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INTRODUCTION: White matter in the human
brain serves a critical role in organizing distrib-
uted neural networks. Diffusionmagnetic reso-
nance imaging (dMRI) has enabled the study of
whitematter invivo, showing that interindividual
variations in white matter microstructure are
associated with a wide variety of clinical out-
comes. Although white matter differences in
general population cohorts are known to be heri-
table, few common genetic variants influencing
whitemattermicrostructure have been identified.

RATIONALE: To identify genetic variants influ-
encing white matter microstructure, we con-
ducted a genome-wide association study (GWAS)
of dMRI data from 43,802 individuals across

five data resources. We analyzed five major
diffusion tensor imaging (DTI) model–derived
parameters along 21 cerebral white matter
tracts.

RESULTS: In the discovery GWAS with 34,024
individuals of British ancestry, we replicated
42 of the 44 genomic regions discovered in
the largest previous GWAS and identified 109
additional regions associated with white mat-
termicrostructure (P< 2.3 × 10−10, adjusted for
the number of phenotypes studied). These
results indicate strong polygenic influences on
white matter microstructure. Of the 151 re-
gions, 52 passed the Bonferroni significance
level (P < 5 × 10−5) in our analysis of nine

independent validation datasets, including
four with subjects of non-European ancestry.
On average, common genetic variants ex-

plained 41% (standard error = 2%) of the
variation inwhitematter microstructure. The
151 identified genomic regions can explain
32.3% of heritability for white matter micro-
structure, whereas the 44 previously identi-
fied genomic regions can only explain 11.7%
of heritability. As a biological validation of
our GWAS findings, we observed heritabil-
ity enrichment within regulatory elements
active in oligodendrocytes and other glia,
whereas no enrichment was observed in neu-
rons. These results are expected and suggest
that genetic variation leads to changes in white
matter microstructure by affecting gene regu-
lation in glia.
We observed genetic correlations and co-

localizations of white matter microstructure
with a wide range of brain-related complex
traits and diseases, such as cognitive functions,
cardiovascular risk factors, as well as various
neurological and psychiatric diseases. For
example, of the 25 reported genetic risk regions
of glioma, 11 were also associated with white
matter microstructure, which illustrates the
close genetic relationship between glioma
and white matter integrity. Additionally, we
found that 14 white matter microstructure–
associated genes (P < 1.2 × 10−8) were targets
for 79 commonly used nervous system drugs,
such as antipsychotics, antidepressants, anti-
convulsants, and drugs for Parkinson’s dis-
ease and dementia.

CONCLUSION: This large-scale study of dMRI
scans from43,802 subjects improved our under-
standing of the highly polygenic genetic archi-
tecture of human brain white matter tracts. We
identified 151 genomic regions associated with
white matter microstructure. The GWAS find-
ingswere supported by enrichmentswithin cell
types that make up white matter microstruc-
ture. Moreover, we uncovered genetic relation-
ships between white matter and various clinical
endpoints, such as stroke, major depressive
disorder, schizophrenia, and attention deficit
hyperactivity disorder. The targets of many
drugs commonly used for disabling cognitive
disorders have genetic associations with white
matter, which suggests that the neurophar-
macology of many disorders can potentially
be improved by studying how these medi-
cations work in the brain white matter.▪
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Identifying genetic variants influencing human brain white matter microstructure. (Top left) Quantifying
the microstructure in white matter tracts using DTI models. (Bottom left) Genomic locations of common genetic
variants associated with white matter microstructure. (Top right) Selected genetic correlations between
white matter microstructure and brain disorders (stroke and major depressive disorder). (Bottom right)
Partitioned heritability enrichment analysis in brain cell types. FDR, false discovery rate.
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Brain regions communicate with each other through tracts of myelinated axons, commonly referred to as
white matter. We identified common genetic variants influencing white matter microstructure using
diffusion magnetic resonance imaging of 43,802 individuals. Genome-wide association analysis identified
109 associated loci, 30 of which were detected by tract-specific functional principal components
analysis. A number of loci colocalized with brain diseases, such as glioma and stroke. Genetic
correlations were observed between white matter microstructure and 57 complex traits and diseases.
Common variants associated with white matter microstructure altered the function of regulatory
elements in glial cells, particularly oligodendrocytes. This large-scale tract-specific study advances the
understanding of the genetic architecture of white matter and its genetic links to a wide spectrum of
clinical outcomes.

B
rain functions depend on effective com-
munications across brain regions (1).
White matter makes up roughly half of
the human brain and contains most of
the brain’s long-range communication

pathways (2). White matter tracts build a com-
plex network of structural connections (3, 4).
Cerebral white matter tracts form connections
among cerebral cortical areas and between
cortical and subcortical regions (5, 6). Aspects
of this connectivity can be estimated through
measurements of cellular microstructure (7).
Evidence from neuroscience has further sug-
gested that cerebralwhitemattermicrostructure
may underpin brain function and dysfunction
and that connectivity differences are relevant
to a wide variety of neurological and psychiat-

ric disorders, such as attention deficit hyper-
activity disorder (ADHD) (8), major depressive
disorder (MDD) (9), schizophrenia (10), and
Alzheimer’s disease (11). White matter micro-
structural differences and abnormalities can
be captured in vivo by diffusion magnetic
resonance imaging (dMRI). Using dMRI data,
microstructural connectivity can be quantified
in diffusion tensor imaging (DTI) models (12)
and measured by several DTI-derived metrics,
including fractional anisotropy (FA), mean dif-
fusivity (MD), axial diffusivity (AD), radial dif-
fusivity (RD), and mode of anisotropy (MO)
(Fig. 1A). Among these, FA serves as the primary
metric of interest in many studies (13). It is a
robust measure of overall integrity and direc-
tionality and is highly sensitive to general con-
nectivity changes. On the other hand,MD, AD,
and RD directly quantify the absolute magni-
tude of directionalities. They are more sensi-
tive to specific types of microstructural changes
and have also been used in a variety of clinical
studies (14). Additionally, MO can characterize
the anisotropy type and describe whether the
shape of the diffusion tensor is more linear or
planar (15).
White matter differences in general popu-

lation cohorts are under strong genetic control.
Both family- and population-based studies
have reported that DTI measurements of
white matter microstructure have generally
high heritability, with estimates varying across
different age groups (16) and tracts (17). For
example, heritability estimates of tract-averaged
FA ranged from 53 to 90% in a twin study of the
Human Connectome Project (HCP) (18). Recent
genome-wide association studies (GWAS) of
the UK Biobank (UKB) reported an average
single-nucleotide polymorphism (SNP)–based

heritability of 48.7% across different tracts (19).
Several GWAS (17, 19–23) have been performed
to identify loci associated with interindividual
variation in white matter microstructure, but
these studies have shared at least two major
limitations: (i) sample size and (ii) spatial speci-
ficity. First, the largest currently published
GWAS of dMRI phenotypes had a sample size
of 17,706 individuals (19). Similar to other brain-
related traits, white matter has a complex and
extremely polygenic genetic architecture (19).
Large sample size is therefore essential to boost
GWAS power to identify many common risk
variants with small effect sizes and to uncover
the shared genetic influences with other com-
plex traits. Second, previous GWAS mainly
focused on global dMRImeasures of thewhole
brain (20, 21) or tract-averaged (mean) values
(17, 19). Global and tract-averaged measures
can capture the largest variations in white
matter while reducing the burden to test mul-
tiple neuroimaging traits, which is particularly
suitable for GWAS with limited sample sizes;
however, these measures may lose informa-
tion becausemicrostructural differences and
changes may not have a uniformly consistent
pattern across the whole tract. Heterogeneous
variation patterns typically exist within voxel-
wise DTI maps of the three-dimensional (3D)
tract curve, which may be more relevant to
specific underlying biological processes. For
example, a previous study found that the
association between bipolar disorder and FA
is specific to one given segment of the anterior
limb of the internal capsule tract connecting
the prefrontal cortex with the thalamus and
brainstem (24). Because of these limitations,
a large number of genetic factors influencing
white matter may still be undiscovered. Con-
sequently, with few exceptions [e.g., stroke
(20) and cognitive traits (19)], the shared
genetic influences between white matter and
other complex traits are unknown. Uncover-
ing these potential genetic links may identify
important brain regions that are involved in
clinical outcomes, especially for brain disorders.
To overcome these limitations, we collected

individual-level dMRI data from five data
resources: UKB (25); Adolescent Brain Cog-
nitive Development (ABCD) (26); HCP (27);
Pediatric Imaging, Neurocognition, and Genetics
(PING) (28); and Philadelphia Neurodevelop-
mental Cohort (PNC) (29). We harmonized
image processing by using the ENIGMA-DTI
pipeline (30, 31) and obtained voxel-wise DTI
maps for 43,802 subjects (after quality con-
trols), including 36,624 from UKB. We mainly
focused on 21 predefined cerebral white matter
tracts (Fig. 1B) and generated two groups of
phenotypes (19). The first group contains 110
tract-averaged parameters for FA, AD, MD,
MO, and RD in 21 tracts and across all white
matter tracts (5 × 22). For the second group,
we applied functional principal components
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analysis (FPCA) (32) to generate 105 tract-
specific principal components (PCs) for FA
by taking the top five PCs of the voxel-wisemap
within each tract. FPCA is a well-established
approach in neuroimaging and functional
data analysis (33). In DTI models, FPCA can
characterize the strongest variation compo-
nents of FA within each tract, which are
expected to provide more microstructural
details about axonal organization and mye-
lination omitted by tract-averaged values while

relieving multiple testing burdens. These PCs
may represent FA changes that are more rele-
vant to specific clinical outcomes. We used the
UKB imaging data released up through 2018
(referred to as UKB phases 1 and 2 hereafter;
n = 17,706 individuals) to generate the load-
ings of FPCA and applied them to compute the
FA PCs in other independent cohorts. Figure
1C illustrates the difference between tract-
averaged FA and tract-specific FA PCs for the
corpus callosum, which is the largest white

matter tract in the human brain. The first FA
PC performed similarly to (but slightly better
than) the tract-averaged FA, and the other top-
ranked FA PCs (which are orthogonal to the
first FA PC; Fig. 1D) further captured FA
variations in subfields of the corpus callosum.
We then performed a GWAS for these 215
phenotypes to discover the genetic architecture
of white matter and explore the genetic links to
a plethora of clinical endpoints in different trait
domains. Our GWAS results have been made
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Fig. 1. Illustration of white mat-
ter traits and DTI parameters.
(A) Schematic representation of
the five DTI-derived metrics. Axial
diffusivity (AD) is the diffusion
along the long axis (l1), radial
diffusivity (RD) is the diffusion of
two small axes (average of l2 and
l3), and mean diffusivity (MD) is
the average diffusion regardless of
direction (mean of l1, l2, and l3).
Fractional anisotropy (FA) and
mode of anisotropy (MO) are two
more complicated measures of
general directionality. (B) Annota-
tion of the 21 white matter tracts
in the human brain. (C) Comparison
between tract mean FA and
tract-specific FA PCs on the corpus
callosum tract [(CC), including
the genu of corpus callosum
(GCC), body of corpus callosum
(BCC), and splenium of corpus
callosum (SCC)]. (I) illustrates an
example skeletonized FA map
within the corpus callosum tract
after intersubject centralization,
and (II) displays the residual FA
map after removing the within-
subject tract mean FA. In (III) and
(IV), instead of removing the
within-subject mean as in (II), we
removed the top one and five FA
PCs, respectively. (V) illustrates
the standard deviation across the
voxels in a residual FA map for
each subject in the UKB (n =
36,624). The standard deviations
are similar between the residual
FA maps after removing tract
mean FA [in (II)] and the first FA
PC [in (III)], which suggests that
this PC mainly accounts for the
mean FA. Comparing (II) with (IV),
the other four FA PCs can capture
more spatial variations that are
ignored by the tract mean FA and
thus reduce the standard devia-
tions of residuals in (V). (D) Correlation between the DTI parameters among GCC, BCC, and SCC tracts. Ten parameters are generated in each tract,
including the mean FA, mean MD, mean AD, mean RD, and mean MO, as well as the top five FA PCs. The five FA PCs are orthogonal to each other, and
the first FA PC can be highly correlated with mean FA.
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publicly available and can be browsed through
our Brain Imaging Genetics Knowledge Portal
(BIG-KP) at https://bigkp.org/.

GWAS discovery and validation for
215 DTI parameters

Our heritability analysis utilized data from
UKB subjects of British ancestry (n = 34,024).
All of the 110 DTI mean parameters had sig-
nificant SNP heritability (34) (h2) after
Bonferroni adjustment (P < 4.1 × 10−25; Fig. 2A
and table S1). The h2 estimates varied from 22.4
to 66.5% (mean h2 = 47.6%), which were com-
parable with previous results (17, 19). For the
105 tract-specific FA PC parameters, we found

that 102 had significant h2 (h2 range = 8.9 to
67.3%; mean h2 = 34.9%; P < 6.5 × 10−6). For
example, all of the top five PCs in the external
capsule, superior longitudinal fasciculus, and
splenium of the corpus callosum had moder-
ate to high heritability (h2 range = 30.6 to
67.3%; P < 2.3 × 10−47). The third PC of the cor-
ticospinal tract (5.5%), fifth PC of the cingulum
hippocampus (4.3%), and fourth PC of the
superior fronto-occipital fasciculus (3.6%) had
nominally significant h2 estimates (P < 0.03),
which became insignificant after Bonferroni
adjustment. To examine the robustness of
heritability estimates of the 105 FA PCs, we
reran the heritability analysis separately using

the UKB phases 1 and 2 data (n = 17,706) and
the newly released independent data from
2020 (named the UKB phase 3; n = 15,918,
removing the relatives of subjects in the early
released dataset). The correlation between the
two sets of heritability estimates was 0.92 (mean
h2 = 34.6 versus 33.6%; two-sample t test, P =
0.64; table S2), which suggests that the FA PCs
are heritable and have consistent heritability
in independent cohorts. Overall, heritability
analysis showed that themajormicrostructural
variations of voxel-wise FA maps captured by
unconventional tract-specific FA PCs are under
genetic control. Those heritable FA variation
patternsmay have higher power thanmean FA
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Fig. 2. SNP heritability and the
associated genomic regions of
DTI parameters. (A) SNP
heritability of 215 DTI parameters,
including 110 mean parameters
(left panel, mean values of AD, RD,
MD, FA, and MO in 21 tracts and
the whole brain; 5 × 22) and 105
FA PCs (right panel, top five FA
PCs of 21 tracts; 5 × 21). Average
indicates the global average
across 21 tracts; full names of the
21 white matter tracts can be
found in Fig. 1B. (B) Ideogram of
genomic regions influencing DTI
parameters (P < 2.3 × 10−10),
including 42 previously identified
regions and 109 additional regions
identified in the present study.
The colors represent the 21 white
matter tracts (and the global
average). Each signal point indi-
cates that at least one of the
10 DTI parameters (five mean
parameters and five FA PCs) of
this tract is associated with the
genomic region. (C) Proportion of
SNP heritability of the 215 DTI
parameters that can be explained
by the 44 genomic regions
identified in the previous study
(11.7%) and 151 regions identified
in the present study (32.3%).
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to identify the shared genetic influences with
other complex traits and clinical outcomes.
We used a multiple-stage design in our

GWAS of the 215 DTI parameters (fig. S1).
First, we checked the robustness of GWAS
results within the UKB British cohort. Specif-
ically, GWASwere performed separately in two
independent datasets: the UKB phases 1 and 2
data (n = 17,706) and the independent UKB
phase 3 data (n = 15,918). We calculated the
replication slope between the two set of GWAS
results, which was the correlation of the stan-
dardized effect size of variants estimated from
two independent GWAS (35). This analysis was
restricted to top (P < 1 × 10−6) independent
lead variants after linkage disequilibrium (LD)–
based clumping [window size, 250 kilobases; LD
coefficient of determination (R2) = 0.01]. The
replication slope was 0.8 (standard error =
0.01; P < 2 × 10−16), indicating strong similarity
between these top variant effect size estimates.
In addition, for each of the 215 DTI parame-
ters, we used LD score regression (LDSC) (36)
to calculate genetic correlation (gc) between
DTI measurements from the two GWAS. The
mean gc estimate was 1.01 (standard error =
0.17; table S3) across these parameters, 209 of
which were significant after adjusting for mul-
tiple comparisons by using the Benjamini-
Hochberg procedure to control false discovery
rate (FDR) at the 5% level. Genetic corre-
lation estimates near 1 indicate a consistent
genetic basis for these phenotypes measured
in different cohorts. These findings indicate
that GWAS results of DTI parameters are
highly consistent within the UKB British
cohort.
Second, we performed GWAS for these 215

DTI parameters using the combinedUKBdata
of British ancestry (n = 34,024). AllManhattan
and quantile-quantile plots can be browsed
through our BIG-KP server (https://bigkp.org/).
The LDSC intercepts (37) were close to one,
which suggests that there was no genomic in-
flation of test statistics as a result of confound-
ing factors (mean intercept = 1.008; standard
error = 0.008; table S4). At a stringent sig-
nificance level of 2.3 × 10−10 (5 × 10−8/215, ad-
ditionally adjusted for the 215 phenotypes
studied), FUMA (38) identified 539 independ-
ent significant lead variants (LD R2 < 0.1) in-
volved in 1312 significant associations with 173
DTI parameters (106 mean and 67 PC param-
eters; table S5). These variant-level associations
were further summarized into 996 significant
locus-trait associations (table S6). Genetic
variants had broad effects across all of the
21 white matter tracts. We replicated 42 of the
44 genomic regions discovered in the largest
previous GWAS (19) and identified 109 addi-
tional regions associated with DTI parameters
(Fig. 2B). On average, the 151 (42 + 109) sig-
nificant genomic regions can explain 32.3% of
SNP heritability for the 215 DTI parameters,

whereas the 44 previously identified genomic
regions can only explain 11.7% of SNP herit-
ability (Fig. 2C and table S7). Of the 109
genomic regions we identified, 30 were only
detected by FA PC parameters. For example,
the third FA PC of the posterior thalamic ra-
diation detected three additional regions (fig.
S2). Our results illuminate the broad genetic
control of white matter microstructural differ-
ences and the contribution of tract-specific FA
PCs in identifying genetic variants associated
with white matter tracts. The genetic effects
are spread across a large number of genomic
regions, consistent with the observed poly-
genic genetic architecture of many brain-related
traits (39).
Next, to replicate our results from the UKB

British GWAS, we performed additional anal-
ysis in nine independent validation datasets.
GWAS was separately performed on five
datasets consisting of individuals of European
ancestry, including the UKB White but non-
British (UKBW, n = 1938), ABCD European
(ABCDE, n = 3821), HCP (n = 334), PING (n =
461), and PNC (n = 537), and on four non-
European validation datasets: the UKB Asian
(UKBA, n= 435), UKBBlack (UKBBL, n= 227),
ABCD Hispanic (ABCDH, n = 768), and ABCD
African American (ABCDA, n = 1257). For each
DTI parameter, the genetic correlation between
discovery GWAS and the meta-analyzed Euro-
pean validation GWAS (total n = 7091) was
estimated by LDSC (36). The mean genetic
correlation estimate was 0.93 (standard error =
0.36) across the 215 DTI parameters, 136 of
which were significant at the FDR 5% level
(table S8). We then checked whether the
locus-trait associations detected in UKB Brit-
ish GWAS can be replicated in these validation
datasets. For the 996 significant associations,
203 (20.4%; in 50 genomic regions) passed the
5 × 10−5 (0.05/996) Bonferroni significance level
in the meta-analyzed European validation
GWAS, and 532 (53.4%; in 92 regions) were
significant at the 1 × 10−3 level. We also meta-
analyzed the four non-European GWAS (total
n = 2687) and found that 64 associations
(6.4%; in 19 regions) passed the Bonferroni
significance level, and 367 (36.8%; in 75 regions)
were significant at the 1 × 10−3 level. Moreover,
we performed a thirdmeta-analysis to combine
all of the nine validation datasets, after which
the number of replicated associations moved
up to 258 (25.9%; in 52 regions) and 678 (68%;
in 115 regions) at Bonferroni and the 1 × 10−3

significance levels, respectively (table S9). Over-
all, our results suggest that the associated gen-
etic loci discovered in the UKB British GWAS
can be strongly validated in independent studies,
despite the fact that these studies may use
different cohorts and/orMRI scanners. There-
fore, we performed a final meta-analysis to
combine all of these datasets (n=43,802). At the
2.3 × 10−10 significance level, themeta-analyzed

GWASdetected 193 significant genomic regions,
including 144 (95.4%) of the 151 regions identi-
fied in the UKB British GWAS (table S10).
Additionally, we tested for replication by

using polygenic risk scores (PRS) (40) derived
from the UKB British GWAS. At the FDR 5%
level (215 × 5 tests), the mean number of sig-
nificant PRS in the five European validation
GWAS datasets was 201 (range = 193 to 210;
table S11). Almost all (213/215) DTI parame-
ters had significant PRS in at least one dataset,
and 173 had significant PRS in all of them,
which demonstrates the high generalizability
of our discovery GWAS results. Across the five
validation datasets, the mean additional vari-
ance that can be explained by PRS (incremen-
tal R2, adjusting for the effects of sex, age, and
top 10 genetic PCs) was 1.8% (range = 0.6 to
4%) for the 173 consistently significant DTI
parameters. The largest R2 was on the fourth
PC of the external capsule (range = 1.8 to 5.3%;
P range = 1.2 × 10−19 to 5.6 × 10−12). Finally, we
constructed PRS on four non-European valida-
tion datasets. At the FDR 5% level, the number
of significant PRS decreased to 172, 46, 144, and
147 in UKBA, UKBBL, ABCDH, and ABCDA,
respectively (table S12). These findings show
that the UKB British GWAS results have high
generalizability in European cohorts, but the
generalizability is reduced in cross-population
applications, which highlights the importance
of recruiting sufficient samples from global
diverse populations in future genetic discovery
of white matter.

Concordance with previous GWAS

We carried out association lookups for indepen-
dent significant variants (38) (P < 2.3 × 10−10;
and variants within LD, R2 ≥ 0.6) detected in
our UKB British discovery GWAS. In the
NHGRI-EBI GWAS catalog (41), white matter
microstructure had shared genetic influences
with a wide range of other complex traits in
different trait domains, including brain struc-
tures, glioma [glioblastoma (GBM) and non-
GBM tumors], stroke, vascular risk factors (such
as diabetes, high blood pressure, obesity, and
smoking), cognitive traits, neurological disorders
(such as Alzheimer’s disease and Parkinson’s
disease), psychiatric disorders [such as schizo-
phrenia and autism spectrumdisorder (ASD)],
psychological traits (such as neuroticism and
well-being spectrum), sleep, anthropometric
measurements, bone mineral density, and edu-
cational attainment. These results are summar-
ized in table S13.
Our results tagged 17 genomic regions that

had been associated with brain structures,
such as 3q28 and 17q21.31 with intracranial
volume (42); 22q13.1, 10p12.31, 16q24.2, 3q28,
and 12q23.3 with lateral ventricular volume
(43); 5q14.3, 6q25.1, 13q34, 2p16.1, 17q25.1,
10q24.33, and 2q33.2 withwhitematter hyper-
intensity (20, 44); 10q26.13, 14q23.1, and 5q12.3
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with hippocampal subfield volumes (45); and
15q14 with brain imaging measurements (17).
Moreover, we observed colocalizations with
glioma in 9p21.3, 22q13.1, 16p13.3, 7p11.2, and
8q24.21 (46) (Fig. 3A and figs. S3 to S6). These
colocalizationswere detected bymultiplemean
parameters and FA PCs. To illustrate the ge-

netic effect pattern in spatial brain maps, we
took the lead index variants from the five
glioma-associated regions and performed
target-variant analysis on voxel-wise FA and
MD data. After Bonferroni adjustment (P <
8.5 × 10−8), glioma risk variants were associated
with multiple white matter tracts, including

the corpus callosum, internal capsule, superior
longitudinal fasciculus, anterior corona radi-
ata, and sagittal stratum (Fig. 3B and fig. S7A).
Reduced microstructure integrity and altered
brain structural connectivity have been ob-
served in glioma (47). Early invasive glioma
growth along white matter tracts is one of the
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Fig. 3. Selected genetic loci that were associated with both DTI parameters
and brain diseases. (A) In 9p21.3, we observed colocalization (LD R2 ≥ 0.6)
between the mean FA of the splenium of corpus callosum (SCC FA; index variant
rs2069418) and glioma (both GBM and non-GBM tumors; index variant
rs634537). chr9, chromosome 9; mb, megabase. (B) We illustrate the voxel-wise
genetic effects of five colocalized glioma GWAS index variants (rs634537,
rs2235573, rs55705857, rs3751667, and rs723527) on FA. The genetic effects
were obtained by performing voxel-wise target-variant analysis for the five

colocalized glioma significant variants. We display the voxels passing the
Bonferroni significant level (P < 8.5 × 10−8) in the voxel-wise target-variant
analysis. White matter tracts that had significant voxels are labeled in each map.
(C) In 10q24.33, we observe colocalization between the mean AD of the superior
fronto-occipital fasciculus (SFO AD; index variant rs1570221) and stroke
(index variant rs2295786). (D) We illustrate the voxel-wise genetic effects of
three colocalized stroke GWAS index variants (rs2295786, rs7859727, and
rs18818651) on MD.

RESEARCH | RESEARCH ARTICLE
on June 17, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


main challenges in treating glioma (48). The
corpus callosum serves as a hub between
hemispheres, and glial cellsmaymigrate along
the corpus callosum during glioma cell infil-
tration (49). Additionally, three regions were
colocalized with stroke, including 10q24.33,
9p21.3, and 2q33.2 (50) (Fig. 3, C and D; fig.
S7B; and fig. S8). Stroke risk variants from
these regions had genetic effects in the corpus
callosum, superior fronto-occipital fasciculus,
corona radiata, internal capsule, and external
capsule. Ischemic white matter disorganization
and the associated neuropsychiatric disorders
(such as depression) have been frequently re-
ported after stroke (51). White matter integrity
is closely related to the pathologic stages of
stroke and can predict the outcome of stroke
recovery. For example, the MD of ischemic
regions stays reduced during the acute phase
of stroke, then increases over time to become

pseudonormalized in the later-subacute phase,
and continues rising in the chronic phase (52).
Moreover, these three colocalized regions
were also associated with cardiovascular dis-
ease, type 2 diabetes (T2D), obesity, and high
blood pressure, which suggests that the ge-
netic relationship betweenwhitemattermicro-
structure and stroke may be partially mediated
through vascular risk factors.
The 17q21.31 inversion region and the

6p22.1 and 6p22.2 in the extended major histo-
compatibility complex (MHC) region have com-
plicated LD patterns. In these regions, white
matter–associated variants colocalized with risk
variants of many brain disorders and cognition,
such as schizophrenia (53), Alzheimer’s disease
(54), corticobasal degeneration (55), Parkinson’s
disease (56), progressive supranuclear palsy (55),
ASD (57), alcohol use disorder (58), depression
(59), educational attainment (60), and cogni-

tive ability (61) (figs. S9 to S11). Colocalizations
were also found in 3q28 with Alzheimer’s
disease biomarkers (fig. S12), in 3p21.31 with
intelligence (fig. S13), in 3p22.1 with amyo-
trophic lateral sclerosis (ALS), and in 1q23.2
with multiple sclerosis. Many colocalized loci
of cognitive traits and educational attainment
can only be detected by FA PCs. We also ob-
served colocalizations with psychological traits
[such as neuroticism (62), well-being spectrum
(63), and general risk tolerance (64)], anthro-
pometric traits [such as bodymass index (BMI)
(35)], smoking and drinking (65), and sleep
[including sleep duration (66) and chronotype
(67)]. Overall, genetic linkswere found between
white matter microstructure and a wide spec-
trum of clinical outcomes and complex traits.
Integrating the GWAS of white matter with
these clinical outcomes may help us to under-
stand the underlying mechanisms that lead
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Fig. 4. Selected pairwise
genetic correlations between
DTI parameters of white matter
tracts and brain disorders and
cognitive functions. (A) The
asterisks (for FA PCs) and
daggers (for mean parameters)
highlight significant genetic corre-
lations after controlling the FDR at
5% level. The y axis lists the DTI
parameters of white matter tracts
and the x axis provides the names
of brain-related traits and disor-
ders. The colors represent genetic
correlations (gc). PC, principal
component of FA; SCZ,
schizophrenia. (B to E) Location of
the white matter tracts whose DTI
parameters were genetically
correlated with stroke (any sub-
type) (B), MDD (C), intelligence
(D), and reaction time (E). The
colors describe different white
matter tracts.
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to the changes in brain structural connectivity
and risk of brain disorders.

An atlas of genetic correlations with other
complex traits

Because of the shared loci associated with
both white matter microstructure and other
complex traits, we systematically examined
their pairwise genetic correlations by using
publicly available summary-level data of 70
other complex traits through LDSC (table S14).
Wemainly focused on brain-related complex
traits with large GWAS sample sizes, such as
neurological and psychiatric disorders, cog-
nitive traits, and cardiovascular risk factors.
There were 727 significant pairs between 57
complex traits and 171 DTI parameters at the
FDR 5% level (70 × 215 tests; P range = 3 × 10−13

to 2.4 × 10−3; table S15), 41% (298/727) of which
were detected by PC parameters. We found
thatDTI parameterswerewidely correlatedwith
brain disorders (such as stroke, MDD, ADHD,
schizophrenia, ALS, Alzheimer’s disease, and
ASD), cognition, educational attainment, chro-
notype, insomnia, neuroticism, risk tolerance,
automobile speeding, high blood pressure, T2D,
coronary artery disease, BMI, white matter
hyperintensities, drinking, smoking, manual
occupation, and lung function (figs. S14 to S16).
We replicated previously reported genetic

correlationswith cognitive or educational traits
(19), drinking behavior (19), stroke (17, 20), and
MDD (19, 20), and more tract-specific details
were revealed. For example, stroke (any sub-
type) and ischemic stroke subtypes (50) (large
artery stroke, cardioembolic stroke, and small
vessel stroke) showed broad genetic correla-
tions with the corpus callosum, corona radiata,
internal capsule, external capsule, superior
longitudinal fasciculus, superior fronto-occipital
fasciculus, and uncinate fasciculus (|gc| range =
0.3 to 0.42; P range = 3.2 × 10−9 to 2.4 × 10−3;
Fig. 4, A and B), matching previous findings
in the literature (68, 69). We further observed
that the small vessel stroke subtype had speci-
fic, but stronger genetic correlations with the
anterior limb of the internal capsule and the
superior fronto-occipital fasciculus (|gc| range =
0.56 to 0.69; P range = 3.7 × 10−4 to 1.2 × 10−3).
By contrast, there were no significant genetic
correlations detected for large artery and car-
dioembolic strokes, which demonstrates the
potentiallymuch stronger genetic links between
white matter tracts and the small vessel stroke
subtype. This finding is consistent with previous
observations that white matter changes are as-
sociated with small vessel strokes but not with
non–small vessel events (70).
In addition, we observed genetic correla-

tions between MDD and the corpus callosum,
superior longitudinal fasciculus, internal cap-
sule, and cingulum cingulate gyrus (|gc| range =
0.16 to 0.19; P range = 1.8 × 10−7 to 2.1 × 10−3;
Fig. 4C). Anatomical deficits in the corpus

callosum are related to interhemispheric dis-
connections involved in the pathology ofMDD
(71). Lower FA in the superior longitudinal
fasciculus, internal capsule, and cingulum has
also been reported inpatientswithMDD(14, 72).
For intelligence and reaction times, we found
genetic correlations with the FA of multiple
white matter tracts, such as the internal cap-
sule, corpus callosum, superior fronto-occipital
fasciculus, corona radiata, external capsule,
fornix, and superior longitudinal fasciculus
(|gc| range = 0.15 to 0.18; P range = 3 × 10−9 to
2.2 × 10−3; Fig. 4, D and E). Higher FA can
reduce interhemispheric transfer time and in-
crease information processing speed, result-
ing inmore efficient cognitive functioning and
faster reaction (73).
Moreover, many genetic correlations were

uncovered for brain disorders, including
schizophrenia, ADHD, ALS, Alzheimer’s dis-
ease, and ASD. For example, significant genetic
correlations were found between the posterior
limb of the internal capsule and Alzheimer’s
disease, the external capsule and ADHD, the
fornix stria terminalis and ALS, the superior
longitudinal fasciculus and schizophrenia, and
the body of corpus callosum and ASD (|gc| >
0.16; P < 2 × 10−3). Alterations of white matter
integrity have been consistently observed in
the corpus callosum among ASD patients (74).
Fornix degeneration is involved in the pathol-
ogy pathway of memory impairment in ALS,
and the external capsule is related to ADHD
symptoms (75). Additionally, white matter
changes in the posterior limb of the internal
capsule have been observed in people with
Alzheimer’s disease (76). For schizophrenia,
case-control differences of FA were frequent-
ly reported in the superior longitudinal
fasciculus (77).
We also found correlations for nonbrain

traits, many of which were risk factors for
stroke (P < 2.4 × 10−3). For example, high
blood pressure was genetically correlated with
many white matter tracts, including the supe-
rior longitudinal fasciculus, internal capsule,
superior fronto-occipital fasciculus, uncinate
fasciculus, and external capsule (P range =
5.7 × 10−11 to 2.3 × 10−3). Hypertension can
result in vascular stiffness and impaired cere-
bral perfusion, leading tomicrostructural white
matter disruption (78) and stroke. We also
observed strong genetic correlationswithwhite
matter hyperintensities (P range = 3.6 × 10−12

to 2.3 × 10−3), which have been implicated in
the connectionbetween stroke andwhitematter
(79). Additionally, we found that BMI, bone
mineral density, smoking, and T2D were all
genetically correlated with the corticospinal
tract (P range = 3 × 10−13 to 2.3 × 10−3). The
corticospinal tract controls primary motor
activity and is known to be closely related to
stroke (80). Higher BMI, smoking, and T2D
are risk factors for stroke and are associated

with white matter changes (81, 82). Low
bone mineral density may also have correla-
tion with white matter changes that contribute
to stroke (83). Moreover, genetic correlations
were observed between drinking and the cor-
pus callosum (P range = 6 × 10−5 to 2.4 × 10−3),
whose atrophy is frequently observed in people
with alcohol use disorders (84).
Next, we explored the genetic correlations

between 215 DTI parameters and 101 regional
brain volumes (85). After Bonferroni adjust-
ment, there were 678 significant pairs between
132 DTI parameters and 62 regional brain
volumes (215 × 101 tests; |gc| range = 0.18 to
0.85; P < 2.2 × 10−6; table S16). These results
suggest the existence of widespread genetic
overlaps between basic brain morphology and
structural connectivity (figs. S17 and S18). Nota-
bly,most of the significant genetic correlations
were observed betweenwhitematter tracts and
their neighboring brain regions, which indi-
cates the strong spatial colocalization of genetic
covariation.
For example, lateral ventricle volumes were

genetically correlated with the FA of white
matter tracts surrounding the lateral ventricles,
including the fornix, corona radiata, corpus
callosum, posterior thalamic radiation, superior
fronto-occipital fasciculus, internal capsule, and
external capsule (Fig. 5, A and B). Both ven-
tricular enlargement and altered white matter
integrity were biomarkers of aging (86, 87)
and brain disorders, such as normal pressure
hydrocephalus (88, 89), Alzheimer’s disease
(90, 91), and Parkinson’s disease (87, 92). Ad-
ditionally, the FA of the corpus callosum, corona
radiata, and posterior thalamic radiation had
genetic correlationswith the volumes of nearby
cerebral cortex regions, such as the posterior
cingulate, rostral anterior cingulate, lingual,
isthmus cingulate, paracentral, and precuneus
(Fig. 5C). These cortex regions have connec-
tions with many other brain regions through
white matter tracts to support a wide range of
cognitive functions. For example, the cingulate
gyrus overlies the corpus callosum and serves
as a neural hub among emotion, action, and
memory (93), and the corona radiata consists
of prominent projection fibers carrying infor-
mation between the cerebral cortex and brain-
stem.Moreover, putamen and pallidum volumes
were correlated with the FA of the internal
capsule, external capsule, fornix, superior fronto-
occipital fasciculus, and corona radiata. The
putamen and pallidum lie on the lateral aspect
of the internal capsule and separate the in-
ternal capsule from the external capsule (Fig.
5D), all of which are critical for human sensory
motor functions (94). Similarly, volumes of other
subcortical structures (such as the thalamus
proper, accumbens area, and caudate) and the
brainstem also had genetic correlations with
adjacent white matter tracts, especially the
corona radiata (fig. S19).
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Gene-level analysis
We carried out MAGMA (95) gene-based as-
sociation analysis for the 215 DTI parameters
using our discovery GWAS summary statis-
tics. There were 2772 significant gene-level
associations (P < 1.2 × 10−8; adjusted for 215
phenotypes) between 487 genes and 178 DTI
parameters (table S17), where 96 of the as-
sociated genes could only be discovered by PC
parameters. We replicated 101 of 112 MAGMA
genes reported in (19) and some other white
matter–associated genes reported in previ-
ous studies (20–22, 44), such as SH3PXD2A
(10q24.33),NBEAL1 (2q33.2), TRIM47 (17q25.1),
VCAN (5q14.3), ALDH2 (12q24.12), PLEKHG1
(6q25.1),GNA12 (7p22.2), andGNA13 (17q24.1).
Many of our MAGMA significant genes have
been linked to other complex traits and brain
disease (table S18). For example, EGFR (7p11.2),
OBFC1 (10q24.33), LMF1 (16p13.3), SLC16A8

(22q13.1), and CDKN2B (9p21.3) are risk genes
for glioma (46). Colocalization analysis (96)
found that EGFR and SLC16A8 had high
colocalization probability (>0.9) with expres-
sion quantitative trait loci (eQTL) signals in
GTEx (v8) (97) brain tissues (table S19). EGFR
is critical for oligodendrocyte development and
white matter recovery after neonatal hypoxia
(98). It is known that EGFR plays an impor-
tant role in the initiation of primary GBM and
the progression of lower-grade glioma (46).
In addition, many stroke risk genes, such as
CDH11 (16q21),NTN4 (12q22), COL4A1 (13q34),
FAT4 (4q28.1), CACNB2 (10p12.31), SUPT3H
(6p21.1), ICA1L (2q33.2), CDKN2C (1p32.3),
SH3PXD2A (10q24.33), ALDH2 (12q24.12), and
ADAMTS7 (15q25.1) (50, 99), were associated
with DTI parameters. These genes were also
widely associated with hypertension, T2D, coro-
nary artery disease, and BMI, which suggests

the shared genetic components among stroke,
whitemattermicrostructure, and vascular risk
factors.
Next, we mapped significant variants (P <

2.3 × 10−10) to genes according to physical
position, eQTL association, and 3D chroma-
tin (Hi-C) interaction through FUMA (38).
FUMA yielded 1183 associated genes (1545 in
total) that were not discovered in MAGMA
analysis (table S20), replicating 282 of the
292 FUMA genes identified in (19) and more
genes from previous studies of white matter,
such as CLDN23 (100) (8p23.1) and EFEMP1
(20, 21, 44) (2p16.1). In particular, 911 FUMA
genes were solely mapped by significant Hi-C
interactions in brain tissues (table S21), dem-
onstrating the power of integrating chromatin
interaction profiles in GWAS of white matter.
More overlapping genes were observed between
white matter microstructure and other traits
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Fig. 5. Selected pairwise
genetic correlations between
FA of white matter tracts and
regional brain volumes. (A) The
asterisks (for FA PCs) and
daggers (for mean parameters)
highlight significant genetic corre-
lations after Bonferroni adjust-
ment for multiple testing. The
y axis lists the DTI parameters of
white matter tracts and the x axis
provides the name of regional
brain volumes. The colors repre-
sent genetic correlations (gc).
(B) Location of the lateral ventricle
region and its neighboring white
matter tracts whose FA parameters
were genetically correlated with
the volume of the lateral ventricle.
The colors describe different brain
regions (brown labels) and white
matter tracts. (C) Location of the
cortex regions and their neighboring
white matter tracts whose FA
parameters were genetically
correlated with the volume of these
regions. (D) Location of the puta-
men and pallidum regions and their
neighboring white matter tracts
whose FA parameters were geneti-
cally correlated with the volume of
these regions.
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(table S22). For example, glioma risk genes
from five more regions were associated with
whitemattermicrostructure, includingRAVER2
(1p31.3),MDM4 (1q32.1),ZBTB16 (11q23.2),AKT3
(1q44), andMAML2 (11q21) (46). AKT3 is hyper-
expressed and activated in glioma (101) and is
also associated with brain developmental dis-
orders (102), learning and memory deficits
(103), and disrupted integrity of white matter
(104). Together, our variant-level and gene-
level analyses uncovered the shared genetic
influences with glioma in 11 different genomic
regions. Considering the largest glioma GWAS
(46) reported 25 risk regions, our results reveal
the close genetic relationship between glioma
and white matter integrity.
We performed drug target lookups in a

recently established drug target network (105),
which included 273 nervous system drugs
[where the anatomical therapeutic chemical
(ATC) code startswithN] and241 targeted genes.
We found that 14 white matter–associated
genes were targets for 79 drugs, 23 of which
were antipsychotics (ATC: N05A, target such as
CALM1) to manage psychosis like schizophrenia
and bipolar disorder, 38 were antidepressants
(ATC: N06A, SLC6A4) to treat MDD and other
conditions, 8 were used to treat addictive dis-
orders (ATC: N07B, ALDH2), 6 were anti-
Parkinson drugs (ATC: N04B,HTR2B), 4 were
antidementia drugs (ATC: N06D, CHRNB4),
and 3 were anticonvulsants (ATC: N03A,
GABBR1) used in the treatment of epileptic
seizures (table S23). Additionally, we treated
white matter–associated genes as an annotation
and performed partitioned heritability enrich-
ment analysis (106) for the other 70 complex
traits studied in our genetic correlation anal-
ysis. At the FDR 5% level, heritability of 49
complex traits was significantly (P range =
1.2 × 10−8 to 3.2 × 10−2) enriched in regions
influencing white matter microstructure, such
as stroke, schizophrenia, ADHD, bipolar dis-
order, Alzheimer’s disease, T2D, high blood pres-
sure, and coronary artery disease (fig. S20 and
table S24). Overall, these results suggest the
potential clinical values of the genes identified
for white matter microstructure.

Biological annotations

To identify tissues and cell typeswhere genetic
variation leads to changes in white matter
microstructure, we performed partitioned heri-
tability analyses (106) from the GWAS of global
FA and MD within tissue type and cell type
specific regulatory elements. First, we used
regulatory elements across multiple adult and
fetal tissues (107). As expected, both FA and
MD had the strongest enrichment of herita-
bility in active gene regulation regions of brain
tissues (fig. S21 and table S25). To identify gross
cell types, we again performed partitioned
heritability analysis using chromatin acces-
sibility data of two brain cell types, neurons

(NeuN+) and glia (NeuN−) sampled from 14
brain regions, including both cortical and
subcortical (108). For all regions, we found that
enrichment of FA and MD heritability existed
in glial but not neuronal regulatory elements
(Fig. 6A). These results are expected as white
matter is largely composed of glial cell types.
For further resolution on cell types, we tested
partitioned heritability enrichment within dif-
ferentially accessible chromatin of glial cell sub-
types, oligodendrocyte (NeuN−/Sox10+) and
microglia and astrocyte (NeuN−/Sox10−); and
neuronal cell subtypes,GABAergic (g-aminobutyric
acid–releasing) (NeuN+/Sox6+) and glutama-
tergic (NeuN+/Sox6−) neurons (109). Heritability
of FA andMDwas enriched in oligodendrocyte
and microglia/astrocyte annotations. By con-
trast, no enrichment was observed in neurons
(Fig. 6B). We also performed regional-specific
enrichment analysis for FA in eachwhitematter
tract. Glial cell enrichment was observed in
different white matter tracts, and the stron-
gest enrichments were found in the posterior
corona radiata, posterior limb of the internal
capsule, and genu of the corpus callosum (Fig.
6C). These analyses imply that commonvariants
associated with white matter microstructure
alter the function of regulatory elements in
glial cells, particularly oligodendrocytes, the
cell type expected to influence white matter
microstructure, supporting the biological valid-
ity of the genetic associations.
Next, we performedMAGMA gene property

(95) analysis for 13 GTEx (v8) brain tissues to
examine whether tissue-specific gene expres-
sion levels were related to significance of the
correlations between genes and DTI param-
eters. At the FDR 5% level, 63 significant
(P range = 7 × 10−16 to 8.4 × 10−4) associations
were detected between DTI parameters and
gene expression data sampled in GTEx v8
brain tissues (table S26), which suggests that
genes with higher transcription levels in brain
tissues also had stronger genetic associations
with DTI parameters.We also appliedDEPICT
(110) gene-set enrichment testing for 10,968
preconstituted gene sets to prioritize enriched
biological pathways. At FDR 5% levels, DEPICT
found 381 significant gene sets (10,968 × 215
tests; P < 1 × 10−5; table S27). Several gene sets
of rat sarcoma (Ras) proteins, small guanosine
triphosphate hydrolases (GTPases), and Rho
family GTPases were prioritized by DEPICT,
such as “small GTPase mediated signal trans-
duction” [gene ontology (GO) term: 0007264],
“Rho GTPase binding” (GO: 0017048), “Ras
protein signal transduction” (GO: 0007265),
“reactome Rho GTPase cycle” (M27078), and
“reactome signaling by Rho GTPases” (M501).
The activity of Ras proteins is involved in
developmental processes and abnormalities of
neural cells in the central nervous system (111);
small and Rho family GTPases play crucial roles
in basic cellular processes during the entire

neurodevelopment process and are closely
connected to several neurological disorders
(112, 113). We also observed enrichment in
pathways related to glial cells and the nervous
system, such as “glial cell differentiation” (GO:
0010001), “abnormal radial glial cellmorphology”
[mammalian phenotype (MP) term: 0003648],
“brain development” (GO: 0007420), “abnormal
forebrain morphology” (MP: 0000783), “open
neural tube” (MP: 0000929), “regulation of
neurogenesis” (GO: 0050767), “abnormal neu-
ronal migration” (MP: 0006009), “central ner-
vous systemneurondevelopment” (GO: 0021954),
and “abnormal neural fold formation” (MP:
0004837).

Discussion

In this study, we analyzed the genetic archi-
tecture of brainwhitematter using dMRI scans
of 43,802 subjects collected from five publicly
accessible data resources. We identified 109
additional genomic regions for white matter
microstructural differences. Many previously
reported genetic hits were confirmed in our
discovery GWAS, and we further validated our
discoveryGWAS in several replication cohorts.
We evaluated the genetic relationships be-
tween white matter and a wide variety of
complex traits in association lookups, genetic
correlation estimations, and gene-level analyses.
A large proportion of our findings were revealed
by unconventional tract-specific PC parameters.
Bioinformatics analyses found tissue- and cell-
specific functional enrichments and many
enriched biological pathways. Together, these
results suggest the value of large-scale neuro-
imaging data integration and the application
of tract-specific FPCA in studying the genetics
of the human brain.
Many efforts have been made to study the

gray matter abnormalities associated with brain
diseases and cognition. Our results indicate that
a better understanding of the etiopathogenesis
and treatment of many brain disorders could be
achieved from amore balanced perspective that
includes both gray matter regions and white
matter tracts. Moreover, we found that some
commonly used centrally-acting medications
have effects on geneswith associations to white
matter microstructure, which suggests that
the neuropharmacology of brain disorders may
potentially benefit from knowledge of the
relationship between these medications and
white matter. Many drugs for cognitive dis-
orders have not been fully understood, and
better knowledge of how these drugs work in
the white matter of the brain could substan-
tially improve patient care.
One limitation of the present study is that

most of the publicly available dMRI data are
from subjects of European ancestry, and our
discovery GWAS focused on UKB British in-
dividuals. Such GWAS strategy can efficiently
avoid false discoveries as a result of population
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stratifications and heterogeneities across stud-
ies (17, 114), but it may raise questions as to the
degree to which the research findings can be
generalized and applied to global populations
(115). In our analysis, the UKB British–derived
PRS still showed prediction power in Hispanic,
Asian, and Black or African American testing
cohorts but had reduced performance. This
may indicate that the genetic architecture of
whitematter is similar but not the same across
different populations. Identifying the cross-
population and population-specific components
of genetic factors for the human brain could
be an interesting future topic. As more non-
European neuroimaging data become available
[for example, the ongoing CHIMGEN project
(116) in the Chinese population], global inte-
gration efforts will be needed to study the com-
parative genetic architectures and to explore

the multiethnic genetic relationships among
the brain and other human complex traits.
Specifically, the anticipated non-European data
will be relevant to non-European ancestry
groups, who often endure worse outcomes
with respect to brain diseases that implicate
white matter, such as stroke (117) and Alz-
heimer’s disease (118). Additionally, the pres-
ent study focused on DTI parameters. Previous
studies have found that some beyond-DTI
parameters, such as white matter tract integ-
rity (WMTI) (119), neurite orientation disper-
sion and density imaging (NODDI) (120), and
diffusional kurtosis imaging (DKI) (121) may
provide additional information about micro-
structural properties (122). The g-ratio measure
(123, 124) is probably more directly correlated
to neuronal conduction velocity and thus is of
interest in assessing interhemispheric transfer

time and information processing speed. Future
work is needed to explore these beyond-DTI
parameters in biobank-scale neuroimaging
datasets. Finally, althoughwehave harmonized
the image processing pipelines to minimize
the influences of imaging artifacts, confounding
factors may still exist and limit the interpreta-
tion of our results. For example, the partial-
volume effect (125) in DTI data could be a
confounding factor that drives part of the ob-
served genetic correlations between ventricle
volumes and the FA ofwhitematter tracts.More
analysis is required to model and examine
potential neuroimaging confounders (126).

Methods summary

We conducted a GWAS of white matter micro-
structure using dMRI data from 43,802 indi-
viduals.Measures of whitemattermicrostructure
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Fig. 6. Partitioned heritability enrichment analysis in brain cell types.
(A) Heritability enrichment of global mean FA and MD in regulatory elements of
two brain cell types (neuron and glia) sampled from 14 brain cortical and
subcortical regions. DLFPC, dorsolateral prefrontal cortex; VLPFC, ventrolateral
prefrontal cortex; OFC, orbitofrontal cortex; ACC, anterior cingulate cortex;
INS, insular cortex; ITC, inferior temporal cortex; STC, superior temporal cortex;
PMC, primary motor cortex; PVC, primary visual cortex; AMY, amygdala; HIPP,
hippocampus; MDT, mediodorsal thalamus; NAC, nucleus accumbens; PUT,

putamen. (B) Heritability enrichment of global mean FA and MD in regulatory
elements of glial cell subtypes (glia, including oligodendrocyte and microglia or
astrocyte) and neuronal cell subtypes (neurons, including GABAergic and
glutamatergic neurons). (C) Heritability enrichment of mean FA of 21 white tracts
in regulatory elements of two brain cell types (neuron and glia) sampled from
14 brain cortical and subcortical regions. Full names of the 21 white matter tracts
can be found in Fig. 1B. The dashed lines indicate the significance level after
controlling the FDR at 5% level.
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were derived from DTI models using the
ENIGMA-DTI pipeline (30, 31). We analyzed
five major DTI measurements along 21 cere-
bral white matter tracts. For each individual,
215 DTI phenotypes were generated. We ana-
lyzed these phenotypes in subsequent genetic
analyses.
Our discovery GWAS used data from UKB

individuals of British ancestry. To replicate
our results in the UKB British GWAS, we per-
formed additional GWAS with data from nine
independent European and non-European
datasets.We checkedwhether the associations
detected in the UKB British GWAS can be
replicated in these independent GWAS. Addi-
tionally, we used polygenic risk scores to predict
the proportion of variance of DTI phenotypes
that can be explained by genetic variants in
European and non-European cohorts.
SNP heritability explained by all autosomal

variants was estimated using GCTA-GREML
analysis (34). We used LDSC (36) to estimate
genetic correlations between DTI parameters
and other complex traits. Partitioned LDSC
(106) was used to estimate the proportion of
heritability explained by annotated regions of
the genome. Heritability enrichment was esti-
mated in multiple adult and fetal tissues (107),
brain cell types (glia and neurons) (108), and
glial and neuronal cell subtypes (109).
Gene-based association analysis was per-

formed using MAGMA (95). We applied
fastENLOC (96) to perform colocalization anal-
ysis with GTEx eQTL annotations. DEPICT (110)
was used to explore the implicated biological
pathways. Functional impact was investigated
using FUMA (38), in which variants were
linked to genes by a combination of positional,
eQTL, and 3D chromatin interaction mappings.
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