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Abstract
To elucidate the molecular mechanisms underlying genetic variants identi-
fied from genome-wide association studies (GWAS) for a variety of phenotypic
traits encompassing binary, continuous, count, and survival outcomes, we pro-
pose a novel and flexible method to test for mediation that can simultaneously
accommodatemultiple genetic variants and different types of outcome variables.
Specifically, we employ the intersection–union test approach combined with the
likelihood ratio test to detect mediation effect of multiple genetic variants via
some mediator (e.g., the expression of a neighboring gene) on outcome. We fit
high-dimensional generalized linear mixed models under the mediation frame-
work, separately under the null and alternative hypothesis. We leverage Laplace
approximation to compute the marginal likelihood of outcome and use coor-
dinate descent algorithm to estimate corresponding parameters. Our extensive
simulations demonstrate the validity of our proposed methods and substantial,
up to 97%, power gains over alternative methods. Applications to real data for
the study ofChlamydia trachomatis infection further showcase advantages of our
methods. We believe our proposed methods will be of value and general interest
in this post-GWAS era to disentangle the potential causal mechanism fromDNA
to phenotype for new drug discovery and personalized medicine.
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1 INTRODUCTION

Dissection ofmediation pathways underlying genetic asso-
ciationwill enhance understanding of diseasemechanisms
and biomarker development. An example is Chlamydia
trachomatis infection. Chlamydia is the leading bacterial

sexually transmitted infection in the United States (Cen-
ters for Disease Control and Prevention, 2019). Infection
is often asymptomatic and after ascending to the upper
genital tract may cause severe reproductive morbidities in
women. Repeated infection leads to worse disease. Host
genetics shapes susceptibility to chlamydia disease and/or
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reinfection (Bailey et al., 2009; Taylor et al., 2017; Zheng
et al., 2018). DNA biomarkers for susceptibility to ascen-
sion or risk of reinfection are critically needed for targeted
screening for women at high risk of disease and vaccine
development. Genome-wide association studies (GWAS)
provide candidate loci, but lack mechanistic interpreta-
tions. Although expression quantitative trait loci (eQTL)
mapping can provide mechanistic hypotheses, GWAS and
eQTL both only analyze two sources of data. There is a
significant unmet need for simultaneous modeling of all
three sources of data (namely, genetic variants, gene ex-
pression, and final outcome) by directly testing the
mediation effects of multiple correlated single nucleotide
polymorphisms (SNPs) via the expression of some gene
(e.g., eGene associated with the eQTL SNP) on chlamydia
ascension (binary outcome) and reinfection (time-to-event
outcome).
Mediation analysis was first proposed by Baron and

Kenny to study the association between an independent
variable and an outcome by adding an intermediate
variable, which is called the mediator (Baron and Kenny,
1986). In genetics and genomics studies, researchers
are interested in testing mediation effects of the genetic
variant(s) on the outcome through a certainmediator (e.g.,
the expression level of a neighboring gene). Non-Gaussian
outcomes, such as binary, count, and time-to-event
outcomes (e.g., disease status, time until death), are
commonly present in mediation analyses but have been
understudied. Huang et al. developed mixed model-based
methods that can handle binary and time-to-event out-
comes but assume a priori that the genetic variants under
testing are eQTLs (Huang et al., 2015, 2016).
We have previously proposed a method, multi-SNP

mediation intersection-union test (SMUT), to assess
mediation effect of high-dimensional genetic variants
on any continuous outcome (Zhong et al., 2019). To the
best of our knowledge, none of the existing methods can
jointly test mediation effects of multiple correlated SNPs
(not necessarily all eQTLs) on a non-Gaussian outcome.
Here, we propose a generalized multi-SNP mediation
intersection–union test to evaluate mediation effects of
multiple correlated SNPs on a non-Gaussian outcome
without prior knowledge of eQTLs. Both SMUT and
methods proposed in this work are extensions of Baron
and Kenny’s framework and leverage intersection-union
test (IUT) (Berger and Hsu, 1996) to decompose mediation
into two separate regression models. While our earlier
SMUT method handles only Gaussian outcome, methods
proposed here allow non-Gaussian outcomes by adopting
the generalized linear mixed model (GLMM) (McCulloch
et al., 2008) or the mixed effects Cox proportional hazards
(PH) model (Vaida and Xu, 2000; Pankratz et al., 2005).
More details germane to the differences between SMUT

and methods proposed here are given in Supporting Infor-
mation Section 1. For presentation brevity, we hereafter
refer to our method for a binary or count outcome as
SMUT_GLM; while that for a time-to-event outcome as
SMUT_PH.
The rest of this article is organized as follows. In

Section 2, we present details of our proposed meth-
ods SMUT_GLM and SMUT_PH, followed by simulation
studies and real data application in Sections 3 and 4,
respectively. Finally, Section 5 concludes the article with
some discussions.

2 METHODS

2.1 Notation

Without loss of generality, we assume that we have four
types of data, namely, genotypes (as the potential causal
variables), gene expression measurements (as the media-
tor, which can be other types of molecular measures such
as metabolite levels or protein abundances), phenotypic
trait (as the final outcome), and other covariates (e.g., age,
gender). Let 𝑮 be the 𝑛 × 𝑞 genotype matrix, where 𝑛 is
the sample size, 𝑞 is the number of SNPs, and 𝐺𝑖𝑗 is the
number of copies of the minor allele for the 𝑖th individual
at the 𝑗th SNP. Let 𝑿 be the 𝑛 × 𝑝 covariate matrix and
𝑋𝑖𝑗 denote the 𝑗th covariate variable for the 𝑖th individ-
ual. Let𝑴 = (𝑀1,𝑀2, … ,𝑀𝑛)

𝑇 and 𝒀 = (𝑌1, 𝑌2, … , 𝑌𝑛)
𝑇 ,

where𝑀𝑖 and 𝑌𝑖 denote the mediator and the outcome for
the 𝑖th individual, respectively. If 𝑌𝑖 is a binary or count
outcome, 𝑌𝑖 is related to the model in Equation (2); if 𝑌𝑖

is a time-to-event outcome, 𝑌𝑖 is related to the model in
Equation (3) and𝑌𝑖 = (𝑍𝑖, 𝛿𝑖)where𝑍𝑖 = min(𝑇𝑖, 𝐶𝑖) is the
observation time, 𝑇𝑖 is the failure time, 𝐶𝑖 is the censor-
ing time, and 𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖) is the failure indicator; 𝛿𝑖 = 1

indicates that the failure is observed, and 𝛿𝑖 = 0 indicates
that the response is censored. We apologize for abusing
notations. Basically, we want to use the same notation 𝑌𝑖

to denote different types of outcomes.

2.2 SMUT_GLM and SMUT_PHmodel

SMUT_GLM and SMUT_PH model the effects of SNPs on
the outcome mediated by the expression level of a single
gene via twomodels, namely amediatormodel and an out-
come model. We assume the expression level is continu-
ous and consider a linear model for the mediator model
(Equation 1). As for the outcomemodel,we fit GLMMif the
outcome conditional on SNPs’ effects follows an exponen-
tial family distribution (Equation 2); we fit mixed effects
Cox PH model if the outcome is a time-to-event variable
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(Equation 3).

Mediator model: 𝑀𝑖 = 𝛼1 +

𝑝∑
𝑗=1

𝑋𝑖𝑗𝜄
𝑀
𝑗
+

𝑞∑
𝑗=1

𝐺𝑖𝑗𝛽𝑗 + 𝜖𝑖

(1)

Exponential family outcome model:

𝑔{𝐸(𝑌𝑖|𝜸)} = 𝛼2 +𝑀𝑖𝜃 +

𝑝∑
𝑗=1

𝑋𝑖𝑗𝜄𝑗 +

𝑞∑
𝑗=1

𝐺𝑖𝑗𝛾𝑗 (2)

Survival outcome model:

𝜆(𝑡𝑖) = 𝜆0(𝑡𝑖) exp

(
𝑀𝑖𝜃 +

𝑝∑
𝑗=1

𝑋𝑖𝑗𝜄𝑗 +

𝑞∑
𝑗=1

𝐺𝑖𝑗𝛾𝑗

)
(3)

where 𝛼1, 𝛼2 are fixed intercepts; fixed effects 𝜾𝑴 =

(𝜄𝑀1 , 𝜄𝑀2 , … , 𝜄𝑀𝑝 )𝑇 and 𝜾 = (𝜄1, 𝜄2, … , 𝜄𝑝)
𝑇 are vectors of covari-

ates’ effects on the mediator and outcome, respectively;
random effect 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑞)

𝑇 is a vector of SNPs’
effects on the mediator; fixed effect 𝜃 is the media-
tor’s effect on the outcome. The random effect 𝜸 =

(𝛾1, 𝛾2, … , 𝛾𝑞)
𝑇 is a vector of SNPs’ effects on the outcome;

error terms 𝜖1, 𝜖2, … , 𝜖𝑛 ∼i.i.d. 𝑁(0, 𝜎2); 𝑔 is the link func-
tion; 𝜆(𝑡𝑖) is the hazard function; 𝜆0(𝑡𝑖) is an unspeci-
fied baseline hazard function. We have showed that the
hypotheses H0 ∶ 𝜷𝜃 = 𝟎 versus H1 ∶ 𝜷𝜃 ≠ 𝟎 are valid for
testing the mediation effect in Supporting Information
Section 8, where 𝜷𝜃 ≠ 𝟎 implies that SNPs exert media-
tion effects on the outcome. Following our previous work
(Zhong et al., 2019), we employ IUT to decompose the
hypothesis testing H0 ∶ 𝜷𝜃 = 𝟎 versus H1 ∶ 𝜷𝜃 ≠ 𝟎 into
two subhypotheses H

𝜷
0 ∶ 𝜷 = 𝟎 versus H

𝜷
1 ∶ 𝜷 ≠ 𝟎 and

H𝜃
0 ∶ 𝜃 = 0 versus H𝜃

1 ∶ 𝜃 ≠ 0, such that H0 = H𝜃
0 ∪ H

𝜷
0

and H1 = H𝜃
1 ∩ H

𝜷
1 . Suppose the 𝑝 values for testing 𝜷 and

𝜃 being zero are 𝑝1 and 𝑝2, respectively. Then the 𝑝 value
for testing 𝜷𝜃 being zero, using IUT, is the maximum of 𝑝1
and𝑝2. In the following sections,we provide details regard-
ing how to separately test 𝜷 and 𝜃 to obtain 𝑝1 and 𝑝2.

2.3 Testing 𝜷 in the mediator model and
𝜽 in the outcomemodel

As in Zhong et al. (2019), we adopt the widely used
sequence kernel association test (SKAT)method (Wu et al.,
2011) to test 𝜷 in the mediator model to accommodate a
potentially large number of correlated SNPs.
Our strategy for testing 𝜃 in the outcome model con-

sists of four steps: (1) formulation of the likelihood func-
tion based on the nature of the outcome random variable

𝒀, (2) Laplace approximation of the likelihood function, (3)
application of the coordinate descent algorithm (Fu, 1998;
Daubechies et al., 2004) to estimate parameters by maxi-
mizing the approximated likelihood function, and (4) cal-
culation of the likelihood ratio statistic. These four steps
allow us to test themediator effect 𝜃 in the outcomemodel.

2.4 Likelihood function for the outcome
model

To reduce the dimensionality of parameters in the outcome
model, we adopted a linear mixed model for continuous
outcome in our previous work (Zhong et al., 2019). We
assume 𝑌1, 𝑌2, … , 𝑌𝑛 are independent and identically dis-
tributed. When the outcome 𝑌𝑖(𝑖 = 1, 2, … , 𝑛) conditional
on 𝜸 follows an exponential family distribution, we adopt
the GLMM in Equation (2).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛾𝑗 ∼i.i.d. 𝑁
(
0, 𝜎2𝛾

)
𝑔(𝜇𝑖) = 𝜂𝑖 = 𝛼2 +𝑀𝑖𝜃 +

𝑝∑
𝑗=1

𝑋𝑖𝑗𝜄𝑗 +

𝑞∑
𝑗=1

𝐺𝑖𝑗𝛾𝑗

𝐸(𝑌𝑖|𝜸) = 𝜇𝑖

𝐿(𝒚|𝜸) = ∏𝑛

𝑖=1 exp

{
𝑦𝑖𝜏𝑖 − 𝑏(𝜏𝑖)

𝑎(𝜙)
+ 𝐶(𝑦𝑖, 𝜙)

}
, (4)

where 𝜏𝑖 is the canonical parameter; 𝜙 is the disper-
sion parameter; 𝐿(𝒚|𝜸) is the likelihood function of the
outcome 𝒀 conditional on 𝜸 . When the outcome 𝑌𝑖(𝑖 =

1, 2, … , 𝑛) is a time-to-event variable, we adopt the mixed
effects Cox PH model in Equation (3).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛾𝑗 ∼i.i.d. 𝑁
(
0, 𝜎2𝛾

)
𝜂𝑖 = 𝑀𝑖𝜃 +

𝑝∑
𝑗=1

𝑋𝑖𝑗𝜄𝑗 +

𝑞∑
𝑗=1

𝐺𝑖𝑗𝛾𝑗

𝜆(𝑡𝑖) = 𝜆0(𝑡𝑖) exp 𝜂𝑖

𝑃𝐿 =
∏𝑛

𝑖=1

(
exp 𝜂𝑖∑

𝑘∈𝑅𝑖
exp 𝜂𝑘

)𝛿𝑖

, (5)

where 𝑅𝑖 = {𝑘 ∶ 𝑍𝑘 ≥ 𝑍𝑖} is the risk set and 𝑃𝐿 is the par-
tial likelihood function conditional on 𝜸 . For the GLMM
in (4), 𝓁(𝒚|𝜸) denotes log{𝐿(𝒚|𝜸)} and 𝐿(𝒚) denotes the
likelihood function of the outcome unconditional on 𝜸;
for the mixed effects Cox PH model in (5), 𝓁(𝒚|𝜸) denotes
log(𝑃𝐿) and 𝐿(𝒚) denotes the partial likelihood of the
outcome unconditional on 𝜸 . We again apologize for abus-
ing notations. Our basic rationale is to employ the same
notation𝓁(𝒚|𝜸) and 𝐿(𝒚) to denote different log-likelihood
and likelihood functions, respectively, for different types
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of outcomes. Let 𝑓𝜸(𝜸) be the probability density function

of 𝜸 , and 𝑓𝜸(𝜸) = (2𝜋𝜎2𝛾)
−

𝑞

2 exp(−
1

2𝜎2𝛾
𝜸𝑇𝜸). Then we have

the following:

𝐿(𝒚) = ∫
𝑅𝑞

exp{𝓁(𝒚|𝜸)}𝑓𝜸(𝜸)𝑑𝜸 = (2𝜋𝜎2𝛾)
−

𝑞

2

× ∫
𝑅𝑞

exp{ℎ(𝜸)}𝑑𝜸, (6)

where ℎ(𝜸) = 𝓁(𝒚|𝜸) − 1

2𝜎2𝛾
𝜸𝑇𝜸 . Technical details are

described in Supporting Information Section 2.1.

2.5 Laplace approximation

Laplace’s method is widely adopted to approximate the
likelihood function (Breslow and Clayton, 1993; Rauden-
bush et al., 2000; Pankratz et al., 2005). The integral in
Equation (6) can be approximated via Laplace’s method by
taking the Taylor expansion to the second order of ℎ(𝜸)
around its maximum point 𝜸 . After inserting the Taylor
expansion into the integral, and taking logarithm, we have
the approximated log-likelihood 𝑓.

log{𝐿(𝒚)} ≈ 𝑓 = −
𝑞

2
log 𝜎2𝛾 + ℎ(𝜸) −

1

2
log ||−ℎ′′(𝜸)||. (7)

For the GLMM in (4), we have

ℎ′′(𝜸) =
𝜕2ℎ

𝜕𝜸𝜕𝜸𝑇
= −

(
𝑮𝑇𝑾𝑮 + 𝜎−2𝛾 𝑰𝑞

)
, (8)

where 𝑰𝑞 is a 𝑞 × 𝑞 identity matrix, 𝑾 = diag(𝑤1,

𝑤2, … ,𝑤𝑛), and𝑤𝑖 is recognizable asGLM (generalized lin-
ear model) iterative weight. For the mixed effects Cox PH
model in (5), we have

ℎ′′(𝜸) =
𝜕2ℎ

𝜕𝜸𝜕𝜸𝑇
= −

(
𝑼 + 𝜎−2𝛾 𝑰𝑞

)
, (9)

where 𝑼 = (𝑢𝑗1𝑗2), 𝑢𝑗1𝑗2 = −
𝜕2(log 𝑃𝐿)

𝜕𝛾𝑗1𝜕𝛾𝑗2
. More details of the

Laplace approximation are given in Supporting Informa-
tion Section 2.2.

2.6 Coordinate descent algorithm

We apply the coordinate descent algorithm to maximize
the approximated log-likelihood in Equation (7). Note that
𝜸 in Equation (7) is a function of other parameters 𝝃 =

(𝛼2, 𝜎
2
𝛾, 𝜙,𝜃, 𝜄1, 𝜄2, … , 𝜄𝑝). Instead of taking implicit differen-

tiation of 𝜸 (Raudenbush et al., 2000), we use the approx-
imation strategy proposed in Schelldorfer et al. (2014),

which regards 𝜸 as fixed when updating 𝝃 . This strategy
is computationally convenient and efficient at little cost
of reduced accuracy. In addition, we take further approx-
imation when taking derivatives of the approximated log-
likelihood function 𝑓. Specifically, for the GLMM in (4),
we assume𝑾 in Equation (8) varies slowly as a function of
(𝜇1, 𝜇2, … , 𝜇𝑛)

𝑇 (Breslow andClayton, 1993). For themixed
effects Cox PHmodel in (5), we similarly assume that𝑼 in
Equation (9) varies slowly as a function of (𝜂1, 𝜂2, … , 𝜂𝑛)

𝑇 .
Under the assumption, the term−

1

2
log | − ℎ′′(𝜸)| in Equa-

tion (7) is ignored when taking derivatives of the approx-
imated log-likelihood function over (𝛼2, 𝜙, 𝜃, 𝜄1, 𝜄2, … , 𝜄𝑝).
Details of the coordinate descent algorithm are given in
Supporting Information Section 2.3. Finally, we employ
the Newton–Raphson algorithm to sequentially update
each parameter.

2.7 Likelihood ratio test

We obtain approximated likelihood under the null and
the alternative hypothesis separately, denoted by 𝐿0 and
𝐿1, respectively. For GLMM, the likelihood ratio statis-
tic 2{log(𝐿1) − log(𝐿0)} asymptotically follows a chi-square
distribution with one degree of freedom and similarly
for the partial likelihood ratio statistics for the survival
outcome.

3 SIMULATION STUDIES

3.1 Simulation settings

To evaluate the performance of SMUT_GLM and
SMUT_PH in comparison with alternative methods,
we conducted extensive simulations to investigate power
and type-I error. Following our previous work (Zhong
et al., 2019), we simulated a dataset of 10,000 pseu-
doindividuals measured at 2891 SNPs with minor allele
frequency (MAF) ≥ 1% in a 1-Mb region using the COSI
coalescent model (Schaffner et al., 2005) to generate
realistic genetic data. The 10,000 pseudoindividuals were
constructed by randomly pairing up 20,000 simulated
chromosomes without replacement. To evaluate power
and type-I error, we generated 500 datasets with 1000
samples each by sampling without replacement from
the entire pool of 10,000 samples simulated above. We
randomly selected a set of causal SNPs, which is shared
across the 500 simulated datasets, from these 2891 SNPs.
We then classified them into three categories: shared SNPs
(sSNPs), mediator specific SNPs (mSNPs), and outcome
specific SNPs (oSNPs). The sSNPs influence both the
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TABLE 1 Causal SNP composition in two simulated scenarios.

Type of
outcome

Sample
size

Sparse or
dense

Number of
causal SNPs

Number of
sSNPs

Number of
mSNPs

Number of
oSNPs

Number of
Noncausal
SNPs

Binary or count 1000 Sparse
Dense

10
500

4
300

3
100

3
100

890
400

Time-to-event 200 Sparse
Dense

10
150

4
90

3
30

3
30

190
50

The sparse(dense) scenario is to simulate datasets based on a small(large) number of causal SNPs. Causal SNPs are the union of shared SNPs, mediator spe-
cific SNPs, and outcome specific SNPs. Shared SNPs have effects on both mediator and outcome. Mediator(outcome)-specific SNPs have effects only on media-
tor(outcome). All these SNPs are randomly selected from the 2891 SNPs with MAF ≥ 1%.

mediator and the outcome, while the mSNPs and oSNPs
only contribute to the mediator and outcome, respectively.
We considered two scenarios in terms of causal SNP

density: sparse and dense (Table 1). For binary or count
outcome, sample size is 1000 and there are 10 and 500
causal SNPs for sparse and dense scenarios, respectively.
For the time-to-event outcome, sample size is 200 and
there are 10 and 150 causal SNPs for sparse and dense
scenarios, respectively. When we fit the model, both the
causal and noncausal SNPs (Table 1) are included in the
model. Thus, the distribution of coefficients of genetic
variants is effectively misspecified for all the simulations.
Covariates matrix 𝑿 consists of a continuous variable
generated from 𝑁(0, 1) and a binary variable generated
from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5). We generated the mediator via 𝑀𝑖 =

𝛼1 + (𝑮𝑠𝑚
𝑖
)𝑇𝜷 + (𝑿𝑖)

𝑇𝜾𝑴 + 𝜖𝑖 , where 𝑮𝑠𝑚
𝑖

denotes the vec-
tor of genotype data for the 𝑖th individual from sSNPs and
mSNPs, 𝑿𝑖 denotes the vector of the covariates for the 𝑖th
individual, 𝛼1 = 1, 𝜾𝑴 = (0.5, −0.5)𝑇 , 𝜷 ∼ 𝑐𝛽𝑁(𝟎, 𝑰𝑞), and
𝑐𝛽 is a scalar to scale the SNPs’ effects; 𝜖𝑖 ∼ 𝑁(0, 1). We
generated the binary or count outcome via 𝑔{𝐸(𝑌𝑖|𝜸)} =
𝛼2 +𝑀𝑖𝜃 + (𝑮𝑠𝑜

𝑖
)𝑇𝜸 + (𝑿𝑖)

𝑇𝜾, where 𝑮𝑠𝑜
𝑖
denotes the vec-

tor of genotype data for the 𝑖th individual from sSNPs and
oSNPs, 𝛼2 = 0, 𝜾 = (0.5, −0.5)𝑇 , 𝜸 ∼ 𝑐𝛾𝑁(𝟎, 𝑰𝑞), and 𝑐𝛾 =

0.2. The link function 𝑔 was specific to the type of the
outcome (Supporting Information Section 2.1). We gener-
ated the time-to-event outcome based on theWeibull base-

line hazard via 𝑡𝑖 = [−
log(𝑣)

𝜆 exp{𝑀𝑖𝜃+(𝑮
𝑠𝑜
𝑖
)𝑇𝜸+(𝑿𝑖)𝑇𝜾}

]
1

𝜌 and 𝑐𝑖 ∼

Exp(0.001), where 𝑡𝑖 is failure time and 𝑐𝑖 is censoring time,
𝑣 ∼ Unif(0, 1), shape 𝜌 = 1, scale parameter 𝜆 = 0.01. Note
that across the 500 datasets, error terms 𝝐 were separately
simulated for each dataset, but 𝜷 and 𝜸 were fixed.
In the simulations, we tested the mediation effects of

these SNPs on the binary, count, or time-to-event out-
come using SMUT_GLM and SMUT_PH, as well as other
methods including SMUT, adapted least absolute shrink-
age and selection operator (LASSO) (Tibshirani, 1996),
and adapted Huang et al.’s method. In order to com-
pare the performance of approximations that we adopted,
we considered two versions of our method, both treat-

ing 𝜸 as fixed: (1) based on exact derivatives; (2) based
on approximated derivatives. For a binary or count out-
come, we refer to these two versions as SMUT_GLM exact
and SMUT_GLMapproxi. For a time-to-event outcome,we
refer to the approximated version as SMUT_PH approxi.
The exact version of SMUT_PH is not employed because
it is hard to derive analytically. SMUT is naively applied
to binary and count outcomes by treating them as con-
tinuous variables. The adapted LASSO approach adopts
SKAT to consider all the genetic variant in the media-
tor model, while in the outcome model, employs LASSO
for variable selection on all genetic variants as well as
mediator and covariates, then refits GLM on the selected
genetic variants together with mediator and covariates
(latter two will be included regardless of LASSO vari-
able selection results), and finally combines 𝑝 values from
the mediator and the refitted outcome model via IUT.
The adapted Huang et al.’s method employs SKAT in
the mediator model, adopts the original Huang et al.’s
method in the outcome model, and then combines 𝑝 val-
ues from the two models via IUT. We use adapted LASSO
and SKAT + LASSO exchangeably. Similarly, we use
adapted Huang et al. and SKAT + Huang et al. exchange-
ably. Details of the adapted LASSO and adapted Huang
et al.’s method are provided in Supporting Information
Section 3.
To test the robustness and generalizability of the meth-

ods, we considered two alternative situations where some
assumptions are violated. The first situation is the vio-
lation of the assumption that coefficients of genetic
variants follow a Gaussian distribution. The second
situation is when there is an unobserved mediator that is
not adjusted in the analysis. Details and results of these two
simulation studies are given in Supporting Information
Section 4.

3.2 Type-I error in simulations

We evaluated the validity of SMUT_GLM and SMUT_PH
along with alternative methods in simulations.
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F IGURE 1 For binary outcome, power and type-I error under sparse causal SNPs scenario. The x-axis is the true mediator effect(𝜃) on the
outcome. The y-axis is the power or type-I error. Subfigures vary in the 𝑐𝛽 value. 𝑐𝛽 = 0 (top-left subfigure) or 𝜃 = 0 (left-most points in each
subfigure) are null settings where the y-axis represents the corresponding type-I error. When 𝑐𝛽 ≠ 0 and 𝜃 ≠ 0, it is under alternative hypothesis
and the y-axis represents the corresponding power. Line for the approximated version of SMUT_GLM is overlapped with the exact version. This
figure appears in color in the electronic version of this article, and any mention of color refers to that version.

SMUT_GLM and SMUT_PH exhibited controlled type-I
error rates, at 𝛼 = 0.05 level, regardless of causal SNP
density and types of outcome, as shown in Figures 1
and 2 for binary outcome in sparse and dense scenarios,
respectively, Figures 3 and 4 for the time-to-event outcome
in sparse and dense scenarios, respectively, and Web
Figures S1 and S2 for count outcome in sparse and dense
scenarios, respectively. In each figure, the first panel
(𝑐𝛽 = 0) and the leftmost point (𝜃 = 0) in other panels
(𝑐𝛽 ≠ 0) all correspond to the null of no mediation of the
SNPs through the mediator. SMUT, adapted LASSO, and
adapted Huang et al.’s method also showed protected
type-I error.

3.3 Power in simulations

SMUT_GLM and SMUT_PH demonstrated substantial
power gains under both the sparse and dense scenar-

ios. We also observed that the approximated version
of SMUT_GLM demonstrated very similar performance
when compared with its exact counterpart. For example,
for binary outcome and under the scenario of dense causal
SNPs when 𝑐𝛽 = 0.6, 𝜃 = 0.1, exact SMUT_GLM, approxi-
mated SMUT_GLM, SMUT, adapted LASSO, and adapted
Huang et al. had 97%, 96%, 17%, 54%, and 0% power, respec-
tively. Thus, the power gain from the exact SMUT_GLM
was 80%, 43%, and 97% compared with SMUT, adapted
LASSO, and adaptedHuang et al., respectively. The approx-
imated SMUT_GLM had similar power gains. For the
time-to-event outcome, under the scenario of dense causal
SNPs when 𝑐𝛽 = 1, 𝜃 = 0.075, approximated SMUT_PH
and adapted LASSO had 69% and 41% power, respectively,
leading to a power gain of 28%. In addition, power gains
appeared more profound with increasing 𝑐𝛽 likely because
adapted LASSO and adapted Huang et al. becomes more
conservative as the pleiotropy effect of SNPs on mediator
and outcome (measured by 𝑐𝛽) increases.
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F IGURE 2 For binary outcome, power and type-I error under the dense causal SNPs scenario. The x- and y-axes are the same as in Figure 1.
Line for the approximated version of SMUT_GLM is overlapped with the exact version. This figure appears in color in the electronic version of
this article, and any mention of color refers to that version.

4 REAL DATA APPLICATION

Weassessed ourmethods and alternatives in real data from
two clinical cohorts, which were designed for the study
of chlamydia infection.Chlamydia trachomatis can ascend
from the cervix to the uterus and fallopian tubes in some
women, potentially resulting in pelvic inflammatory dis-
ease and severe reproductive morbidities, including infer-
tility and ectopic pregnancy. Recurrent infection leads to
a worse disease. We analyzed genotype, gene expression,
and phenotype data of 200 participants combined from
two cohorts, the Anaerobes and Clearance of Endometri-
tis (ACE) cohort and the T cell Response Against Chlamy-
dia (TRAC) cohort (Russell et al., 2015). The Institutional
Review Boards for Human Subject Research at the Uni-
versity of Pittsburgh and the University of North Carolina
approved the study, and all participants provided written
informed consent prior to inclusion. Descriptions of the
ACE and TRAC cohorts, processing and quality control of
genotype and gene expression data, and details of eQTL

analysis and mediation analysis of other genes are avail-
able in Supporting Information Section 6.

4.1 Binary outcome

The outcome of interest is ascending chlamydia infec-
tion, among participants who had chlamydia infection at
enrollment. The control group is the 71 participants who
had chlamydia infection restricted to the cervix, and the
case group is the 72 participants with both cervical and
endometrial chlamydia infection at enrollment. We ana-
lyzed genotype, gene expression, and phenotype data from
these 143 participants.
Here we presented SOS1 and CD151 gene, which were

biologically related to the outcome, to illustrate the appli-
cation of our proposed methods to a binary outcome. SOS
Ras/Rac Guanine Nucleotide Exchange Factor 1 (SOS1) is
a guanine nucleotide exchange factor that in humans is
encoded by the SOS1 gene. The importance of SOS1 for
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F IGURE 3 For the time-to-event outcome, power and type-I error under sparse causal SNPs scenario. The x- and y-axes are the same as
in Figure 1. This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

TABLE 2 Real data application to TRAC and ACE datasets.

p Values
Type of outcome
Binary
Binary

Gene
SOS1
CD151

Probesets
2140519
1940132

Number of SNPs
83
40

SMUT_GLM
0.0235
0.0245

LASSO
0.0691
0.1192

Huang et al.
0.0229
0.2289

Time-to-event BIRC3 7210154 4 SMUT_PH
0.001

LASSO
0.001

Huang et al.
0.002

chlamydia invasion of host cells has been indicated bymul-
tiple biomedical studies (Carabeo et al., 2007; Lane et al.,
2008; Hackstadt, 2012; Bastidas et al., 2013; Mehlitz and
Rudel, 2013; Elwell et al., 2016). The CD151 gene encodes
a protein that is known to complex with integrins. It pro-
motes cell adhesion and may regulate integrin traffick-
ing and/or function. It is a member of the tetraspanin
family, which is considered as the gateway for infection
(Hauck and Meyer, 2003; Hemler, 2008; Hassuna et al.,
2009; Join-Lambert et al., 2010; Monk and Partridge, 2012;
Seu et al., 2017). In addition, SNPs annotation database,
RegulomeDB (Boyle et al., 2012), demonstrates that some

SNPs in these two genes are eQTLs with experimental
evidence. Thus, the presence of mediation effect via the
expression of each gene is expected.
For the first gene SOS1, mediation testing encompassed

83 SNPs with MAF ≥ 10% and significant eQTL associa-
tion (with SOS1) at a false discovery rate (FDR) threshold
of 10%, using SMUT_GLM, adapted LASSO and adapted
Huang et al.’s method. Both SMUT_GLM and adapted
Huang et al.’s method detected significant mediation
effects, while adapted LASSO did not (Table 2). For the sec-
ond gene CD151, our mediation (via expression of CD151)
testing involved 40 SNPs with MAF ≥ 10% and significant
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F IGURE 4 For the time-to-event outcome, power and type-I error under dense causal SNPs scenario. The x- and y-axes are the same as
in Figure 1. This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

eQTL (withCD151) at FDR 10%. Only SMUT_GLM showed
significant mediation effects of these SNPs through the
expression of CD151 on ascending chlamydia infection
(Table 2). Marginal effects of selected SNPs on SOS1 and
CD151 gene expression and ascending chlamydia infec-
tion are visually illustrated in Web Figures S19 and S20,
respectively.

4.2 Time-to-event outcome

TRAC participants returned for follow-up visits at 1, 4, 8,
and 12 months after enrollment. The outcome of inter-
est we evaluated here is time to the first incident chlamy-
dia infection. We analyzed genotype, gene expression,
and time-to-event data from all 181 participants in the
TRAC cohort who had both genotype and gene expression
data available.
Here we selected the BIRC3 gene, which was biologi-

cally related to the outcome, to illustrate the application
of our proposed methods to a time-to-event outcome. The

gene BIRC3 encodes for Baculoviral IAP repeat containing
3, a E3 ubiquitin-protein ligase regulating NF-𝜅B signal-
ing (Blankenship et al., 2009; Kim et al., 2010; Tan et al.,
2013). It acts as an important regulator of pathogen recog-
nition receptor signaling (Bertrand et al., 2009), which can
have profound effects on the development of downstream
adaptive immune responses (Takeda et al., 2003; Palm and
Medzhitov, 2009; Kumar et al., 2011). In addition, biological
studies suggested that BIRC3may protectmammalian host
cells against apoptosis, leading to accommodate chlamy-
dial growth (Bryant et al., 2004; Park et al., 2004; Paland
et al., 2006; Ying et al., 2008). Therefore, the mediation
effect via the expression of the BIRC3 gene is logical. Our
mediation testing involved four SNPswithMAF≥ 10% and
eQTL (with BIRC3) at FDR 10%, using SMUT_PH, adapted
LASSO and adapted Huang et al.’s method. All the meth-
ods showed significant mediation effects through BIRC3
on incident chlamydia infection (Table 2). Marginal effects
of selected SNPs on the BIRC3 gene expression and time
to the first incident chlamydia infection are visually illus-
trated in Web Figures S21.
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5 DISCUSSION

Our proposed methods, SMUT_GLM and SMUT_PH,
extend our previous work (Zhong et al., 2019) to test the
mediation effect of multiple correlated genetic variants on
a non-Gaussian outcome through a mediator. We adopt a
mixed model–based approach to handle high dimension
of genetic variants and do not apply any variable selection
of genetic variants. Our proposed methods are statistically
more powerful than alternative methods including SMUT,
adapted LASSO, and adapted Huang et al.’s method. Anal-
ysis and discussions of possible reasons underlying alter-
native methods’ power loss are in Supporting Information
Section 5. The approximated version of SMUT_GLM and
SMUT_PH are also computationally efficient (Supporting
Information Section 7.2).
One limitation of our proposed methods is that we

assume the effects of genetic variants follow a Gaussian
distribution. This may not be correct when there are non-
causal SNPs in the model, and in this case a mixture dis-
tribution might be more appropriate. It is reassuring to
observe protected type-I error from our simulation stud-
ies, which included a large number of noncausal SNPs in
all scenarios considered. In addition, supplementary sim-
ulation studies (Supporting Information Section 4) fur-
ther demonstrate controlled type-I error when the effects
of genetic variants follow a mixture of two Gaussian dis-
tributions. More properly modeling the effects of genetic
variants may further increase the statistical power under
the alternative hypotheses but due to modeling com-
plexity and subsequently inevitable computational costs,
we decided not to further pursue this in our current
work.
Our proposed methods can be further extended to han-

dle multiple correlated outcomes for additional power
gains as well as to accommodate multiple potentially cor-
related mediators to jointly assess their mediation effects.
Besides, we could adopt nonparametric methods to handle
themediatormodel and outcomemodelwithmore flexibil-
ity. Details germane to possible methodological extensions
are presented in Supporting Information Section 7.1. We
anticipate our proposed methods will become a powerful
tool to bridge the gap in terms of molecular mechanisms
between various types of phenotypes and the correspond-
ing associated genetic variant(s) identified in the recent lit-
erature.
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