBC count). aemmaxCMC,
emmaxVT and mmSKAT have the same testing regions as STAAR.

reside. In contrast, SCANG simply assigns variants into
fixed-size sliding windows, though the window length
may change within a pre-specified range, which may
identify variants from regions encompassing multiple
enhancer regions with distinct functions as well as non-
regulatory regions, thus leading to a lower power and
a higher false positive rate in a fine-mapping sense.
Hence, compared to SCANG, eSCAN is more likely to
better pinpoint the regions with the causal variants. Fur-
thermore, eSCAN performs a scanning procedure within
each significant enhancer to further narrow down the
potential causal region, attaining higher-resolution fine-
mapping.

eSCAN can be viewed as an extension of SCANG with
respect to its use of dynamic searching windows and
use of the P-value as its test statistic [4]. But, it differs
from SCANG in several key ways. SCANG restricts the

size of searching windows within a pre-specified range
and then tests all possible windows, ‘randomly’ identi-
fying some large regions across the genome regardless
of their biological functions. eSCAN allows more flexible
and biologically meaningful searching windows. It aggre-
gates variants in putative enhancer regions to perform
test within each enhancer (Figure 1). In addition, eSCAN
builds on fastSKAT, a computationally efficient approach
to approximate the null distribution of SKAT statistics
[11]. We adopt an omnibus test that uses the aggre-
gated Cauchy method via ACAT to combine P-values
from fastSKAT using two different weights, Beta(1,1) and
Beta(1,25). This omnibus test can additionally include
burden test if desired. Compared to the optimal test in
SCANG, the omnibus test has two advantages: (1) ACAT
is flexible and can accommodate different choices of
weights but the optimal test is not able to combine P-
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values under different weights and (2) ACAT method is
computationally more efficient and thus more scalable
than the optimal test.

eSCAN is conceptually different from the recently pro-
posed STAAR method [22] and mmSKAT implemented in
EPACTS [37], though they show highly consistent results
with similar testing power. Specifically, eSCAN is a gen-
eral framework to perform genome-wide association test
for rare variants in putative regulatory regions. We first
use epigenomic annotations to define potential regu-
latory regions and then perform conventional variant-
set test for each region (via fastSKAT for its computa-
tional efficiency). Then, we perform a sliding window
scan within each identified significant regulatory region
to further narrow down the associated regions (also via
fastSKAT). In contrast, STAAR and mmSKAT both per-
form association testing on a pre-defined set of variants
and thus can be used as a replacement of fastSKAT
in our eSCAN framework. Moreover, STAAR and other
traditional aggregation tests do not have a scanning step
as eSCAN’s second step.

Based on our simulations in a variety of scenarios,
eSCAN can be flexibly applied to different phenotypes,
both quantitative and qualitative, and is able to detect
more significant signals than competing methods with
a better control over false positive rate than other WGS
based methods (Figure 2; Supplementary Figures S1–S3
available online at https://academic.oup.com/bib). Using
WGS data from the WHI, we demonstrate an enrichment
of association signals using eSCAN procedure. It can
detect reported signals which are not found by SCANG
procedures, indicating that it is less likely to miss impor-
tant regions. In addition, the regions detected by eSCAN
are of shorter size than those of SCANG on average. By
removing eSCAN signals from WGS data on chromosome
10 and re-running SCANG procedures, we verify that, at
least for this segment, the signals detected by eSCAN
drive the significant associations in larger regions identi-
fied by SCANG (Figure 3; Supplementary Figure S4 avail-
able online at https://academic.oup.com/bib), a pattern
we anticipate would be true for many associated regions.

Despite the modest sample size available for our blood
cell trait analysis, interesting and biologically plausi-
ble, rare and low-frequency variant enhancer region sig-
nals were identified in our analyses from WHI. Of the
genes regulated by replicated regions, BACH2 (regulated
by a region on chr6:90 423 754–90 425 200) is a key
immune cell regulatory factor and is crucial for the main-
tenance of regulatory T-cell function and B-cell matu-
ration [31]. Among other interesting genes, CCL18 (reg-
ulated by a region on chr17:35 982 416–35 983 367, which
was not replicated in JHS) was reported to stimulate
the bone marrow overall, which could lead to increased
PLTs [32]. These findings suggest that the associated
enhancer regions identified by eSCAN may in fact play
key regulatory relevant to the biological functions of
blood cells, with eSCAN finding regions not being iden-
tified using the SCANG method. We do note, however,
that these findings should be considered preliminary,

given our modest sample size, and could be influenced by
unadjusted for selection bias in WHI TOPMed sampling
(enrichment for stroke and venous thromboembolism)
and lack of adjustment for a genetic relationship matrix,
which could better capture cryptic relatedness and dif-
ferential ancestry unadjusted for by PCs. However, these
issues impact eSCAN and SCANG equally and do not
change our central methods comparison findings.

With respect to the weights in fastSKAT, we used two
standard MAF-based weights: one is the Beta distribu-
tion with a1 = a2 = 1, reflecting that all the variants
have equal effect size; the other is a1 = 1, a2 = 25,
upweighting rarer variants. One can also use external
measures by incorporating individual level functional
annotations, such as FATHMM-XF [33] and STAAR [22],
as the weight for each variant. Incorporation of func-
tional evidence has demonstrated its values in variant-
level association studies [34, 35]. In addition, the eSCAN
framework is flexible regarding its unit aggregate tests.
In our implementation, we use fastSKAT because of its
small computational cost, but other aggregate tests can
also be used, such as SMMAT, a recently proposed test,
which is an efficient variant set mixed model association
test [36].

Another attractive feature of eSCAN is its significance
threshold. Since candidate regions are highly likely to
be correlated because of either physical overlapping or
LD, making the set-based P-values also correlated, the
classic Bonferroni correction would be too conservative.
While we do use a classic Bonferroni correction in our
real data example from WHI, due to the small sample
size available to us for replication, this is almost certainly
over-conservative. eSCAN provides two estimations of
significance threshold, either empirically or analytically,
using the strategies from SCANG and WGScan, respec-
tively, which have demonstrated significant enrichments
of signals in Li et al. [4] and He et al. [10]. In addition,
although our analyses focused on unrelated individuals,
it can be readily extended to related samples by replacing
the generalized linear model with the generalized linear
mixed model in the first step [4].

In this study, we focus on identifying significant
enhancer regions, where the identified enhancers can
regulate one or multiple genes that need to be further
explored for interpretation of the results. On the other
hand, given that multiple enhancers can orchestrate to
regulate one gene, and given the flexibility of eSCAN to
start with any pre-specified candidate regions, eSCAN
allows testing at gene level where all putative enhancers
for a particular gene of interest are fed to eSCAN as input
candidate regions.

One potential limitation of eSCAN is the lack of
base pair resolution in defining regions important for
gene regulation due to the sparsity of reads with most
Hi-C and chromatin conformation assays (leading to
resolution as broad as 40 kb when assessing interactions
between genomic regions). ATAC-seq data, albeit much
finer resolution, still result in open chromatin peak
regions that usually contain multiple rare variants,
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particularly as sample size increases, hurdling inference
at the resolution of single base pair or single vari-
ant. These limitations are intrinsic to the functional
annotation data employed rather than to the eSCAN
methodology. We anticipate that rapid technological
improvements in the functional annotation datasets
will continue mitigating these issues by providing
increasingly finer resolution and more comprehensive
data, which would render eSCAN even more valuable in
the near future.

Key Points

• Existing approaches for rare-variant aggrega-
tion tests using WGS data either accept a pre-
specified set of variants or scan across the
genome or region, leaving a missed opportunity
where the two strategies combined can improve
both power and resolution of identified regions.

• Existing methods, without allowing the combina-
tion strategy and not leveraging prior knowledge
of relevant genomic annotations during model
fitting, tend to identify associated regions that
sometimes span multiple regulatory elements
and are not clearly linked to genes, limiting bio-
logical interpretation.

• To fill in the gap, we have developed a novel
and efficient statistical framework eSCAN (scan
the enhancers) for genome-wide assessment of
enhancer regions in WGS studies.

• Our eSCAN shows clear advantage over state-of-
the-art sliding window-based methods. In both
simulations and real datasets, eSCAN is able to
capture more significant signals, and these sig-
nals are of shorter length (indicating higher res-
olution fine-mapping capability) and drive asso-
ciation of larger regions detected by other meth-
ods.

Supplementary data
Supplementary data are available online at https:// aca-
demic.oup.com/bib.

Software and data availability
We developed an R package for the eSCAN procedure.
The package is available at https://github.com/yingxi-ka
ylee/eSCAN. TOPMed data from the WHI are available
to approved researchers through dbGaP (phs001237),
and the phenotype data are available at phs000200.
TOPMed data from the JHS Data are also available to
approved researchers through dbGaP (phs000964), and
the phenotype data are available at phs000286. Data are
also available with an approved manuscript proposal
through https://www.jacksonheartstudy.org/ (JHS) and
https://www.whi.org/ (WHI).
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