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Single-cell Hi-C (scHi-C) analysis has been increasingly used 
to map chromatin architecture in diverse tissue contexts, but 
computational tools to define chromatin loops at high reso-
lution from scHi-C data are still lacking. Here, we describe 
Single-Nucleus Analysis Pipeline for Hi-C (SnapHiC), a 
method that can identify chromatin loops at high resolution 
and accuracy from scHi-C data. Using scHi-C data from 742 
mouse embryonic stem cells, we benchmark SnapHiC against 
a number of computational tools developed for mapping chro-
matin loops and interactions from bulk Hi-C. We further dem-
onstrate its use by analyzing single-nucleus methyl-3C-seq 
data from 2,869 human prefrontal cortical cells, which uncov-
ers cell type-specific chromatin loops and predicts putative 
target genes for noncoding sequence variants associated with 
neuropsychiatric disorders. Our results indicate that SnapHiC 
could facilitate the analysis of cell type-specific chromatin 
architecture and gene regulatory programs in complex tissues.

Single-cell Hi-C (scHi-C) technologies have been developed to 
map chromatin architecture in individual cells, enabling the mea-
sure of spatial proximity between transcriptional regulatory ele-
ments in a cell type-specific manner1–3. However, due to the lack 
of tools tailored for scHi-C data, identifying loops from scHi-C 
data mainly relies on applying methods developed for bulk Hi-C4,5 
to the aggregated scHi-C data of the same cell type. Due to the 
extreme sparsity of scHi-C data, such a strategy would require a 
large number of cells (>500–1,000), which is both cost prohibitive 
and impractical for rare cell types. To overcome these issues, we 
developed Single-Nucleus Analysis Pipeline for Hi-C (SnapHiC), a 
computational framework customized for scHi-C data to identify 
chromatin loops at high resolution and accuracy from a small num-
ber of cells.

SnapHiC (Fig. 1a) first imputes intrachromosomal contact prob-
ability between pairs of 10-kilobase (kb) bins in each cell with the 
random walk with restart (RWR) algorithm6. Next, it normalizes 
the imputed contact probability based on linear genomic distances. 
SnapHiC then applies paired t-test to the matrices of normalized 
contact probability of all cells to identify candidate bin pairs (or 
loop candidates) with higher-than-expected contact probability in 
a population of cells. To minimize false positives, SnapHiC consid-
ers a bin pair as a loop candidate only when its normalized contact 

probability is significantly higher than expected by chance based 
on both global and local background. Finally, SnapHiC groups the 
loop candidates into clusters7 and identifies the summit(s) within 
each cluster. In SnapHiC, individual cells are treated as indepen-
dent datasets instead of being aggregated into pseudo bulk data. 
Therefore, the variability of contact frequency within the cell popu-
lation can be estimated to boost the statistical power in loop detec-
tion, especially when the number of cells is low.

We first benchmarked the performance of SnapHiC against 
a commonly used loop detection method for bulk Hi-C data, 
HiCCUPS4. We applied SnapHiC to the published scHi-C data1 gen-
erated from mouse embryonic stem (mES) cells. Besides the full set 
of 742 cells, we also randomly subsampled 10, 25, 50, 75, 100, 200, 
300, 400, 500, 600 and 700 cells from this dataset, and determined 
10-kb-resolution intrachromosomal loops within the 100 kb–1 Mb 
range. For each subsampling, we also pooled the scHi-C data and 
identified chromatin loops at 10-kb resolution using HiCCUPS 
with both default and ‘optimal’ parameters for sparse data 
(Supplementary Note and Extended Data Fig. 1). For each sub-
sampling dataset, SnapHiC found substantially more loops than 
HiCCUPS, suggesting SnapHiC has a much higher sensitivity than 
HiCCUPS (Fig. 1b and Supplementary Table 1). Even from 75 cells, 
SnapHiC identified 1,050–1,420 loops, whereas HiCCUPS found 
only 0–2 loops with default parameters and 3–10 loops with opti-
mal parameters. Additionally, HiCCUPS-identified loops tended to 
be a subset of SnapHiC-identified loops (Extended Data Fig. 2a). 
Moreover, SnapHiC achieved higher reproducibility. From two 
replication datasets with 371 cells each, reproducibility was 50.8% 
for SnapHiC versus 38.7% for HiCCUPS with default parameters 
(paired t-test two-sided P = 7.86 × 10−8), while 50.8% for SnapHiC 
versus 39.7% for HiCCUPS with optimal parameters (paired t-test 
two-sided P = 9.90 × 10−11).

We used the F1 score, the harmonic mean of the precision and 
recall rates, to evaluate the overall performance of each method. To 
calculate the F1 score, we combined the chromatin loops identified 
by HiCCUPS from bulk in situ Hi-C data8, with long-range inter-
actions identified by MAPS (model-based analysis of long-range 
chromatin interactions from PLAC-seq (proximity ligation-assisted 
ChIP–seq (chromatin immunoprecipitation assays with sequenc-
ing)) and HiChIP experiments) from H3K4me3 PLAC-seq data9, 
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cohesin10 and H3K27ac HiChIP data11, all from mES cells. At each 
subsampling of scHi-C data, SnapHiC consistently attained a greater 
F1 score than HiCCUPS (Fig. 1c and Extended Data Fig. 2b,c).  
The reliability of SnapHiC-identified loops was supported by two 
lines of evidence: (1) significant focal enrichment at anchors of 
loops identified from at least 25 cells was observed from aggregate 
peak analysis (APA) plots using aggregated contact matrices of 742 
cells (Extended Data Fig. 3) and (2) for SnapHiC-identified loops 
with CTCF (CCCTC-binding factor) binding on both anchors, 
there was a clear preference in convergent orientation—ranging 
from 63.6% to 78.7% when at least 50 cells are used (Supplementary 
Table 2), as predicted by the loop extrusion model4,12. The advan-
tages of SnapHiC were more obvious when the number of cells 
profiled is limited. As illustrated in Extended Data Fig. 4, SnapHiC 
detected previously verified long-range interactions at Sox2, Wnt6 
and Mtnr1a loci13,14 from scHi-C data of as few as 75 cells, whereas 
HiCCUPS required at least 200–600 cells to detect the same loops.

We next compared the performance of SnapHiC with three 
additional methods designed to identify long-range interactions  

from bulk Hi-C-FastHiC15, FitHiC2 (ref. 5) and HiC-ACT16 
(Supplementary Note). Considering their default thresholds may 
not be optimal for the sparse scHi-C data, we also tested differ-
ent thresholds for each method. Results on different numbers of 
mES cells demonstrated that SnapHiC consistently identified more 
loops and achieved greater F1 scores than the other methods, with 
higher recall rates and equivalent or slightly lower precision rates 
(Extended Data Fig. 5). For the three loci examined above (Extended 
Data Fig. 4), SnapHiC also detected the known long-range interac-
tions with much fewer cells than the other methods (Extended Data  
Fig. 6). Taken together, our results suggested that SnapHiC can 
identify loops from a small number of cells with high sensitivity  
and accuracy.

To demonstrate the use of SnapHiC on complex tissues, 
we applied it to the published single-nucleus methyl-3C-seq 
(sn-m3C-seq) data3 generated from human prefrontal cortex, which 
simultaneously profiled DNA methylome and chromatin organiza-
tion from the same cells. In this study, 14 major cell types were clas-
sified from single-cell methylome data based on cell type-specific 
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Fig. 1 | SnapHiC reveals chromatin loops at high resolution and accuracy. a, Overview of the SnapHiC workflow. b, The number of chromatin loops at 
10-kb resolution identified by SnapHiC and HiCCUPS (with default or optimal parameters) from different numbers of mES cells. c, F1 score of SnapHiC- 
and HiCCUPS-identified loops (with default or optimal parameters) from different numbers of mES cells. In b,c, the dots and the error bars represent the 
mean values and the standard deviations calculated across six randomly sampled subsets, respectively.
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CG and non-CG methylation patterns (Extended Data Fig. 7a). We 
applied SnapHiC to the Hi-C component of each cell within the 
14 cell clusters, and identified roughly 817–27,379 loops at 10-kb 
resolution (Fig. 2a). Consistent with our observation on mES cells, 
SnapHiC identified more chromatin loops than tools developed for 
bulk Hi-C (Extended Data Fig. 7b) and yielded the highest F1 score 
on all cell types except for the oligodendrocytes (Extended Data  
Fig. 8 and Supplementary Table 3), which had comparable sequenc-
ing depth to routine bulk Hi-C data after aggregating (roughly 278 
million intrachromosomal reads >20 kb, 1,038 cells).

The accuracy and sensitivity of the above SnapHiC-identified 
loops were supported by two lines of evidence. First, APA analysis 
confirmed SnapHiC-identified loops show significant enrichment 
compared to their local background on the aggregated contact matri-
ces (Extended Data Fig. 9). Second, anchors of SnapHiC-identified 
loops displayed corresponding cell type-specific chromatin acces-
sibility, histone acetylation and gene expression in four distinct cell 
types: astrocytes, L2/3 excitatory neurons, oligodendrocytes and 

microglia, where assay for transposase-accessible chromatin using 
sequencing (ATAC-seq), H3K27ac ChIP–seq and RNA sequenc-
ing (RNA-seq) data are available17,18. To minimize the effect of cell 
number variation on the performance of SnapHiC, we randomly 
selected the same number of cells (N = 261) from astrocytes, oli-
godendrocytes and microglia to match the number of cells from 
L2/3 excitatory neurons, and applied SnapHiC to identify loops 
from these subsampled data. We found that most chromatin loops 
were cell type-specific (Supplementary Table 4), and the anchors of 
cell type-specific loops showed significantly higher ATAC-seq and 
H3K27ac ChIP–seq signals in the matched cell type compared to 
those in different cell types (Fig. 2b). The genes whose promoters 
linked to cell type-specific loops also showed significantly higher 
expression levels in the matched cell type (Fig. 2b and Supplementary 
Table 5). Moreover, they were associated with gene ontology terms19 
related to cell type-specific biological processes (Extended Data  
Fig. 10a). Taken together, our results indicated that SnapHiC can 
detect chromatin loops reliably from scHi-C data in complex tissues.
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Furthermore, we assigned candidate target genes to noncoding 
genome-wide association study (GWAS) single nucleotide poly-
morphisms (SNPs) based on the loops identified in specific cell 
types. We first collected 3,471 unique GWAS SNPs associated with 
seven neuropsychiatric disorders and traits that resided within the 
active enhancers of astrocytes, neurons, microglia or oligodendro-
cytes17 (Supplementary Table 6). Using SnapHiC-identified loops 
from the matching cell types (L2/3 excitatory neurons to repre-
sent neurons), we defined 788 SNP-gene linkages, connecting 445 
disease-associated SNPs to 189 genes (Supplementary Table 7). 
The list included several known disease genes, such as INPP5D 
(Alzheimer’s disease), RAB27B (major depressive disorder, MDD), 
SORL1 (Alzheimer’s disease) and ZNF184 (MDD and schizophre-
nia). Figure 2c and Extended Data Fig. 10b showed an illustrative 
example of gene APOE, which was specifically expressed in astro-
cyte. Two astrocyte-specific loops connected the transcription 
start site of APOE to two active enhancers containing Alzheimer’s 
disease-associated GWAS SNPs (rs112481437 and rs138137383) in 
astrocyte. Our results indicated that APOE was the putative target 
gene of these two GWAS SNPs specifically in astrocytes.

In summary, we describe SnapHiC, a method to identify chro-
matin loops at high resolution and accuracy from sparse scHi-C 
datasets. Reanalyses of published scHi-C data from mES cells dem-
onstrate that SnapHiC greatly boosts the statistical power in loop 
detection. Application of SnapHiC to sn-m3C-seq data from human 
prefrontal cortical cells reveals cell type-specific loops, which can 
predict putative target genes of noncoding GWAS SNPs. SnapHiC 
has the potential to facilitate the study of cell type-specific chroma-
tin spatial organization in complex tissues.
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Methods
Single-cell Hi-C (scHi-C) data processing. For scHi-C data from mES cells1, we 
downloaded the raw fastq files of all diploid serum cells. We first aligned scHi-C 
read pairs to mm10 genome with BWA-MEM with the ‘-5’ option, to report the 
most 5′ end alignment as the primary alignment, and the ‘-P’ option to perform 
the Smith–Waterman algorithm to rescue chimeric reads. We only used primary 
alignments in the next steps. We then deduplicated read pairs with the Picard 
tool to keep only one read pair at the exact same position. We further applied 
two filtering steps to remove duplications: (1) we split each chromosome into 
consecutive nonoverlapping 1-kb bins and only kept one contact for each 1-kb bin 
pair, and (2) we removed 1-kb bins that contact with more than ten other 1-kb 
bins, since they are likely mapping artifacts. The number of contacts per cell for 
all 1,175 cells has a bimodal distribution, and therefore only the top 742 cells with 
>150,000 contacts per cell were selected for downstream analysis.

Single-nucleus methyl-3C-seq (sn-m3C-seq) data processing. For sn-m3C-seq 
data from human prefrontal cortex, we performed data processing using reference 
genome hg19 as described in the previous study3. Afterward, we applied the same 
filtering steps to remove duplications as described in the Single-cell Hi-C (scHi-C) 
data processing section. Again, the number of contacts per cell for all 4,238 cells 
showed a bimodal distribution and the top 2,869 cells with >150,000 contacts per 
cell were used for downstream analysis. The method for clustering and cell type 
annotation for these 2,869 cells was the same as previously described3.

SnapHiC algorithm. Step A. Contact probability imputation using the RWR 
algorithm. We first partitioned each autosome into 10-kb bins and dichotomized 
contact for each 10-kb bin pair (binary contact matrix with 1 indicating nonzero 
contact and 0 otherwise). Next, we modeled each autosome as an unweighted 
graph, where each 10-kb bin is one node and each nonzero contact between any 
two 10-kb bins is one edge. We also added edges to all adjacent 10-kb bins. We 
then implemented the RWR algorithm6 with a restart probability of 0.05 to impute 
the contact probability between all intrachromosomal 10-kb bin pairs. We used the 
Python ‘NetworkX’ package to construct the graph and adopted the ‘linalg.solve’ 
function in the Python ‘SciPy’ package to solve the linear equation in the RWR 
algorithm. The systematic biases in imputed contact probabilities in scHi-C data 
are negligible, and thus normalization against effective fragment size, GC content 
or mappability is not needed (Supplementary Note).

Step B. Contact probability normalization based on one-dimensional (1D) genomic 
distance. Since the contact probability between any two genomic loci is dependent 
on their 1D genomic distance, normalization of the imputed contact probability 
against 1D genomic distance is needed before loop calling. To achieve this, we first 
removed bin pairs residing in the first 50 kb or the last 50 kb of each chromosome, 
which often have unusually high imputed contact probability due to the edge 
effect of the RWR algorithm. We then stratified all 10-kb bin pairs by their 1D 
genomic distance. Specifically, let xij represent the contact probability between bin 
i and bin j. Define set Ad as all bin pairs (i,j) with the 1D genomic distance d. For 
simplicity, we only considered bin pairs (i,j) in the upper triangle of the contact 
matrix where i < j. We removed the top 1% bin pairs in Ad with the highest contact 
probability, and then computed the mean μd and the standard deviation σd of the 
contact probability using the remaining bin pairs in Ad. We further calculated 
the normalized contact probability (that is, z score), defined as zij = (xij − μd)/σd, 
for all bin pairs in Ad. For single cells with very few contacts, the imputed contact 
probabilities xij at a specific 1D genomic distance d are close to zero, leading to very 
small standard deviation σd and numerical errors in the z score transformation. To 
avoid this issue, when σd is less than 10−6, we defined zij = 0 for all bin pairs in Ad. 
After the calculation described above, bin pair (i,j) with higher normalized contact 
probability zij suggests that bin i and bin j are more likely to interact with each 
other than other loci pairs.

Step C. Identification of loop candidates. To minimize false positives in loop calling 
results, we defined a bin pair as a loop candidate only if it shows a higher contact 
probability compared to both its global and local background. Specifically, we 
required the loop candidate to satisfy the following criteria:

 (1) Its average normalized contact probability from all single cells is greater than 
0 (that is, with respect to global background).

 (2) More than 10% of single cells have normalized contact probability above 1.96 
(that is, z score >1.96, corresponding to a z-test two-sided P value <0.05, with 
respect to global background).

 (3) For each 10-kb bin pair (i,j), we defined its local neighborhood as all 10-kb 
bin pairs (m,n) such that 30 kb ≤ max{d(i,m), d(j,n)} ≤ 50 kb (Supplementary 
Fig. 1), where d(i,m) is the 1D genomic distance between the center of bin i 
and the center of bin m. Here we did not consider the bin pairs within 20 kb 
of bin pair (i,j) as part of its local neighborhood because they can be part of 
the same loop cluster centered at bin pair (i,j). We then compared the nor-
malized contact probability at bin pair (i,j) with the mean of the normalized 
contact probability of all ninety-six 10-kb bin pairs within its local neighbor-
hood region, and applied the paired t-test across all single cells to obtain a P 

value. We further converted P values into false discovery rates (FDRs) using 
the Benjamini–Hochberg procedure, again stratified by 1D genomic distance. 
A loop candidate must have FDR < 10% and t-statistics greater than three in 
the paired t-test (that is, with respect to local background).

 (4) Motivated by the HiCCUPS algorithm4, we also required each loop candidate 
to have at least 33% higher average normalized contact frequency than its 
circle, donut and lower left background and 20% higher average normalized 
contact frequency than its horizontal and vertical background (Supplemen-
tary Fig. 1) (that is, with respect to local background).

 (5) Finally, we removed loop candidates with either end having low mappabil-
ity score (≤0.8), or overlapping with the ENCODE blacklist regions (http://
mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-mouse/
mm10.blacklist.bed.gz for mm10 and https://www.encodeproject.org/files/
ENCFF001TDO/ for hg19). The sequence mappability for each 10-kb bin is 
calculated based on our previous study20; it can be downloaded from http://
enhancer.sdsc.edu/yunjiang/resources/genomic_features/.

Step D. Clustering of loop candidates and identifying the summit(s) as final outputs. 
For each loop candidate (i,j), we defined its surrounding area as all 10-kb bin 
pairs (m,n) such that max {d(i,m), d(j,n)} ≤ 20 kb, where d(i,m) is the 1D genomic 
distance between the center of bin i and the center of bin m. We defined a loop 
candidate as a singleton if there is no other loop candidate within its surrounding 
area, and removed all singletons from the downstream analysis since the singletons 
are likely to be false positives.

To group the remaining nonsingleton loop candidates into clusters, we adopted 
the Rodriguez and Laio’s algorithm7. Specifically, for each loop candidate (i,j), we 
first counted the number of loop candidates in its adjacent neighborhood regions: 
(m,n): max {d(i,m)},d(j,n) ≤ 10 kb, and defined this number as its local density 
ρ(i,j). Next, we calculated the minimum Euclidean distance between the loop 
candidate (i,j) and any other loop candidate with higher local density on the same 
chromosome, defined as δ(i,j):

δ (i, j) = min
(m,n):ρ(m,n)>ρ(i,j)

√

(i − m)2 + (j − n)2.

If a loop candidate (i,j) has the highest local density (that is, ρ(i,j) = 9), δ(i,j) is 
defined as:

δ (i, j) = max
(m,n)

√

(i − m)2 + (j − n)2.

We then selected loop candidates that have high local density ρ, and are 
relatively far away from other loop candidates with higher local density, that 
is, high δ, as loop cluster centers. To achieve this, let ρmax and δmax represent 
the maximal value of ρ and δ of all loop candidates on each chromosome, 
respectively. We defined ρ′ (i, j) = ρ (i, j) /ρmax and δ′ (i, j) = δ (i, j) /δmax 
such that both ρ′ (i, j) and δ′ (i, j) are within range [0,1]. We then defined 
η (i, j) = ρ′ (i, j) × δ′ (i, j), ordered all loop candidates by their η in the 
descending order and plotted the rank of η against the value of η. In this plot, 
we selected the reflection point such that the slope at the reflection point is one. 
All loop candidates with η larger than η at the reflection point were chosen to be 
the loop cluster centers. After finding the loop cluster centers, we assigned each 
remaining loop candidate to the same loop cluster as its nearest neighbor with a 
higher local density ρ.

Within each loop cluster, we defined the loop candidate with the lowest 
FDR as the first summit of the cluster. For the first summit (i, j), we defined its 
surrounding area as all 10-kb bin pairs (m,n) such that max{d(i,m),d(j,n)} ≤ 20 kb, 
and removed all loop candidates within its surrounding area. Next, we selected the 
loop candidate with the lowest FDR among the remaining ones (if there is any) 
as the second summit of this cluster. We then removed all loop candidates within 
the surrounding area of the second summit in the same way as we did for the first 
summit, and searched for the third summit (if there is any) with the lowest FDR 
among the remaining loop candidates. Such a procedure was iterated until there 
were no loop candidates left in this cluster. Note that one loop cluster may contain 
multiple summits. The SnapHiC algorithm outputs a file containing the summit(s) 
of each loop cluster as its final chromatin loop list.

Details about the justification of the thresholds implemented in SnapHiC can 
be found in Supplementary Note and Supplementary Figs. 2 and 3.

Identification of chromatin loops with SnapHiC. We applied SnapHiC to scHi-C 
data from 10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700 and 742 mES cells and 
each of the 14 cell clusters from sn-m3C-seq data of human prefrontal cortex to 
call chromatin loops at 10-kb resolution between the 100 kb and 1 Mb region on 
autosomal chromosomes.

We did not take bin pairs within 100 kb into consideration because they do 
not have complete information in their local neighborhood (refer to SnapHiC 
algorithm). We also evaluated the performance of SnapHiC beyond 1 Mb 1D 
genomic distance or at a different resolution; the results are summarized in the 
Supplementary Note.
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Visualization of scHi-C and sn-m3C-seq data using percentage (%) of outlier 
cells matrix. Due to the sparsity of the raw count matrix of scHi-C data, the 
SnapHiC-identified loops can be visualized by the percentage of the outlier cells 
matrix. Specifically, we first computed the percentage of outlier cells (that is, cells 
with normalized contact probability >1.96), and then took the integer ceiling 
of 100 × (% of outlier cells) to create a count matrix. We then used the Juicer21 
software to convert the count matrix into a .hic file and visualize it in Juicebox22.

Generation of aggregated contact matrix for scHi-C and sn-m3C-seq data. We 
pooled contacts from single cells of interest to create the aggregated contact matrix 
in .hic format using Juicer with KR normalization21. Only intrachromosomal 
contacts >2 kb away were used.

Identification of loops/interactions using HiCCUPS, FastHiC, FitHiC2 and 
HiC-ACT from aggregated contact matrix. We applied the HiCCUPS4 to the 
aggregated contact matrix after pooling the contacts from single cells of interest 
and calling loops at 10-kb resolution with the two sets of parameters: (1) default 
parameter: ‘-ignore_sparsity -r 10000 -k KR -f.1 -p 2 -i 5 -t 0.02,1.5,1.75,2 -d 20000’ 
and (2) optimal parameter: ‘-ignore_sparsity -r 10000 -k KR -f .1 -p 4 -i 15 -t 
0.4,1.5,1.75,2 -d 20000’.

We applied FitHiC2 (ref. 5), FastHiC15 and HiC-ACT16, with the default setting 
to the aggregated contact matrix after pooling the contacts from single cells of 
interest at 10-kb bin resolution. We also tested different significance thresholds to 
accommodate the sparse scHi-C data: FDR < 1%, <5% and <10% for FitHiC2; the 
posterior probability of significant interactions >0.9, >0.99 and >0.999 for FastHiC 
and the local neighborhood smoothed P values <10−6, <10−7 and <10−8 for 
HiC-ACT. After getting the raw output, we further removed significant chromatin 
interactions supported by fewer than six reads to minimize false positives. We 
then applied the same algorithm implemented in SnapHiC (Step D in SnapHiC 
algorithm) to identify their summits.

To ensure a fair comparison with SnapHiC-identified loops, we further filtered 
the above identified loops/interactions by selecting the intrachromosomal ones 
within 1D genomic distance roughly 100 kb–1 Mb and removing the loops  
whose anchor bins had low mappability (≤0.8) or overlapped with the ENCODE 
blacklist regions.

Definition of loop overlap. Let bin pair (i,j) represent a loop in set A. We define 
that it overlaps with a loop in set B, if and only if there exists a loop (m,n) in set B 
such that max(dim, djn) ≤ 20 kb, where dim is the 1D genomic distance between the 
middle base pair of bin i and the middle base pair of bin m.

Subsampling of scHi-C and sn-m3C-seq data. For scHi-C data from mES cells, 
we randomly permuted the order of all 742 cells that passing our quality control six 
times, and selected the first 10, 25, 50, 75, 100, 200, 300, 400, 500, 600 and 700 cells 
from all 742 cells to create a series of subsampled datasets.

For sc-m3C-seq data from human prefrontal cortex, we randomly permuted 
the order of all 338 astrocytes, 323 microglia and 1,038 oligodendrocytes and 
selected the first 261 cells to create the subsampled datasets for astrocytes, 
microglia and oligodendrocytes, respectively.

Reproducibility of SnapHiC- and HiCCUPS-identified loops. Suppose we have 
two sets of loop list A and B. Let PA represent the proportion of loops in set A 
overlapped with loops in set B (Definition of loop overlap) and let PB represent the 
proportion of loops in set B overlapped with loops in set A. We used (PA + PB)/2 to 
measure the reproducibility of loops in the two sets.

To assess the reproducibility of SnapHiC and HiCCUPS, we first randomly 
split all 742 mES cells into two groups where each group consists of 371 cells, 
and then applied SnapHiC and HiCCUPS to identify loops for each group. The 
reproducibility of SnapHiC- and HiCCUPS-identified loops between two sets of 
371 cells was calculated as described above. We repeated such random splitting 
and loop calling analysis ten times, and reported the mean of reproducibility of 
SnapHiC and HiCCUPS-identified loops. We further used the paired t-test to 
evaluate the statistical significance of the difference in reproducibility between the 
methods.

Generation of the reference loop/interaction lists for calculation of precision, 
recall and F1 score. For mES cells, the HiCCUPS loops at 10-kb resolution from 
bulk in situ Hi-C data were called as previously described14 using the pooled 
datasets of all four biological replicates from the Bonev et al. study8. MAPS9 
was applied to H3K4me3 PLAC-seq data9, cohesin HiChIP data10 and H3K27ac 
HiChIP data11 to call significant intrachromosomal interactions at 10-kb resolution 
within 1 Mb. We combined the above four lists and further filtered by removing 
interactions where anchor bins had low mappability (≤0.8) or overlapped with the 
ENCODE blacklist regions to create the final reference loop list.

For oligodendrocytes, microglia and eight neuronal subtypes from human 
prefrontal cortex, we used MAPS-identified interactions from H3K4me3 
PLAC-seq data of purified oligodendrocytes, microglia and neurons as their 
reference list, respectively17. We first filtered the list by selecting loops with 1D 
genomic distance roughly 100 kb–1 Mb and removing loops where anchor bins 

had low mappability (≤0.8) or overlapped with the ENCODE blacklist regions. We 
further selected the loops in which at least one end contains active promoters of 
the corresponding cell type to create the final reference interaction list.

Calculation of precision, recall and F1 score. Let N represent the number of loops 
in the reference loop list for the cell type of interest. Suppose method A identifies M 
loops from the same cell type, and m of them overlapped with loops in the reference 
loop list (Definition of loop overlap). The precision is calculated as m/M. Suppose 
among all N loops in the reference loop list, n loops overlapped with method 
A-identified loops. The recall is calculated as n/N. Notably, m and n may not be 
equal since we allow up to a 20-kb gap between two overlapped loops. The F1 score 
is the harmonic mean of the precision and recall and is calculated as below:

F1 score = 2 ×

Precision × Recall
Precision + Recall

= 2 ×

m/M × n/N
m/M + n/N

.

For mES cells, we used all SnapHiC-, HiCCUPS-, FastHiC-, FitHiC2- 
or HiC-ACT-identified loops/interactions for the above calculation. For 
oligodendrocytes, microglia and eight neuronal subtypes, we only selected 
the SnapHiC-, HiCCUPS-, FastHiC-, FitHiC2- or HiC-ACT-identified loops/
interactions in which at least one end contains active promoters of the 
corresponding cell type for this calculation, since the available reference loop lists 
are called from H3K4me3 PLAC-seq data, which can only detect interactions 
centered at promoter regions.

APA. We used the Juicer21 software with the command ‘java -jar juicer_
tools_1.19.02.jar apa -r 10000 -k KR -u input.hic loops.txt APA’ to perform the APA. 
We reported ‘P2LL’ (also known as the APA score) and ‘ZscoreLL’ to evaluate the 
enrichment of SnapHiC-identified loops with respect to the lower left background.

CTCF motif orientation analysis. We obtained the CTCF ChIP–seq peaks of mES 
cells from Kubo et al.23 and used FIMO24 with default parameters and the CTCF 
motif (MA0139.1) from the JASPAR25 database to search for CTCF sequence 
motifs among CTCF ChIP–seq peaks. We then selected a subset of testable 
SnapHiC-identified loops in which both ends contain either a single CTCF motif 
or multiple CTCF motifs in the same direction and calculated the proportion of 
convergent, tandem and divergent CTCF motif pairs among all testable loops.

Visualization of CTCF and H3K27ac ChIP–seq data from mES cells. 
We downloaded the signal tracks from the ENCODE portal (https://www.
encodeproject.org/) with the following identifiers: ENCFF230RNU (for H3K27ac) 
and ENCFF069PTO (for CTCF) for Extended Data Fig. 4a.

Definition of cell type-specific SnapHiC loops. We used the SnapHiC loops 
identified from subsampled astrocytes, microglia and oligodendrocytes datasets 
and L2/3 excitatory neurons (all with 261 cells) to define cell type-specific loops. 
We defined a loop identified from one cell type as cell type-specific, if it did not 
overlap (Definition of loop overlap) with loops identified from any of the other 
three cell types.

Processing of ATAC-seq and H3K27ac ChIP–seq data from four brain cell 
types. The ATAC-seq and H3K27ac ChIP–seq data from human astrocytes, 
oligodendrocytes, microglia and neurons are from Nott et al.17 and are processed 
with ENCODE ATAC-seq and ChIP–seq pipelines as previously described17. 
The normalized bigwig tracks with reads per kilobase of a transcript, per million 
mapped reads as the y axis are generated for visualization in Fig. 2b.

Processing of RNA-seq from four brain cell types. The RNA-seq data from human 
astrocytes, oligodendrocytes, microglia and neurons were acquired from Zhang 
et al.18. The alignment and quantification are performed with pipeline: https://
github.com/ren-lab/rnaseq-pipeline. Briefly, we first aligned RNA-seq raw reads to 
hg19. Next, we used Gencode GTF gencode.v19.annotation.gtf for hg19 with STAR 
following the ‘ENCODE’ options outlined in the STAR manual (https://physiology.
med.cornell.edu/faculty/skrabanek/lab/angsd/lecture_notes/STARmanual.pdf). We 
then used Picard (http://broadinstitute.github.io/picard/) to remove PCR duplicates. 
We also generated the normalized bigwig tracks with reads per kilobase of a 
transcript, per million mapped reads as the y axis for visualization in Fig. 2b.

Enrichment analysis of ATAC-seq or H3K27ac ChIP–seq signals at cell 
type-specific loops. To quantify the intensity of ATAC-seq or H3K27ac ChIP–seq 
signals at cell type-specific loops in the cell type of interest, we first calculated reads 
per million (CPM) values in each 10-kb anchor of the cell type-specific loops using 
ATAC-seq or H3K27ac ChIP–seq data from the cell type of interest. To minimize 
the background noise, we only considered the reads falling into the ATAC-seq 
or H3K27ac ChIP–seq peak regions defined in the cell type of interest but not 
all the reads in the entire 10-kb bin. If there are multiple ATAC-seq or H3K27ac 
ChIP–seq peaks in the same 10-kb bin, we then added up the CPM values and took 
the sum as the value for that 10-kb bin. Since each loop has two anchors, we took 
their average CPM to represent the intensity of ATAC-seq or H3K27ac ChIP–seq 
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signal for that loop in the cell type of interest. Last, we applied the paired Wilcoxon 
signed-rank test on log2(CPM+1) values from different combinations of cell  
types of interest and the cell type-specific loop sets to test whether there is a 
significant difference.

Gene expression analysis at cell type-specific loops. We obtained the fragments 
per kilobase of transcript per million mapped reads (FPKM) values of each 
protein-coding gene in human astrocytes, neurons, microglia and oligodendrocytes 
from Supplementary Table 4 provided in Zhang et al. (Col P-U for astrocytes, Col 
AB for neurons, Col AC-AG for oligodendrocytes and Col AH-AJ for microglia in 
the ‘Human data only’ tab)18. For each gene, we took the average of FPKM across 
biological replicates of the same cell type. For the selected genes where promoters 
overlapped with cell type-specific loops, we applied the Wilcoxon signed-rank test 
to evaluate whether they were highly expressed in the matched cell type.

Selection of GWAS SNPs associated with neuropsychiatric disorders and traits. 
We first collected 30,262 genome-wide significant (P < 5 × 10−8) noncoding GWAS 
SNPs associated with neuropsychiatric disorders and traits. We considered seven 
neuropsychiatric disorders, including Alzheimer’s disease26, attention deficit 
hyperactivity disorder27, autism spectrum disorder28, bipolar disorder29, intelligence 
quotient30, MDD31 and schizophrenia32, resulting in a total of 28,099 unique GWAS 
SNPs (Supplementary Table 6). We then overlapped these GWAS SNPs with active 
enhancers of astrocytes, neurons, microglia or oligodendrocytes defined in the 
previous study17 and this resulted in 3,639 SNP-disease associations (3,471 unique 
GWAS SNPs) for analysis (Supplementary Table 6).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
The scHi-C data from mES cells were downloaded from https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE94489. The sn-m3C-seq data from 
human prefrontal cortex were downloaded from https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE130711. The ATAC-seq and H3K27ac ChIP–seq 
data from human astrocytes, oligodendrocytes, microglia and neurons were 
downloaded from dbGap (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001373.v2.p2). The RNA-seq data from human astrocytes, 
oligodendrocytes, microglia and neurons were downloaded from https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE73721. The signal tracks of CTCF and 
H3K27ac ChIP–seq data for mES cells (Extended Data Fig. 4a) were downloaded 
from the ENCODE portal (https://www.encodeproject.org/) with the following 
identifiers: ENCFF230RNU (for H3K27ac) and ENCFF069PTO (for CTCF). The 
hg19 and mm10 reference genomes were downloaded from https://hgdownload.
soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz and https://hgdownload.soe.
ucsc.edu/goldenPath/mm10/bigZips/mm10.fa.gz, respectively. The full lists of 
interactions/loops identified by different methods are provided as source data. 
Source data are provided with this paper.

Code availability
The SnapHiC software package with a detailed user tutorial and sample input and 
output files can be found at https://github.com/HuMingLab/SnapHiC.
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Extended Data Fig. 1 | optimization of HiCCuPS parameters using aggregated scHi-C data of the 742 meS cells. The number of loops within 100Kb to 
1 Mb range (a), precision rate (b), recall rate (c) and F1 score (d) for HiCCUPS loops running with different parameters. Default parameter: -f .1 -p 2 -i 5 -t 
0.02,1.5,1.75,2 -d 20000. Related to Supplementary Note.
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Extended Data Fig. 2 | Comparison of SnapHiC- and HiCCuPS-identified loops from meS cells. a, Venn diagram of overlaps between SnapHiC- and 
HiCCUPS-identified loops (with default or optimal parameters) from 742 mES cells. b, c, Line plots showing the performance of SnapHiC and HiCCUPS 
applied to different number of mES cells (N=10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700 and 742). The dots represent the mean values of precision 
rate (b) and recall rate (c) across six randomly sampled subsets of mES cells from the 742 cells that passed our quality control (see details in Methods), 
respectively (except for N=742). The error bar represents the standard deviation calculated across six randomly sampled subsets. These values are also 
used to calculate the F1 score in Fig. 1c. If the lower bound of confidence interval (mean-sd) is less than 0, it is set as 0. For precision, recall and F1-score, if 
the upper bound of confidence interval (mean+sd) is greater 1, it is set as 1.
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Extended Data Fig. 3 | SnapHiC-identified loops from different sub-sampling of meS cells showed significant enrichment over their local backgrounds. 
Aggregate peak analysis (APA) of SnapHiC-identified loops from different sub-sampling of mES cells examined on aggregated scHi-C contact matrix  
of 742 cells.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Performance of SnapHiC and HiCCuPS at Sox2, Wnt6 and Mtnr1a loci. a, (Top) Chromatin loops around Sox2 (left), Wnt6 
(middle), and Mtnr1a (right) gene identified from 100 mES cells using SnapHiC at 10 kb resolution. The black arrow points to the interactions verified in 
the previous publications13,14 with CRISPR/Cas9 deletion or 3C-qPCR. (Bottom) Comparison of the performance of SnapHiC and HiCCUPS (applied on 
aggregated scHi-C data with default or optimal parameters) from different number of mES cells at these three regions. If the previously verified interaction 
(black arrow) is recaptured, it is labeled as ‘Y’; otherwise, it is labeled as ‘N’. b, From left to right: aggregated scHi-C contact matrix of 100 mES cells, 
aggregated scHi-C contact matrix of 742 mES cells, bulk in situ Hi-C contact matrix from mES cells (replicate 1 from Bonev et al. study8) and % of outlier 
cells matrix of 100 mES cells at 10 kb resolution; from top to bottom: Sox2 locus, Wnt6 locus, and Mtnr1a locus. Black squares represent the SnapHiC-
identified loops from 100 mES cells, which are shown in (a) as purple arcs. For comparison, the HiCCUPS-identified loops from the deepest available bulk 
in situ Hi-C data of mES cells (combining all four replicates from Bonev et al. study8) are marked as blue squares.
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Extended Data Fig. 5 | Comparison of the performance of SnapHiC with FastHiC, FitHiC2 and HiC-ACT. The performance of FastHiC a, FitHiC2 b, and 
HiC-ACT c, on different numbers of mES cells (N=10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700 and 742), comparing with SnapHiC. The dots 
represent the mean values of the numbers of loops/interactions, precision rate, recall rate and F1 score of six randomly sampled subsets of mES cells 
from the 742 cells that passed our quality control, respectively (except for N=742). The error bar represents the standard deviation calculated across 
six randomly sampled subsets. For FastHiC (a), the posterior probability of being significant interactions >0.999 is commonly used; two more lenient 
thresholds >0.99 and >0.9 were tested considering the sparsity of single cell Hi-C data. For FitHiC2 (b), FDR<0.01 is commonly used; two more lenient 
thresholds <0.05 and <0.1 were tested considering the sparsity of single cell Hi-C data. For HiC-ACT (c), smoothed p-value <1e-8 is commonly used; 
two more lenient thresholds <1e-7 and <1e-6 were tested considering the sparsity of single cell Hi-C data. The HiC-ACT p-values are calculated based on 
one-sided aggregated Cauchy test. In a, b and c, if the lower bound of confidence interval (mean-sd) is less than 0, it is set as 0. For precision rate, recall 
rate and F1-score, if the upper bound of confidence interval (mean+sd) is greater 1, it is set as 1.
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Extended Data Fig. 6 | Comparison of the performance of SnapHiC with HiCCuPS, FastHiC, FitHiC2 and HiC-ACT at Sox2, Wnt6 and Mtnr1a loci. If the 
previously verified interaction (black arrow in Extended Data Fig. 4a) is recaptured, it is labeled as ‘Y’; otherwise, it is labeled as ‘N’.
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Extended Data Fig. 7 | Identification of loops/interactions using sn-m3C-seq data generated from human prefrontal cortex by different methods.  
a, t-SNE visualization of 14 major cell types identified in human prefrontal cortex in Lee et al. study3 based on cell-type-specific CG and non-CG 
methylation patterns. ODC: oligodendrocyte. Astro: astrocyte. MG: microglia. OPC: oligodendrocyte progenitor cell. Endo: endothelial cell. L2/3, L4, L5 
and L6: excitatory neuron subtypes located in different cortical layers. Pvalb and Sst: medial ganglionic eminence-derived inhibitory subtypes. Ndnf and 
Vip: CGE-derived inhibitory subtypes. NN1: non-neuronal cell type 1. b, The number of loops/interactions identified from each of the 14 cell types by 
SnapHiC, HiCCUPS, FitHiC2, FastHiC and HiC-ACT.
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Extended Data Fig. 8 | F1 score of SnapHiC-, HiCCuPS-, FitHiC2-, FastHiC- and HiC-ACT-identified loops/interactions for ten cell clusters from human 
prefrontal cortex. The F1 scores are calculated for oligodendrocytes (ODC), microglia (MG), and eight neuronal subtypes (L2/3, L4, L5, L6, Sst, Vip, Ndnf 
and Pvalb) using promoter-centered chromatin interactions previously identified from H3K4me3 PLAC-seq data17 of purified oligodendrocytes, microglia, 
astrocytes and neurons, respectively.
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Extended Data Fig. 9 | SnapHiC-identified loops from each of the 14 cell clusters identified from sn-m3C-seq data of the human prefrontal cortex show 
significant enrichment over their local background. Aggregate peak analysis (APA) of SnapHiC-identified loops for each of the 14 cell types demonstrated 
in Extended Data Fig. 7a examined on the aggregated contact matrices from the matching cell types.
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Extended Data Fig. 10 | Application of SnapHiC to identify loops in specific cell types. a, Top seven enriched gene ontology (GO) terms of genes 
associated with Astro-specific, MG-specific, ODC-specific and L2/3-specific SnapHiC loops. The p-values are calculated based on the accumulative 
hypergeometric distribution. b, Matrix of the percentage of cells with significantly higher normalized contact frequency (percentage of outlier cells with 
normalized contact frequency>1.96) for 261 astrocytes around APOE gene. The two SnapHiC-identified loops from astrocyte are marked by black squares 
and their labels matched the numbers shown in Fig. 2c.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis We used R version 3.6.1, Python version 3.6, Java version 8, Juicer version 1.6, Juicebox version 1.11.08, MAPS version 1.0.0, FitHiC version 
2.0, FastHiC version 1.0, HiC-ACT version 021121, FIMO version 5.1.1, STAR version 2.3.0 and Metascape version 3.5 (https://metascape.org/
gp/index.html#/main/step1), in the data analysis. SnapHiC version 0.1.0 code is available at https://github.com/HuMingLab/snapHiC.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The scHi-C data from mES cells was downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94489.  The sn-m3C-seq data from human 
prefrontal cortex was downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130711. The ATAC-seq and H3K27ac ChIP-seq data from human 
astrocytes, oligodendrocytes, microglia and neurons was downloaded from dbGap (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs001373.v2.p2). The RNA-seq data from human astrocytes, oligodendrocytes, microglia and neurons was downloaded from https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73721. The signal tracks of CTCF and H3K27ac ChIP-seq data for mES cells (Extended Data Fig. 4a) were 
downloaded from the ENCODE portal (https://www.encodeproject.org/) with the following identifiers: ENCFF230RNU (for H3K27ac) and ENCFF069PTO (for CTCF). 
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The hg19 and mm19 reference genomes were downloaded from https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz and https://
hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/mm10.fa.gz, respectively. The full lists of interactions/loops identified by different methods are provided as 
supplementary source data. Source data are provided with this paper.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The performance of SnapHiC was tested on single cell Hi-C data from mES cells and 14 different cell types from human brain, which was 
sufficient to demonstrate the robustness of SnapHiC algorithm. 

Data exclusions We observed a bi-modal distribution of contacts for each cell in both Nagano et al. 2017 and Lee et al. 2019 studies. We removed cells with 
low contacts (<150,000) per cell, and only kept cells with high contacts (>=150,000) per cell for single cell Hi-C loop calling analysis. Such data 
exclusion criterion is pre-established before downstream analysis.

Replication Our study focus on single cell Hi-C data analysis and each cell can only be measured once.

Randomization When applying our SnapHiC method on different number of single cells,  we randomly selected the cells to be analyzed.

Blinding Since we used the publicly available single cell Hi-C data generated by Nagano et al. 2017 study (PMID: 28682332, GSE94489) and Lee et al. 
2019 study (PMID: 31501549, GSE130711), blinding was not relavant to our study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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