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The human brain is a complex system in which functional 
organization and communication between brain networks 
are necessary for behavior and cognition1,2. The human brain 

remains active in the absence of explicit tasks or stimuli, resulting in 
an intrinsic functional architecture. Using changes in blood oxygen 
level-dependent signal, resting-state functional magnetic resonance 
imaging (rsfMRI) captures spontaneous intrinsic brain activity3. 
Specifically, the spontaneous neural activity and nonneural physi-
ological processes within each functional region are quantified by 
the amplitude of low-frequency fluctuations (ALFFs) in blood oxy-
gen level-dependent time series4. Moreover, the interregional cor-
relations in spontaneous neuronal variability are used to construct 
a functional connectivity matrix, which measures the magnitude of 
temporal synchrony between each pair of brain regions3.

rsfMRI has led to the discovery of multiple resting-state net-
works (RSNs) present in neurotypical human brains, including 
the default mode, central executive (i.e., frontoparietal), attention, 
limbic, salience, somatomotor and visual networks5–7. Among these 
RSNs, the central executive, default mode and salience networks 
are three core neurocognitive networks that support efficient cog-
nition8. Accumulating evidence suggests that the functional orga-
nization and dynamic interaction of these three networks underlie 
a wide range of mental disorders, resulting in the triple-network 
model of psychopathology8,9. Supporting this model, differences in 
RSNs have been detected in multiple neurological and psychiatric 

disorders relative to neurotypical controls, such as Alzheimer’s dis-
ease10, Parkinson’s disease11 and major depressive disorder (MDD)12.

Twin and family studies have largely reported a low to moder-
ate degree of genetic contributions to intrinsic brain function13–16. 
For example, the family-based heritability estimates of major 
RSNs ranged from 20% to 40% in the Human Connectome Project 
(HCP)17. In a previous study using about 8,000 UK Biobank (UKB) 
individuals18, estimates of the single-nucleotide polymorphism 
(SNP)-based heritability of amplitude and functional connectivity 
traits were higher than 30% for some traits. Although there have 
been multiple candidate gene studies for intrinsic brain activity (such 
as for APOE19 and KIBRA20), currently, only a few genome-wide 
association studies (GWASs)18,21 have been successfully performed 
on rsfMRI13. This is likely due to both insufficient sample size for 
GWAS discovery and weaker genetic effects on brain function than 
structure18,22,23. It is also known that functional connectivity traits in 
rsfMRI are typically noisier than brain structural traits measured in 
other neuroimaging modalities. In addition, imaging batch effects24 
(e.g., image acquisition, processing procedures and software) may 
cause additional technical variability in rsfMRI analyses25, mak-
ing GWAS meta-analysis and independent replication particu-
larly challenging. Therefore, genetic variants influencing intrinsic 
brain activity have remained largely undiscovered, and their shared 
genetic influences with other complex traits and clinical outcomes 
are unknown.
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The human brain forms functional networks of correlated activity, which have been linked with both cognitive and clinical out-
comes. However, the genetic variants affecting brain function are largely unknown. Here, we used resting-state functional mag-
netic resonance images from 47,276 individuals to discover and validate common genetic variants influencing intrinsic brain 
activity. We identified 45 new genetic regions associated with brain functional signatures (P < 2.8 × 10−11), including associa-
tions to the central executive, default mode, and salience networks involved in the triple-network model of psychopathology. 
A number of brain activity-associated loci colocalized with brain disorders (e.g., the APOE ε4 locus with Alzheimer’s disease). 
Variation in brain function was genetically correlated with brain disorders, such as major depressive disorder and schizophre-
nia. Together, our study provides a step forward in understanding the genetic architecture of brain functional networks and their 
genetic links to brain-related complex traits and disorders.
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To address these challenges, here, we collected individual-level 
rsfMRI data from four independent studies, including the UKB26, 
Adolescent Brain Cognitive Development (ABCD27), Philadelphia 
Neurodevelopmental Cohort (PNC28) and HCP29. We harmo-
nized rsfMRI processing procedures by following the unified 
UKB brain imaging pipeline4,30. Functional brain regions and cor-
responding functional connectivity were characterized via spatial 
independent-component analysis (ICA)31,32 for 47,276 individuals 
from multiple ancestries, including 40,425 from UKB. As in previ-
ous studies4,18,21, two parcellations with different dimensionalities6,33 
(25 and 100 regions, respectively) were separately applied in spatial 
ICA, and we focused on the 76 (21 and 55, respectively) regions that 
had been previously confirmed to be nonartifactual4. Two groups 
of neuroimaging phenotypes were then generated; the first group 
contains 76 (node) amplitude traits reflecting the regional sponta-
neous neuronal activity, and the second group includes 1,695 (i.e., 
21 × 20/2 + 55 × 54/2) (edge) functional connectivity traits that 
quantify the interregional coactivity, as well as six global functional 
connectivity measures18 (Methods and Supplementary Fig. 1). 
These 1,777 traits were then used to explore the genetic architecture 
of intrinsic brain activity. Our GWAS results can be easily explored 
and downloaded through the Brain Imaging Genetics Knowledge 
Portal at https://bigkp.org.

Results
Genetics of the intrinsic brain functional architecture. SNP heri-
tability was estimated for the 1,777 intrinsic brain activity traits via 
GCTA34 using UKB individuals of British ancestry (n = 34,691). The 
mean heritability (h2) estimate was 27.5% (range = (10.6%, 38.6%), 
standard error = 6.1%) for the 76 amplitude traits, all of which 
remained significant after adjusting for multiple comparisons by 
using the Benjamini–Hochberg procedure to control false discovery 
rate (FDR) at the 0.05 level (1,777 tests; Fig. 1a and Supplementary 
Table 1). Among the 1,701 functional connectivity traits, 1,192 had 
significant (again at 5% FDR) heritability, with estimates varying 
from 3% to 60% (mean = 9.3%, standard error = 5.6%). Ten func-
tional connectivity traits had heritability higher than 30%, includ-
ing four global functional connectivity measures (Supplementary  
Fig. 1) and six pairwise functional connectivity traits (Fig. 1b). These 
most heritable traits were most related to the central executive, 
default mode and salience networks in the triple-network model 
of psychopathology8. To examine whether intrinsic brain activity 
within the triple network had higher heritability, we classified the 76 
amplitude traits into two categories: (1) fully or partially within the 
triple network and (2) outside the triple network. Correspondingly, 
the 1,695 pairwise functional connectivity traits were classified as 
follows: (1) within the triple network, (2) outside the triple network 
and (3) between the triple and non-triple networks. We found that 
amplitude traits within the triple network had significantly higher 
heritability than those outside the triple network (mean = 30.9% 
versus 22.6%, P = 8.5 × 10−11, two-sided Wilcoxon rank test) (Fig. 
1c). Similarly, functional connectivity traits within the triple net-
work had higher heritability than interactions outside the triple net-
work or between the triple and non-triple networks (mean = 11.9% 
vs. 6.9%, P = 8.4 × 10−20). Similar results were observed when we 
limited the comparison between the triple network and two major 
sensory networks (the visual and motor networks; Supplementary 
Fig. 2). These results indicate that the three core neurocognitive 
networks can be robustly detected by spatial ICA and might have 
a higher level of genetic control. The range of heritability estimates 
was consistent with previous results18, suggesting that common 
genetic variants had a low to moderate degree of contributions to 
interindividual variability of intrinsic brain activity. The overall 
genetic effects on both amplitude and functional connectivity were 
lower than those on brain structure. For example, the average heri-
tability was reported to be 47.6% for diffusion tensor imaging (DTI) 

traits of brain structural connectivity in white matter tracts35 and 
40% for regional brain volumes measuring brain morphometry23. 
Nevertheless, as shown below, intrinsic brain activity may be more 
functionally relevant, with stronger genetic connections to brain 
disorders such as Alzheimer’s disease than brain structure.

A GWAS was carried out for 1,777 intrinsic brain activity traits and 
9,026,427 common variants in the UKB British sample (n = 34,691). 
The Manhattan and quantile-quantile plots can be found in the 
Brain Imaging Genetics Knowledge Portal server (https://bigkp.
org). At the significance level 2.8 × 10−11 (5 × 10−8/1,777, that is, 
the standard GWAS threshold, Bonferroni-adjusted for the 1,777 
traits), FUMA36 identified 241 lead independent variants (linkage 
disequilibrium (LD) r2 < 0.1), and then characterized 603 significant 
locus–trait associations with 191 traits (75 amplitude, 111 pairwise 
functional connectivity and 5 global functional connectivity) in 45 
genomic regions (Supplementary Tables 2 and 3 and Supplementary 
Fig. 3). Global and pairwise functional connectivity traits that had 
at least 5 significant variants were again most related to the cen-
tral executive, default mode and salience networks (Supplementary 
Fig. 4). Of the 14 associated variants that had been identified in 
the previous GWASs18, 12 were in LD (r2 ≥ 0.6) with our significant 
variants, most of which were associated with amplitude traits. In 
summary, our analyses identify many new variants associated with 
intrinsic functional signatures and illustrate the global genetic influ-
ences on functional connectivity across the whole brain.

Replication and the effect of ancestry. We aimed to replicate our 
results in UKB British GWASs using other independent datasets. We 
first examined the reproducibility and stability of the intrinsic brain 
activity traits (Supplementary Note). Overall, moderate-to-good sta-
bility of the UKB-trained ICA regions was observed across different 
ancestry groups in independent datasets, suggesting that we used 
a set of well-defined and biologically meaningful traits in GWASs 
(Supplementary Figs. 5 and 6 and Supplementary Table 4). We then 
repeated GWASs on a combined dataset of individuals of white 
ancestry in the newly released UKB phase 4 data and individuals of 
white but non-British ancestry in the UKB phases 1 to 3 data (UKBW, 
total n = 5,056). We checked whether the 603 significant locus–trait 
associations detected in UKB British GWASs could be replicated. 
We found that 118 associations (19.6%) passed the 8.2 × 10−5 (i.e., 
0.05/603) Bonferroni significance level in the UKBW GWAS, and 
440 (73.0%) were significant at the nominal 0.05 level. All the 440 
associations had concordant directions in the two independent 
GWASs, showing a high degree of generalizability of our GWAS find-
ings among European-ancestry cohorts (Supplementary Fig. 7).

Next, we performed GWASs on three non-UKB European-ancestry 
cohorts, including the ABCD European (ABCDE; n = 3,821), HCP 
European (n = 495) and PNC (n = 510). After meta-analyzing the 
four European-ancestry GWASs (total n = 9,882), the number of 
associations passing the Bonferroni significance level increased to 
131 (21.7%), which were involved in 17 of the 45 identified genomic 
regions. We also performed GWASs on four non-European valida-
tion datasets: the UKB Asian (UKBA; n = 446), UKB Black (UKBBL; 
n = 232), ABCD Hispanic (ABCDH; n = 768) and ABCD African 
American (ABCDA; n = 1,257). We meta-analyzed these four 
non-European GWAS (total n = 2,703) and found that one associa-
tion passed the Bonferroni significance level and 34 (5.6%) were 
significant at the nominal 0.05 level and had the same direction as 
in discovery GWASs. Moreover, we performed a third meta-analysis 
to combine all the eight validation datasets, after which the number 
of replicated associations was 122 (20.2%) at the Bonferroni signifi-
cance level, and the number of replicated genomic regions increased 
to 18. These results are summarized in Supplementary Table 5. 
Overall, our results suggest that a large proportion (18/45, 40%) of 
associated genomic regions discovered in UKB British GWASs can 
be replicated in independent studies at the Bonferroni significance 
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level, despite the fact that these studies may use different imaging 
protocols or MRI scanners and recruit participants from differ-
ent age groups. In addition, we used polygenic risk scores37 (PRSs) 
derived from UKB British GWASs for further evidence of replication 
(Supplementary Note). Our PRS results illustrate the overall con-
sistency of genetic effects in European-ancestry cohorts and show 
that there may be population-specific influences on brain function 

in non-European-ancestry cohorts, although much smaller sample 
sizes and difficulty in conducting cross-ancestry PRS strongly limit 
the interpretability of these analyses (Supplementary Table 6).

The shared genetic loci with brain-related complex traits and 
disorders. To evaluate the shared genetic components between 
intrinsic brain activity and other complex traits, we carried out 
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Fig. 1 | SNP heritability analysis of rsfMRI traits. a, Heritability estimates of 1,777 rsfMRI traits of brain activity, including 76 amplitude traits, 1,695 
pairwise functional connectivity traits (from two parcellations with 25 and 100 dimensionalities, respectively) and 6 global functional connectivity 
measures (n = 34,691 subjects). b, Location and functional network of the pairs of functional regions (i.e., nodes) characterized by spatial ICA whose 
interregional functional connectivity had heritability (h2) higher than 30%. The color represents the weight profile of the ICA node. For example, the 
functional connectivity between two ICA nodes mainly over the inferior parietal, angular and inferior frontal regions had h2 = 34.7%. c, Comparison of the 
heritability within the triple network (i.e., the three core neurocognitive networks: central executive, default mode and salience) and the heritability outside 
the triple network. P value of the two-sided Wilcoxon rank test was used to evaluate the difference (n = 76 heritability estimates for amplitude traits and 
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association lookups for independent significant variants (and their 
LD tags (i.e., variants with LD, r2 ≥ 0.6)) detected in UKB British 
GWASs. In the NHGRI-EBI GWAS catalog38, our results tagged 
many variants reported for a wide range of complex traits in differ-
ent trait domains, such as neurological and psychiatric disorders, 
cognitive performance, education, sleep, smoking/drinking, brain 
structure and anthropometric traits. Below, we highlight colocaliza-
tions in a few selected genomic regions.

The index variants rs429358 (APOE), rs71352238 (TOMM40), 
rs184017 (TOMM40) and rs157592 (APOC1) in the 19q13.32 
region had genetic effects on the amplitude of many functional brain 
regions that were strongest in the default mode, central executive 
(i.e., frontoparietal), attention and visual networks (Extended Data 
Fig. 1 and Supplementary Fig. 8). It is well known that 19q13.32 is 
a risk locus of Alzheimer’s disease, and rs429358 is one of the two 
variants in the APOE ε4 locus. In this region, we tagged variants 
associated with dementia and decline in mental ability, including 
Alzheimer’s disease39–41, frontotemporal dementia42, cerebral amy-
loid angiopathy43, cognitive decline44 and cognitive impairment test 
score45, as well as many biomarkers of Alzheimer’s disease, such as 
neurofibrillary tangles43, neuritic plaque43, cerebral amyloid depo-
sition46, cerebrospinal fluid protein levels45 and cortical β-amyloid 
load47. Altered amplitude activity has been widely reported in 
patients of cognitive impairment and Alzheimer’s disease48. The 
brain degeneration related to Alzheimer’s disease may begin in the 
frontoparietal regions49 and is associated with dysfunction of mul-
tiple RSNs, especially the default mode network10. Our findings 
suggest the shared genetic influences between intrinsic neuronal 
activity and brain atrophy of Alzheimer’s disease. Neuroimaging 
traits from rsfMRI could be used as biomarkers for future medica-
tion developments targeting APOE ε4.

The 17q21.31 region was associated with functional connectiv-
ity over the inferior frontal, middle frontal, superior frontal, mid-
dle temporal and supplementary motor area regions in the default 
mode and salience networks (Supplementary Fig. 9). Variants in 
LD with rsfMRI index variants in this region have been widely 
related to neurological disorders (e.g., Parkinson’s disease50–52) and 

brain-related related complex traits (Supplementary Note). In addi-
tion, the 2p16.1 (Extended Data Fig. 2 and Supplementary Fig. 10) 
and 5q15 (Supplementary Fig. 11) regions were mainly associated 
with interactions among the central executive, default mode and 
salience networks. We observed colocalizations with psychiatric 
disorders (e.g., schizophrenia53, MDD54, depressive symptoms55 and 
autism spectrum disorder56), psychological traits (e.g., neuroticism57 
and well-being spectrum58), sleep59, cognitive traits (e.g., intelli-
gence60) and educational attainment61. Dysregulated triple-network 
interactions were frequently reported in patients of schizophrenia62, 
depression63 and autism spectrum disorder64. Similarly, the 2q24.2 
(Supplementary Fig. 12) and 10q26.13 (Supplementary Fig. 13) 
regions had genetic effects on functional connectivity traits involved 
in the central executive, default mode, salience, attention and limbic 
networks. In these two regions, our identified variants tagged those 
that have been implicated with schizophrenia65, educational attain-
ment61, cognitive traits (e.g., cognitive ability66) and smoking/drink-
ing (e.g., smoking status67 and alcohol consumption68). We also 
observed colocalizations in some other genomic regions, such as in 
2q14.1 region (Fig. 2 and Supplementary Fig. 14) with sleep traits59, 
in 3p11.1 (Supplementary Fig. 15) with cognitive traits (e.g., intel-
ligence69 and math ability61) and in 5q14.3 (Supplementary Fig. 16) 
with smoking68 and autism spectrum disorder70. All of these results 
are summarized in Supplementary Table 7. In summary, intrinsic 
brain function has wide genetic links to many brain-related complex 
traits and clinical outcomes, especially neurological and psychiatric 
disorders and cognitive traits. Integration of GWASs of brain func-
tion with these clinical outcomes may help to explain the underly-
ing brain functional mechanisms leading to risk for these disorders.

Genetic correlations with brain structure, brain disorders and 
cognition. The intricate brain neuroanatomical structure is fun-
damental in supporting brain function. To explore whether geneti-
cally mediated brain structural changes were associated with brain 
function, we examined pairwise genetic correlations between 484 
heritable intrinsic brain activity traits with h2 > 10% and 315 brain 
structure traits via the LD score regression (LDSC)71, including 
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100 regional brain volumes23 and 215 DTI traits of brain struc-
tural connectivity in white matter tracts35. There were 63 sig-
nificant pairs between 46 intrinsic brain functional traits and 31 
brain structural traits at the FDR 5% level (315 × 484 tests, |genetic 
correlations| range = (0.2, 0.57), P range = (4.7 × 10−10, 2 × 10−5), 
Supplementary Table 8).

We found significant genetic correlations between regional brain 
volumes and functional connectivity strengths (|genetic correlations| 
range = (0.28, 0.57), P range = (1.1 × 10−8, 2 × 10−5); Supplementary 
Fig. 17). Most of the observed correlations were related to 
higher-order brain functional networks, particularly the default 
mode, salience and central executive networks. We observed spatial 
colocalizations between regional brain volumes and their genetically 
correlated functional connectivity traits. Specifically, all these geneti-
cally correlated pairs were overlapped or spatially close to each other 
(within 30 mm; Supplementary Note). For example, the left inferior 
parietal lobule volume exhibited genetic correlations with connectiv-
ity strengths over multiple pairs of brain regions that were known to 
be a part of the default mode and central executive networks (genetic 
correlations = 0.35, P = 1.2 × 10−5; Fig. 3a,b). The inferior parietal 

has been implicated to be associated with language function and 
is connected with the Broca’s region via the superior longitudinal 
fasciculus (SLF)72–74. The left pericalcarine volume was genetically 
correlated with the connectivity strengths among its neighboring 
regions, including the calcarine, cuneus and lingual in the visual 
network (Fig. 3c). More spatial overlap/proximity examples can be 
found in Supplementary Note and Supplementary Fig. 18.

Significant genetic correlations were also observed between 
brain structural connectivity and functional connectivity (|genetic 
correlations| range = (0.2, 0.53), P range = (4.7 × 10−10, 2 × 10−5), 
Supplementary Fig. 19). The SLF and corpus callosum manifested 
strong genetic correlations with the interactions of functional net-
works (Fig. 4a). Specifically, we observed significant genetic correla-
tions between SLF and connectivity strengths over multiple pairs of 
brain regions, including the frontal, parietal and temporal regions 
(|genetic correlations| range = (0.32, 0.50), P < 1.9 × 10−5, Fig. 4b). 
In addition, the corpus callosum was genetically associated with 
functional connectivity of multiple brain regions, such as the precu-
neus (|genetic correlations| range = (0.39, 0.53), P < 1.3 × 10−5; Fig. 
4c). See Supplementary Note for more details and interpretations 

a

Brain structure
(volume)

−0.6 −0.2 0.2 0.6

*

*

*

*

*

*

*

*

* *

(Default mode) ↔ (Central executive, salience)

(Visual) ↔ (visual)

(Central executive, attention) ↔ (Default mode, central executive) 

(Default mode, central executive) ↔ (Central executive, default mode)

(Default mode, central executive) ↔ (Default mode, central executive)

(Central executive, salience) ↔ (Attention, visual)

(Central executive, salience) ↔ (Central executive)

(Central executive, salience) ↔ (Default mode, central executive)

(Default mode) ↔ (Central executive, salience)

(Superior frontal) ↔ (Middle frontal)

(Calcarine, lingual, cuneus) ↔ (Calcarine, lingual)

(Inferior parietal, angular) ↔ (Inferior frontal)

(Inferior frontal) ↔ (Inferior temporal, middle temporal)

(Precuneus, angular, middle cingulate) ↔ (Middle temporal)

(Supramarginal, inferior parietal) ↔ (Inferior temporal, inferior occipital)

(Supramarginal, inferior parietal) ↔ (Middel frontal)

(Middle frontal) ↔ (Middle temporal)

(Middle temporal, temporal pole) ↔ (Supramarginal, inferior parietal)

Right p
ostc

entra
l

Left p
ostc

entra
l

Left p
ars 

opercu
laris

Left p
ars 

tria
ngularis

Left i
nferio

r p
arie

tal

Left p
eric

alca
rin

e

Right p
recu

neusBrain functional connectivity Functional networks

rg

Pericalcarine
(left)

Calcarine

Cuneus

Lingual

c

Inferior 
parietal 

(left)

Middle cingulate

Angular

Middle
temporal

Precuneus
b

Fig. 3 | Selected pairwise genetic correlations between functional connectivity traits and regional brain volumes. a, The left y axis lists the location 
of functional connectivity traits, the right y axis shows the associated functional networks and the x axis provides the name of regional brain volumes. 
The colors represent genetic correlations (rg). The asterisks highlight significant associations after controlling the FDR at the 0.05 level. b, Location of 
the left inferior parietal (name labelled in orange color) and its neighboring brain regions (names labelled in black color) whose functional connectivity 
strengths were genetically correlated with the left inferior parietal volume. The colors describe different brain regions. c, Location of the left pericalcarine 
(name labelled in orange color) and its neighboring brain regions (names labelled in black color) whose functional connectivity strengths were genetically 
correlated with the left pericalcarine volume.

NatUre Genetics | VOL 54 | April 2022 | 508–517 | www.nature.com/naturegenetics512

http://www.nature.com/naturegenetics


AnalysisNature Genetics

of these results. Besides functional connectivity traits, amplitude 
traits also had significant genetic associations with white matter 
tracts (Supplementary Fig. 20). Overall, 72.7% of these genetically  
correlated brain functional and structural traits show high congru-
ity in spatial location and the involved functions (within 30 mm; 
Supplementary Note). There has been growing interest to under-
stand how brain topography interacts with brain functional net-
works75, and our results indicate that genetic changes in brain 
structure may also impact brain function.

Next, we examined the genetic correlations between the 484 
intrinsic brain activity traits and 10 neuropsychiatric disorders 
and cognitive traits (Supplementary Table 9). We found 79 sig-
nificant genetic correlations with 42 intrinsic brain activity traits 
at the FDR 5% level (10 × 484 tests, P range = (7.7 × 10−8, 8 × 10−4); 
Supplementary Table 10). Particularly, functional connectivity 
strengths were genetically correlated with several brain disorders, 
including schizophrenia, MDD, cross disorder (five major psy-
chiatric disorders76) and bipolar disorder (|genetic correlations| 
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range = (0.15, 0.5), P < 8 × 10−4; Fig. 5a). A large proportion (72%) 
of these correlations were related to the triple networks of psycho-
pathology. For example, we observed significant genetic correla-
tions between bipolar disorder and functional interactions among 
the frontal, middle temporal, precuneus and angular regions, which 
were largely in the default mode network (Fig. 5b). Several lines 
of evidence have pointed the possible default mode alterations in 
bipolar disorder77. Moreover, significant genetic correlations were 
observed between schizophrenia and connection strengths over 
the frontal, parietal, temporal and cerebellum regions (Fig. 5c) and 
between MDD and interactions among the frontal and parietal 
(paracentral and postcentral) regions (Fig. 5d). Deficits of fronto-
temporal systems, such as impairment in executive functions and 
learning, are core features of schizophrenia78. Previous studies have 
consistently reported abnormal activation of the frontal and pari-
etal cortices and frontotemporal dysconnectivity in schizophrenia79. 
In addition, genetic correlations were observed between functional 
connectivity and cognitive traits studied in previous GWASs, 
including intelligence, cognitive performance, general cognitive 
function, numerical reasoning and education (Supplementary 
Fig. 21). Most (98.1%) of these functional connectivity traits were 
related to the triple networks. For example, intelligence had genetic 
correlations with connection strengths over multiple brain regions 
(|genetic correlations| range = (0.21, 0.30), P < 7.4 × 10−4; Fig. 5e and 
Supplementary Note).

Gene-level association analysis and biological annotations. 
Gene-level association was tested via MAGMA80, which detected 
714 significant gene–trait associations (P < 1.5 × 10−9, adjusted 
for 1,777 phenotypes) for 76 genes (Supplementary Fig. 22 and 
Supplementary Table 11). In addition, we applied FUMA36 to map 
significant variants (P < 2.8 × 10−11) to genes via physical posi-
tion, expression quantitative trait loci association and 3D chroma-
tin Hi-C (high-throughput chromosome conformation capture) 
interaction, which yielded 193 more associated genes that were 
not discovered in MAGMA (255 in total; Supplementary Tables 
12–15 and Supplementary Note). Four of these intrinsic brain 
activity-associated genes (CALY, SLC47A1, CYP2C8 and CYP2C9) 
were targets for 11 nervous system drugs81, such as four psycho-
leptics (ATC code N05) to produce calming effects, two anti-
depressants (N06A) to treat MDD and related conditions, two 
anti-migraine drugs (N02C) and one antidementia drugs (N06D) 
(Supplementary Table 16).

To identify the tissues and cell types in which genetic varia-
tion yields differences in brain functional connectivity, we per-
formed partitioned heritability analyses82 for tissue type- and cell 
type-specific regulatory elements83. We focused on the ten func-
tional connectivity traits that had heritability higher than 30%. 
At the FDR 5% level, the most significant enrichments of heri-
tability were observed in active gene regulation regions of fetal 
brain tissues, neurospheres and neuron/neuronal progenitor cul-
tured cells (Supplementary Fig. 23 and Supplementary Table 17). 
Among the associated variants of intrinsic brain activity, a few 
resided in frequently interacting regions and topologically asso-
ciating domain boundaries in brain tissues84,85 (Supplementary 
Table 18). We also performed brain cell type-specific partitioned 
heritability and gene mapping analyses, the details of which can 
be found in the Supplementary Note (Supplementary Figs. 24 and 
25 and Supplementary Tables 19–21). Finally, MAGMA80 gene set  
analysis was performed to prioritize the enriched biological path-
ways. We found 47 significantly enriched gene sets at the FDR 5% 
level (P < 3.2 × 10−6; Supplementary Table 22). Multiple pathways 
related to nervous system were detected, including ‘go regulation of 
glial cell proliferation’ (Gene Ontology (GO): 0014009), ‘go central 
nervous system neuron differentiation’ (GO: 0021953) and ‘go pyra-
midal neuron differentiation’ (GO: 0021859).

Discussion
In the present study, we identified and validated common vari-
ants associated with intrinsic brain functions using rsfMRI data 
of 47,276 subjects, which substantially improves our understand-
ing of the genetic architecture of functional human brain. We 
used two ICA parcellations with different dimensionalities (25 
and 100, respectively)18,21. The 25-dimension ICA aimed to build 
a large-scale network decomposition to match canonical RSNs, 
and the 100-dimension ICA resulted in a more finely detailed par-
cellation6,33. We then selected 76 (21 + 55) ICA regions that were 
manually examined to be biologically meaningful4, which have 
been widely applied in neuroimaging studies30. The ICA regions 
of the two parcellations were closely related, but they may not 
have one-to-one correspondence. For example, we found that five 
ICA region pairs from the two parcellations had very similar spa-
tial locations (correlations of ICA loadings > 0.8), and all of them 
showed high concordance in downstream GWAS analyses. For 
other ICA regions, typically, they were linear combinations of a 
few regions in the other parcellation (Supplementary Table 23 and 
Supplementary Fig. 26).

Our study faces a few limitations. First, the samples in our 
discovery GWASs were mainly from individuals with European 
ancestry. In our PRS analysis, we illustrated a relatively poor rep-
lication of the European-ancestry GWAS results within validation 
cohorts with non-European ancestry. The non-European-ancestry 
GWAS was of small sample size, so population-specific influences 
will be better understood when more data from global populations 
become available86. In addition, artificial factors and confounding 
variables may also weaken the consistency of our results and cause 
additional challenges in multisite imaging studies87,88. Second, we 
applied group ICA in this study, which was a popular approach 
to characterize the functionally connected brain3. Although the 
ICA is powerful, it is a data-driven method, which might limit 
the interpretability of ICA regions and the ability to compare with 
the patterns observed from parcellation-based studies. For exam-
ple, the high heritability of the triple networks reported in this 
paper may partially result from the fact that the ICA captures and 
combines large variations from different brain networks, because 
most of the ICA regions distributed across multiple regions and 
networks. In contrast, parcellation-based analysis typically esti-
mates the heritability independently for each network, which may 
result in different heritability patterns across the brain89. Future 
studies may explore other parcellation schemes (e.g., the Schaefer 
parcellation90) in the UKB study and examine the robustness 
of GWAS results to the selection of atlas. Finally, although we 
found genetic links between brain function and brain structure 
using tract-based diffusion neuroimaging traits from the existing 
ENIGMA-DTI pipeline91,92, a better approach might be develop-
ing new pipelines to directly construct structural connectivity 
matrix for the 76 ICA regions. We expect that accumulating pub-
licly available imaging genetics data resources and more powerful 
feature extraction pipelines will lead to a better understanding of 
specific genes involved in human brain structure–function rela-
tionships and how variants can alter these relationships, leading 
to risk of neuropsychiatric disorders.
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Methods
Imaging phenotypes and datasets. The rsfMRI datasets were separately 
processed following the procedures in UKB imaging pipeline4. Details about 
image acquisition, preprocessing and phenotype generation in each dataset can 
be found in the Supplementary Note. By mapping the preprocessed rsfMRI 
images onto the pretrained ICA loadings in the previous study18, we generated 
two groups of phenotypes, including 76 node amplitude traits reflecting the 
spontaneous neuronal activity, 1,695 pairwise functional connectivity traits 
quantifying coactivity for node pairs and 6 global functional connectivity measures 
to summarize all pairwise functional connectivity. Specifically, we performed 
a dimension reduction analysis on the 1,695 pairwise functional connectivity 
traits using a combined principal-component (PC) analysis and ICA approach. 
The 6 global measures were the top 6 ICA components, which described the 
whole brain functional connectivity and represented 6 independent sets (i.e., 
linear combinations) of the 1,695 pairwise functional connectivity traits. To 
aid interpretation of GWAS results, we manually labeled the 76 functional 
brain regions characterized in ICA by using the automated anatomical labeling 
atlas93 (Supplementary Table 24) and then mapped them onto major functional 
networks defined in Yeo et al.7 and Finn et al.5 (Supplementary Figs. 27 and 28). 
The assigned location and functional networks are provided in Supplementary 
Table 25. Details of our mapping procedures are provided in the Supplementary 
Note. For each continuous phenotype or covariate variable, values greater than 
five times the median absolute deviation from the median value were removed. 
We analyzed the following datasets separately: (1) the UKB discovery GWAS, 
which used data of individuals of British ancestry94 in the UKB phases 1 to 3 data 
(n = 34,691); (2) four European-ancestry validation GWASs, including individuals 
of white ancestry in the UKB phase 4 data and individuals of white but non-British 
ancestry in the UKB phases 1 to 3 data (UKBW, n = 5,056), ABCDE (n = 3,821), 
HCP European (n = 495) and PNC (n = 510); (3) two non-European-ancestry UKB 
validation GWASs, including UKBA (n = 446) and UKBBL (n = 232); and (4) two 
non-European-ancestry non-UKB validation GWASs, including ABCDH (n = 768) 
and ABCDA (n = 1,257). See Supplementary Table 26 for a summary of these 
datasets and demographic information and Supplementary Fig. 29 for an overview 
of study design. The assignment of ancestry in UKB was based on self-reported 
ethnicity (Data-Field 21000), which was verified in Bycroft et al.94. The ancestry 
in ABCD was assigned by combining the self-reported ethnicity and ancestry 
inference results as in Zhao et al.35.

GWAS discovery and validation. Details of genotyping and quality controls can be 
found in the Supplementary Note. SNP heritability was estimated by GCTA34 using 
all autosomal SNPs in the UKB British cohort. We adjusted for the effects of age 
(at imaging), age-squared, sex, age–sex interaction, age-squared–sex interaction, 
imaging site, head location, head motion, head size, long-term drifts and the top 
40 genetic PCs. We removed one of a pair of individuals with estimated relatedness 
larger than 0.025 (using the ‘—grm-cutoff 0.025’ option in GCTA). Genome-wide 
association analysis was performed using fastGWA95 while adjusting the same 
set of covariates as in GCTA. Related individuals were included in fastGWA, and 
linear mixed-effect model-based approaches were used to account for the sample 
relatedness. GWASs were separately performed via PLINK96 in the eight validation 
datasets, including UKBW, UKBBL, UKBA, ABCDA, ABCDH, ABCDE, HCP 
European and PNC, where the effects of age, age-squared, sex, head motion, 
imaging sites (if applicable), head location (if applicable), head size (if applicable), 
long-term drifts (if applicable), scanners (if applicable), age–sex interaction, 
age-squared–sex interaction and the top ten genetic PCs were adjusted for. We 
removed relatives in these validation GWASs.

To validate results in the UKB British discovery GWASs, meta-analysis was 
performed using the sample size weighted approach via METAL97. We examined 
whether the locus-level associations detected in the British GWAS could be 
replicated in (1) the UKBW GWAS, (2) the meta-analyzed four European-ancestry 
validation GWASs (UKBW, ABCDE, HCP European and PNC), (3) the 
meta-analyzed four non-European-ancestry validation GWAS (UKBBL, UKBA, 
ABCDA and ABCDH) and (4) the combination of the above eight validation 
GWASs. Specifically, for each meta-analyzed GWAS, we checked and reported the 
P value of the 603 top lead independent (LD r2 < 0.1) associations identified in the 
UKB British discovery GWASs. PRSs were constructed on eight validation datasets 
using the lassosum98. The summary statistics from UKB British discovery GWAS 
were used as weights, and the individuals of white ancestry in the UKB phase 4 
data were used as validation samples (n = 2,971). For UKBW, the performance was 
evaluated on the individuals of white but non-British ancestry in the UKB phases 
1 to 3 data (n = 1, 940, removing the relatives of validation samples). Ambiguous 
variants (i.e., variants with complementary alleles) were removed from analysis. 
The best prediction accuracy achieved by a single threshold was reported for each 
phenotype, which was measured by the additional phenotypic variation that can be 
explained by the polygenic profile (i.e., the incremental R2) while adjusting for the 
effects of age, sex, motion and the top ten genetic PCs.

The shared loci and genetic correlation. The genomic loci associated with 
intrinsic brain activity traits were defined using FUMA (version 1.3.5e). We 
inputted UKB British discovery summary statistics. To define the LD boundaries, 

FUMA identified independent significant variants, which were defined as variants 
with a P value smaller than the predefined threshold that were independent of 
other significant variants (LD r2 < 0.6). FUMA then constructed LD blocks for 
these independent significant variants by tagging all variants in LD (r2 ≥ 0.6) with 
at least one independent significant variant and had a minor allele frequency 
≥0.0005. These variants included those from the 1000 Genomes reference panel 
that may not have been included in the GWASs. Moreover, within these significant 
variants, independent lead variants were identified as those that were independent 
from each other (LD r2 < 0.1). If LD blocks of independent significant variants 
were close (<250 kb based on the closest boundary variants of LD blocks), they 
were merged into a single genomic locus. Thus, each genomic locus could contain 
multiple significant variants and lead variants. Independent significant variants 
and all the variants in LD with them (r2 ≥ 0.6) were searched by FUMA on the 
NHGRI-EBI GWAS catalog (version 2019-09-24) to look for previously reported 
associations (P < 9 × 10−6) with any traits. LDSC71 software (version 1.0.1) was used 
to estimate and test the pairwise genetic correlation. We used the precalculated 
LD scores provided by LDSC, which were computed using 1000 Genomes 
European data. We used HapMap399 variants and removed all variants in the 
major histocompatibility complex region. The summary statistics of intrinsic brain 
activity traits were from the UKB British discovery GWAS, and the resources of 
other summary statistics are provided in Supplementary Table 9.

Gene-level analysis and biological annotation. Gene-based association analysis 
was performed in UKB British participants for 18,796 protein-coding genes 
using MAGMA80 (version 1.08). Default MAGMA settings were used with zero 
window size around each gene. We then carried out FUMA functional annotation 
and mapping analysis, in which variants were annotated with their biological 
functionality and then were linked to 35,808 candidate genes by a combination of 
positional, expression quantitative trait loci and 3D chromatin interaction mappings. 
Brain-related tissues/cells were selected in all options, and default values were used 
for all other parameters in FUMA. For the detected genes in MAGMA and FUMA, 
we performed lookups in the NHGRI-EBI GWAS catalog (version 2020-02-08) to 
explore their previously reported gene–trait associations. We performed heritability 
enrichment analysis via partitioned LDSC82. Baseline models were adjusted 
when estimating and testing the enrichment scores for our tissue type and cell 
type-specific annotations. Methods to analysis chromatin data of glial and neuronal 
cell subtypes can be found in Hauberg et al.100. MAGMA was also used to explore 
the enriched biological pathways, in which we tested 500 curated gene sets and 9,996 
GO terms from the Molecular Signatures Database101 (version 7.0). Additional gene 
mapping was performed using 14 Hi-C datasets of brain tissue and cell types from 
five recent studies, including (1) the promoter capture Hi-C data of hippocampus 
and dorsolateral prefrontal cortex102; (2) the Hi-C data of hippocampus and 
dorsolateral prefrontal cortex84; (3) the Hi-C data from fetal and adult cortices85, 
restricting to the high confidence interactions; (4) the promoter capture Hi-C data 
of primary astrocytes and three types of induced pluripotent stem cell-derived 
neurons103 (cortical, hippocampal and motor); and (5) proximity ligation-assisted 
chromatin immunoprecipitation sequencing data on sorted fetal neuron cells104, 
including radial glial cells, intermediate progenitor cells, neurons and interneurons. 
For interaction intensity cutoffs, we used 2 for the −log10(P) used in datasets of Jung 
et al.102, 0.05 for the q value in Schmitt et al.84 and Giusti-Rodriguez and Sullivan85, 5 
for the Chicago score in Song et al.103 and 0.01 for the FDR in Song et al.104.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Our GWAS summary statistics are publicly available at Zenodo105 (https://doi.
org/10.5281/zenodo.5775047). The individual-level imaging and genetics data used 
in the present study are available from four publicly accessible data resources: UKB 
(https://www.ukbiobank.ac.uk/), ABCD (https://abcdstudy.org/), HCP (https://
www.humanconnectome.org/) and PNC (https://www.med.upenn.edu/bbl/
philadelphianeurodevelopmentalcohort.html). The Molecular Signatures Database 
dataset can be downloaded from https://www.gsea-msigdb.org/gsea/msigdb/. The 
Hi-C datasets of brain tissue and cell types can be requested or accessed following 
the instructions in the original publications. Our results can also be easily browsed 
through our knowledge portal at https://bigkp.org/.

Code availability
We made use of publicly available software and tools listed in URLs. The codes 
to generate the rsfMRI features are publicly available on Zenodo (https://doi.
org/10.5281/zenodo.5784010). Other codes used in our analyses are available upon 
reasonable request.
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Extended Data Fig. 1 | Genetic locus at 19q13.21 associated with both rsfMRI trait of brain activity and brain-related complex traits and disorders. At 
19q13.32, we observed colocalization (LD r2 ≥ 0.6) between the amplitude of the precuneus region in the default mode and central executive networks and 
Alzheimer’s disease (shared index SNP rs429358). Location of the displayed rsfMRI trait (amplitude of the precuneus) is illustrated in the right panel.
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Extended Data Fig. 2 | Genetic locus at 2p16.1 associated with both rsfMRI trait of brain activity and brain-related complex traits and disorders. At 
2p16.1, we observed colocalization (LD r2 ≥ 0.6) between the functional connectivity among the default mode, central executive, and salience networks 
(index SNP rs2678890) and schizophrenia (index SNP rs1518395). Location of the displayed rsfMRI trait (functional connectivity between precuneus & 
cuneus and superior frontal & middle frontal regions) is illustrated in the right panel.
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