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At a Glance Commentary

Current scientific knowledge on the subject: Genetic modifiers affect lung disease severity. 

What this study adds to the field: This is the largest pre-modulator GWAS to date for lung 

function in CF, using recently generated WGS. Genetic variation controlling CF lung disease 

severity spans the biological spectrum, from innate immunity to lung development, and defines 

key genes and pathways for future exploration.

Supported by the Cystic Fibrosis Foundation (CUTTIN18XX1, BAMSHA18XX0, 

KNOWLE18XX0), Canadian Institutes of Health Research (FRN 167282), and Cystic Fibrosis 

Canada (2626). Was additionally supported by NIH/NIDDK P30 DK065988 and CFF 

BOUCHE19R0. Support provided by NHLBI, through the BioData Catalyst program (award 

1OT3HL142479-01, 1OT3HL142478-01, 1OT3HL142481-01, 1OT3HL142480-01, 

1OT3HL147154). This work was also funded by the Government of Canada through Genome 

Canada (OGI-148) and supported by a grant from the Government of Ontario. Any opinions are 
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Short running head: Genetic modifiers of CF lung disease severity

Category: 9.16 Cystic Fibrosis: Basic Science 

Word count: 3797

This article has an online supplement, which is accessible from this issue's table of contents 

online at www.atsjournals.org. 
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ABSTRACT

Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic 

fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR genetic influence. 

Identification of genetic modifiers has prognostic and therapeutic importance.

Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease 

severity.

Methods: Whole genome sequencing (WGS) data on 4,248 unique pwCF with pancreatic 

insufficiency (PI) and lung function measures were combined with imputed genotypes from an 

additional 3,592 PI patients from the US, Canada, and France. This report describes association 

of ~15.9 million single nucleotide polymorphisms (SNPs), using the quantitative Kulich Normal 

Residual Mortality Adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using pre-

modulator lung function data. 

Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide 

association, gene level, and pathway analyses. Pathway analyses identified novel associations 

with genes that have key roles in organ development, and we hypothesize these genes may relate 

to dysanapsis and/or variability in lung repair. Results confirmed and extended previous GWAS 

findings. These WGS data provide finely mapped genetic information to support mechanistic 

studies. No novel primary associations with common single variants or with rare variants were 

found. Multi-locus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were 

identified. Variant effect size estimates at associated loci were consistently ordered across the 

cohorts, indicating possible age or birth cohort effects.
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Conclusions: This pre-modulator genomic, transcriptomic, and pathway association study of 

7,840 pwCF will facilitate mechanistic and post-modulator genetic studies and, development of 

novel therapeutics for CF lung disease. 

There are 250 words in this abstract.

Keywords: cystic fibrosis, whole genome sequencing, lung disease severity, GWAS/TWAS, 

pathway analyses
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INTRODUCTION

Lung disease is the major cause of morbidity and mortality in people with cystic fibrosis 

(pwCF; CF) (1), but the severity can vary widely among individuals. In part, this variation 

reflects genetic variants in cystic fibrosis transmembrane conductance regulator (CFTR) (2) that 

span a spectrum of severity, from complete loss-of-function (LOF) mutations that are associated 

with exocrine pancreatic insufficiency (PI), to CFTR variants with residual function  (2). 

Additionally, while environmental influences contribute to lung disease variability, non-CFTR 

modifier genes also play a role (heritability 0.54) (3, 4). While recent advances in CFTR 

modulator therapies have improved outcomes for many pwCF, some do not benefit due to non-

responsive genetic variants in CFTR. Continued exploration of non-CFTR genetic modifiers is 

expected to provide new therapeutic targets (5).

A previously published genome-wide association study (GWAS) for lung disease severity 

in pwCF with PI reported modifier variants at five loci (6), with an additional significant GWAS 

locus identified using improved imputation of SNP genotypes from the primary paper (7). These 

previous studies utilized whole genome SNP arrays and a validated lung disease phenotype, 

Kulich Normal Residual Mortality Adjusted (KNoRMA), which is based on multiple 

measurements of forced expiratory volume in one second (FEV1), corrected for sex, age and 

survival, enabling analysis across different ages and cohorts (6). 

Whole genome sequencing (WGS) has made it possible to study genotype-phenotype 

associations at high resolution. The Cystic Fibrosis Genome Project (CFGP) is a multi-site 

consortium to dissect molecular sources for the variability of phenotypes in pwCF (8). We 

reasoned that combining data from WGS samples with samples and data from prior GWAS 

would provide a highly resolved picture of CF lung disease phenotype-genotype associations and 
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a more detailed biological understanding of CF lung disease. We report extensive analyses using 

KNoRMA, calculated from lung function data prior to modulator therapy, to identify genetic 

modifiers of pulmonary disease in 7,840 pwCF, the largest such study to date. These rigorous 

pre-modulator data will inform both ongoing therapeutic development studies and serve as a 

basis for future post-modulator genome studies.

Some of the results of these studies have been previously reported in the form of an 

abstract (9).

METHODS

The online Supplement includes numerous details, with brief descriptions provided here.

A total of 5,199 CFGP samples were sequenced (8). Of those, 4,248 were PI patients with 

sufficient pre-modulator lung function measures for inclusion from three studies/sites: the Gene 

Modifier Study (GMS)/University of North Carolina (UNC); the Twin & Sibling Study (TSS) 

and CF-Related Diabetes Studies/Johns Hopkins University (JHU); and the Early Pseudomonas 

Infection Control Study (EPIC)/University of Washington (UW) (Table 1). These WGS data 

were combined with an independent set of 3,592 patients with genome-wide genotypes imputed 

from TOPMed data (10) from array-based genotypes (6) (total = 7,840).

A validated quantitative lung function trait was calculated using the KNoRMA phenotype 

(6), which allows analyses across age, gender, and cohorts. KNoRMA is based on multiple 

measures of FEV1 over three years using data from the CF Foundation Patient Registry (CFFPR 
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2017) (11), and is corrected for age, sex, and survival. A disease progression and mortality-

adjusted phenotype such as KNoRMA increases statistical power while reducing the need for 

stratification or additional covariates. For this study, in order to avoid the confounding effects of 

recently approved modulators, KNoRMA was calculated from FEV1 prior to modulator therapy 

(see Supplement for details). 

CFGP samples were sequenced to ~30X coverage with careful quality/identity checks 

(see details in Supplement). The GWAS array-based data and cohorts were described previously 

(6). Genetic imputation for the non-CFGP samples was performed as described (10). 

Analyses used a quantitative trait of lung disease severity (KNoRMA) (6). The primary 

analyses included non-rare single-variant SNP testing (minor allele count > 20). Association was 

tested using KNoRMA as a response in an additive effect mixed model, using ancestry, sex, and 

terms for site×platform combinations as covariates. A genetic relatedness matrix was used to 

account for the small proportion of families and cryptic relatedness. Results were combined 

across site×platform as a fixed-effect meta-analysis. P value thresholds were applied at the 

genome-wide significance level (P < 5 × 10-8) (12), and we considered SNPs with P < 5 ×10-7 to 

be suggestive.

For the significant GWAS loci, we ran CAVIAR (Causal Variants Identification in 

Associated Regions), to assess evidence of SNP causality (13). The Ensembl Variant Effect 

Predictor (VEP) was used to determine putative effects of variants on genes, transcripts, protein 

sequences, and regulatory regions (14). 

Transcriptome-wide association (TWAS) evidence was determined from 50 tissues, using 

a summary association z-statistic (15). This approach uses SNP-level gene expression weights 
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from 48 tissues from the Genotype–Tissue Expression (GTEx) project v8 (16), peripheral blood 

from Netherlands Twin Registry (NTR) (17), and whole blood from the Young Finns Study 

(YFS) (18). For these and all gene-based approaches, including gene association summaries and 

rare-variant methods, we used a false discovery q value < 0.1 to declare significance. 

Although the KNoRMA phenotype is corrected for age-dependent effects on survival, we 

additionally devised a reverse regression approach to investigate potential age interactions for 

genotype associations (Supplemental Methods). In addition, a method was devised to assess 

concordant effect size ordering across site cohorts for different loci, using a summary of pairwise 

correlations of estimated effect sizes across cohorts, with statistical significance assessed by 

permutation. For our meta-analysis statistic, we show that this permutation approach remains 

valid under selection for genome-wide significance (Supplemental Methods). Gene-level 

summary analyses were performed using VEGAS2 (19) for intragenic SNPs and SNPs within a 

flanking region of 20kb around each gene. Gene-based pathway analyses were performed using 

Gene Set Enrichment Analysis (GSEA) method (20), available in the clusterProfiler R package 

(21). Rare variant methods (minor allele count < 20) were performed at the gene level using the 

GENESIS R package for the burden test, SMMAT, and SKAT-O.

RESULTS

Table 1 describes key features of the five cohorts, including the country of enrollment. 

The majority (n = 4,248) of these PI pwCF had WGS, and the remainder (n = 3,592) had 

genotypes imputed from WGS (10). The means and standard deviations for lung disease severity 

(KNoRMA) were comparable across cohorts, despite considerable differences in mean (and 
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median) age. The UW cohort includes the youngest patients (mean 13.1 years), while UNC was 

the oldest cohort (mean 26.8 years). The vast majority of these pwCF are of European ancestry 

(~95%), and most (~64%) are c.1521_1523del (p.Phe508del; legacy: F508del) homozygotes. 

Effective ancestry control could be achieved by four genotype principal components (22) and we 

used six principal components to be conservative. The violin plot illustrates the distribution of 

KNoRMA by cohort, and the UNC plot shows two distinct modes, reflecting an extremes-of-

phenotype design (Figure 1) (6).

The GWAS analysis for KNoRMA using non-rare variants (minor allele count > 20, 

hereafter termed “common”), identified six genome-wide significant (P < 5 × 10-8) (12) loci 

(Figure 2, Table 2, Figures E1 and E2). The present analyses increased the significance of 4 of 

5 loci reported in our previous GWAS (Table 2) (6). The sixth locus at 16p12.2 near CHP2 and 

PRKCB (P = 2.5 x 10-8) (Figure E2, Table 2) was not reported in our previous GWAS (6), but 

was identified in a separate analysis using updated and improved imputation of SNP genotypes 

(7). Each of these six loci contains genes of high biological relevance to the pathophysiology of 

CF lung disease (4, 7). Four suggestive loci (P < 5 x 10-7; all with low MAF, range 0.005 to 

0.009) were also identified, including chr1p36 (CEP85), chr6q15 (UBE2J1), chr8q11.2 

(SNTG1), and chr17q22 (PPM1E) (Figure E3, Table 2, and Supplement). Finally, we identified 

many associations (P value < 10-5) with KNoRMA in all (7,840) pwCF and 4,985 F508del 

homozygotes (Table E1).

Conditioning on the top-ranked SNP in six regions with genome-wide significance 

eliminated significant secondary signals in four regions, but two loci (chr5p15.33; 

SLC9A3/CEP72 and chr11p13; APIP/EHF) displayed regional significance for secondary SNPs 

(Figures E2). By fitting all regional two SNP models for chr5p15 and chr11p13 (see Methods), 
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we determined the best-fitting SNP pair for each region. For chr5p15, conditioning on the 

primary SNP (rs56108664) revealed a significant secondary SNP (rs111275646) and other SNPs 

in linkage disequilibrium (LD) (Figure E4). Conditioning on the secondary SNP at chr5p15 

recapitulated the original signal (conditional P value for the original SNP rs56108664 was P ~ 3 

× 10-8 after conditioning on rs111275646). For the chr11p13 locus, the use of the best two-SNP 

model (primary, rs483769; secondary, rs1509661) provided informative results (Figure E5). 

Namely, the P values for SNPs in the primary LD “block” after conditioning on the secondary 

SNP (rs1509661) became ~10,000-fold smaller (P ~ 7 × 10-14) than in the original single variant 

analysis (P ~ 2.6 × 10-9) (Table 2). Further investigation of the chr11p13 locus revealed that the 

minor alleles of the primary and secondary SNP are positively associated (r2 = 0.28) but have 

associations in opposite directions with KNoRMA. In this scenario, most subjects in this study 

have at least one risk allele at the primary locus and at least one protective allele at the secondary 

locus, with combinations of risk alleles from either locus contributing to overall phenotype 

consequences (Figure E6). For the chr5p15 and chr11p13 regions, haplotype analyses that 

account for linkage phase (Supplementary Results) were not more significant than the primary 

genotype-based analyses. 

Causality at each significant locus has not been established due to LD structure, and 

analysis by Causal Variants Identification in Associated Regions (CAVIAR) (13) and annotation 

of the top SNPs in the six regions with Variant Effect Predictor (VEP) (14) did not point to any 

obvious causal links (Table E2). The gene-level rare variant analyses did not identify any 

significant gene at q < 0.1, perhaps reflecting reduced power for rare variant detection compared 

to common variant analyses.
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Our reverse regression model included terms for age at phenotyping and age×KNoRMA 

interaction, and largely recapitulated our main findings, with five of the six reported loci 

achieving significance (rs194788 near CHP2 achieving only P = 3.23×10-7), and no new 

significant findings. The age and age×KNoRMA interaction terms were not significant for these 

regions. Nonetheless, substantial cohort variation was apparent. The effect sizes (magnitude of 

beta coefficients) for the peak SNP at the six significant loci were evaluated using forest plots for 

each cohort, ordered by mean age (Figure 3). There is a similar distribution of the effect (size) 

across cohorts, with UNC cohort (oldest) showing the largest effect size and UW (youngest) 

showing the smallest. This concordance of effect sizes manifests as positive correlation in all 

pairwise comparisons (mean correlation 0.70), as depicted in plots of effect sizes (Figure E7). A 

test of concordance of effect sizes demonstrated concordance among cohorts (P = 3.4 × 10-4), 

with the UW cohort consistently exhibiting the smallest effect size.

To further investigate genotype associations for all pwCF (n = 7,840), we imputed 

expression values to investigate TWAS association with lung phenotype, using a modified 

approach (15) compared to a previous study of TWAS in CF (7).  Twenty-nine annotated genes 

displayed a false-discovery q < 0.1 (Figure 4; Tables E3 and E4). Most genes with significant 

TWAS signals occurred in the six significant GWAS loci (Figure 2), congruent with a previous 

report (7). In this analysis, MUC4 was suggestive (q = 0.14).

Previous studies suggested that there may be GWAS loci associated more strongly with 

pwCF homozygous for the CFTR variant F508del (6). Analyses in this study identified three new 

suggestive loci (Figures E8 – E10).

Significant results (q < 0.10) from the VEGAS2 gene-level association analyses are 

provided (Table E5).  As gene-level analyses can capture effects of long-range linkage 

Page 14 of 83

 AJRCCM Articles in Press. Published March 15, 2023 as 10.1164/rccm.202209-1653OC 
 Copyright © 2023 by the American Thoracic Society 



11

disequilibrium, we grouped significant regions into those separated by more than 5 Mb. Five of 

the six regions with individually-significant SNPs (see above) were also significant in gene-level 

analysis (excepting the chr11p13 region). Among the remaining significant genes identified by 

VEGAS2, several achieved Bonferroni significance at a more stringent  = 0.05 (P < 2.5 x 10-6): 

ADAMTS8, LINC01844, and PTTG1IP.

We performed GSEA on genes ranked using VEGAS2 P values (Table E5) (19) to 

explore pathways linked to lung disease severity. Pathways identified were largely related to 

pathogenic mechanisms linked to pulmonary host defense and genes at GWAS significant loci 

(Table E6) (6, 7, 23, 24), involving: inflammation; viral and bacterial infection and host 

responses; immunity and HLA-II pathways; endomembrane function; and 

microtubular/cytoskeletal function. In addition, multiple pathways related to organ development 

and morphogenesis were identified (Table E6). The most significant 

development/morphogenesis pathway [GO.BP0048754, branching morphogenesis of an 

epithelial tube; GSEA plot (Figure 5)] includes 32 genes in the leading edge (in bold) that relate 

to three signaling pathways (Sonic Hedgehog, Shh; transforming growth factor beta, TGFb; 

wingless related-integration site (Wnt)/β-catenin) that are necessary for lung development and 

branching morphogenesis (25-27). Thus, genetic variation that affects lung development in utero 

and early childhood has implications for severity of CF lung disease.

DISCUSSION

Variability of lung disease severity in CF reflects substantial non-CFTR genetic variation 

(3). Identifying the molecular basis of CF lung disease severity will provide pathobiological 
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insights and identify new therapeutic targets. Studies using genotype array-based platforms and a 

standardized lung disease phenotype (KNoRMA) in different cohorts, study designs, and 

ages/birth cohorts, have identified non-CFTR genetic variation of high mechanistic interest (6). 

By combining WGS with imputation from array-based genotypes across multiple cohorts, we 

provide the largest analyses to date associating genetic variation to CF lung disease severity in 

the pre-modulator era to date (7,840 pwCF; an estimated 19% of the number of CF patients 

currently in North America and France) (2, 4). 

One novel insight emerged from pathway analyses (GSEA) of genes ranked by VEGAS2, 

where multiple significant pathways related to organ development were identified. While not 

annotated specifically to the lung, the genes within these pathways, especially those related to 

three key signaling pathways (Shh, TGFb, and Wnt), are known to be critical for lung 

development and branching morphogenesis (25-27). There are at least 40 genes that relate to 

these three key signaling pathways in the top annotated pathway (Figure 5). The next challenge 

will be to decipher the mechanism by which these genes could influence CF lung disease 

severity. The issue is complex because not only do these genes play a role in lung 

development/morphogenesis, but it is also now appreciated that reactivation of developmental 

genes/pathways is a necessary component of lung repair after injury/inflammation (28). Several 

potential complementary mechanisms could be operative. First, variable early-life growth of the 

bronchial tree airway diameter relative to lung volume (dysanapsis) was proposed nearly 50 

years ago (29). There is now anatomical evidence from computed tomography to confirm 

dysanapsis in conducting airways, and presence of smaller diameter bronchi is known to 

associate with COPD and childhood asthma (30-33). Dysanapsis has not been previously 

recognized as a potential pathogenic driver of CF airways disease but, given the periods of 
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bronchial injury common in CF, dysanapsis could have profound effects on long-term outcomes. 

Second, CFTR itself is known to interact with lung development in several ways: tracheal and 

proximal bronchial diameter is altered in CF compared to normal pigs during embryonic 

development (34); CFTR plays a key role in fluid mediated distension of airways during 

development (35); and lack of CFTR with consequent infections and inflammation are associated 

with tracheomalacia, which is linked to poorer outcomes (36, 37). Finally, because reactivation 

of developmental pathways is important for repair after airway injury (28), genetic variation in 

these pathways is expected to alter outcome after CF-related inflammatory damage. Other 

significant pathways involve microtubular/cytoskeletal function (see Figure E11; 

GO.BP0051494 “negative regulation of cytoskeleton organization”), which is of particular 

interest due to a recent potential therapeutic advance by restoration of microtubular dysfunction 

in CF cells (38).

The five genome-wide significant loci previously reported (6) are highly significant in the 

present analyses and contain genes of relevance (2, 4). In addition, another locus (chr16p12.2) is 

genome-wide significant, and four new loci are suggestive (P < 5x10-7; all with low MAF, range 

0.005 to 0.009). The newly significant locus on chr16p12.2 is intergenic between CHP2 and 

PRKCB (39, 40). CHP2 regulates airway pH through the apical membrane Na+/H+ exchanger 

(40). A SNP at this locus (rs11646605) is associated with mycobacterium avium complex lung 

disease in non-CF patients and is an eQTL for CHP2 in the lung (41). TWAS analyses point to 

CHP2 expression as a key candidate in this region (Figure 4). PRKCB is a protein kinase that 

plays a role in multiple cellular functions, including apoptosis and autophagy (39). Finally, a 

nearby gene (ERN2) regulates airway mucin genes (MUC5B and MUC5AC) (42). 
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At the chr3q29 locus, MUC4 and MUC20 are highly relevant candidate genes, as they 

play important roles in lung host defense and mucociliary clearance, which are abnormal in CF 

(2, 4). These WGS data now support MUC4 as the mechanistic link, with all significant SNPs 

intragenic to MUC4; plus, MUC4 is supported by a separate study integrating eQTLs and CF 

GWAS summary statistics using colocalization analysis (43). 

Significant SNPs at the chr5p15.3 locus span ~ 300 kb and cover four pertinent genes 

expressed in respiratory epithelia. Airway surface liquid pH is abnormal in CF and regulated in 

part by SLC9A3, which codes for a Na+/H+ exchanger (44). Moreover, variable number of 

tandem repeats (VNTRs) in this region are associated with expression of SLC9A3 in CF 

respiratory epithelia (45). The other three genes at this locus (EXOC3, CEP72 and TPPP) are 

involved in cellular microtubular function, which is abnormal in CF (46, 47). These three 

microtubule-related genes are consistently seen in TWAS-type studies (Figure 4 and (7)). 

Resveratrol is an anti-inflammatory polyphenol that is known to activate several pathways 

relevant to microtubule stability, and it has been recently shown to restore microtubule function 

and intracellular transport in CF cells (38). Finally, an intergenic SNP (rs11738281) in CEP72 in 

our study is associated with airflow obstruction (reduced FEV1/FVC ratio) in the UK Biobank 

GWAS (48) and is in LD (r2 = 0.61) with the most significant regional SNP at this locus 

(chr5p13). 

We observed strong gene expression signatures at the chr6p21.3 (HLA Class II) locus, 

which is associated with many inflammatory and respiratory conditions (49). In addition to 

TWAS (Figure 4), differential gene expression and biological pathway studies have identified 

several HLA-II genes associated with CF lung disease (23, 24), as did our pathway analyses (see 

Page 18 of 83

 AJRCCM Articles in Press. Published March 15, 2023 as 10.1164/rccm.202209-1653OC 
 Copyright © 2023 by the American Thoracic Society 



15

online Supplement). Functional interpretation of these data is confounded by many 

polymorphisms and allotypes of genes in this region (50).

Since the chr11p13 locus was first associated with CF lung disease, it has been 

extensively studied (51, 52). The most significant SNPs are intergenic between EHF, an 

epithelial transcription factor, and APIP, an enzyme involved in inflammation through roles in 

apoptosis and the methionine salvage pathway (4, 24). Conceptually, either of these genes could 

impact on CF lung disease severity (2, 4). Regulatory regions are in the significant LD block that 

interacts with EHF and nearby ELF5 (52, 53), but extensive studies have not identified any 

eQTLs that might drive the phenotype (7, 51, 52). Further, our TWAS analysis (Figure 4) 

produced no signatures that suggest mechanism. Interpretation of this region is further 

complicated by finding a second group of significantly associated SNPs over APIP after 

conditioning on the top-ranked SNP. The presence of two significant groups of SNPs at this 

locus implies the risk for each pwCF can be viewed in terms of four (rather than two) alleles, and 

minor alleles of the primary and secondary SNPs have opposite associations with KNoRMA, and 

the effect sizes (betas) for the primary and secondary SNPs are different (0.9 and 0.2, 

respectively). Taken together, these features create a potential complex molecular interplay 

among four alleles, whereby genotype association of the primary SNP with KNoRMA are 

affected by the genotypes of the secondary SNP (see Figure E6). 

The chrXq22-q23 locus contains two genes (AGTR2; SLC6A14) that are expressed in 

respiratory epithelia with functions relevant to pathophysiology of CF lung disease. AGTR2 

functions in the renin-angiotensin signaling (RAS2) pathway, which is involved in several 

aspects of lung biology, including inflammation (4). The RAS pathway is altered in CF, and 

studies in genetically modified mice have therapeutic implications, as deletion and 

Page 19 of 83

 AJRCCM Articles in Press. Published March 15, 2023 as 10.1164/rccm.202209-1653OC 
 Copyright © 2023 by the American Thoracic Society 



16

pharmacologic inhibition of AGTR2 improves several features of lung function in CF mice (54). 

AGTR2 is also prominent in pathway analyses (Figure 5 and Supplement). SLC6A14 encodes 

an amino acid transporter with pleiotropic effects in CF, as it has been linked to lung disease and 

neonatal intestinal obstruction, but the pathophysiologic mechanisms have not been defined (55, 

56).

We noted significant concordance of effect sizes across significant loci among cohorts, 

with the youngest (UW) cohort showing the smallest effect size, despite medians and distribution 

of KNoRMA being similar across cohorts. This may reflect smaller effects of variants on lung 

function (FEV1) over a shorter time period in younger CF patients. In addition, age at 

phenotyping is confounded by year of birth cohort, as improvements in treatment (prior to 

modulators) may have blunted decline in lung function in these younger pwCF. Therefore, it is 

challenging to define the specific mechanism(s) for smaller effect size in the youngest cohort.

There are several limitations of this study. First, although this is a large sample size for a 

study of a rare Mendelian disorder, it is likely underpowered to detect rare lung-disease-

associated variants. Second, a replication study was not performed, as there is no adequate CF 

population readily available. Third, we were unable to establish causality at any locus and 

identification of causal SNPs is complicated by multiple potential modifiers at each locus. 

Fourth, some potential variants were not fully queried, such as VNTRs and structural variants. 

Finally, the population studied largely reflects European ancestry and thus important modifier 

loci present in other populations may have been missed.

In summary, WGS of pwCF enabled accurate genome-wide imputation, which allowed a 

pre-modulator association study of genetic variants with lung disease severity in 7,840 pwCF. 

This approach validated previously identified loci, provided better molecular understanding of 
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significant loci and enabled discovery of new biologically relevant candidate genes and 

biological pathways, particularly related to lung development. Taken together, these genomic, 

transcriptional, and pathways data will inform future mechanistic and post-modulator genetic 

studies and enable development of novel therapeutics for CF lung disease.
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FIGURE TITLES AND LEGENDS

Figure 1. Distributions of the KNoRMA age-adjusted lung function phenotype by site cohort. 

Line inside each box is the median KNoRMA and the box represents the inter-quartile range 

(IQR), or distance between the first and third quartiles (the 25th and 75th percentiles), while 

violin plots show the overall population distribution. Sample sizes are shown, with symbol areas 

proportional to sample size. Definitions of abbreviations: JHU (Johns Hopkins University, twin-

sibs design), UNC (University of North Carolina, extremes of phenotype), UW (University of 

Washington, EPIC longitudinal study for Pseudomonas aeruginosa effect on lung disease), 

FrGMS (French CF Gene Modifier Consortium, population-based) and CGS (Canadian CF Gene 

Modifier Study, population-based). 

Figure 2. Genetic loci significantly associated with KNoRMA lung phenotype. Genome-wide 

Manhattan plot of associations with KNoRMA in all n = 7,840 patients. Red line shows genome-

wide significance of P < 5 x 10-8. Blue line shows suggestive significance of P < 5 x 10-7.

Figure 3. Forest plots for SNP association effect size by cohort at significant loci. Beta 

(coefficient) refers to the average change in KNoRMA for each copy of the protective allele. 

Square sizes are proportional to the sample size (n) of each cohort, and the line segments are 

95% confidence intervals of each beta. The most significant SNP from each locus was chosen. 

For each SNP, the protective allele is listed on the left and frequency of the protective allele are 

shown in parentheses. Cohorts are arranged by increasing mean age (at KNoRMA). Definitions 

of abbreviation: FF = patients with CF who are F508del homozygous in the CFTR gene; non-FF 

= patients with CF who are not homozygous for F508del in the CFTR gene.  
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Figure 4. Significant genes based on transcriptome-wide association evidence for expression 

versus lung function (KNoRMA). Genome-wide Manhattan plot of TWAS associations. The red 

line corresponds to transcriptome-wide false discovery q < 0.10, with significant genes labeled. 

Red colored text corresponds to increased expression associated with improved lung function 

and blue colored text corresponds to increased expression associated with decreased lung 

function. Regions of significant genome-wide phenotype-genotype association are marked with 

black arrows on the X axis.

Figure 5. Genes that drive core enrichment significant results for this branching morphogenesis 

pathway (GO:0048754). This VEGAS2 analysis GSEA plot includes 32 genes that are in three 

key signaling pathways (Shh (25); TGFb (26); and Wnt (27)) for lung development (including 

branching morphogenesis) and/or that interact with genes in those three signaling pathways 

and/or have other roles in lung development (shown in bold).  The 18 genes that are associated 

with lung repair and/or play a role in molecular pathogenic aspects of lung disorders (e.g. COPD, 

asthma, lung fibrosis, cellular morphogenesis) are shown with asterisks. The remaining 11 genes 

are reported to have a role in development and/or morphogenesis in other tissues. 
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TABLES

Table 1. Characteristics of CF patients (all pancreatic insufficient) in this study.

Cohort
Total

n

CFGP WGS

n

Imputed

n

KNoRMA 

Mean (SD)

Age (yrs)*

Mean (SD)

Age (yrs) 

Median

Male

n (%)

European†

n (%)

F508del/F508del

n (%)

JHU 1,683 1,466 217 0.54 (0.86) 20.6 (9.8) 19.0 893 (53.1) 1,565 (93.0) 947 (56.3)

UNC 2,159 1,605 554 0.60 (0.92) 26.8 (11.2) 24.9 1,170 (54.1) 2,057 (95.3) 1,606 (74.4)

UW 1,177 1,177 0 0.51 (0.73) 13.1 (3.5) 12.9 592 (50.3) 1,088 (92.4) 710 (60.3)

FrGMS 1,207 0 1,207 0.32 (0.77) 21.1 (9.2) 20.1 619 (51.3) 1,196 (99.1) 707 (58.6)

CGS 1,614 0 1,614 0.38 (0.82) 17.3 (9.2) 14.9 865 (53.6) 1,531 (94.9) 1,015 (62.9)

Overall 7,840 4,248 3,592 0.48 (0.84) 20.6 (10.4) 18.4 4,139 (52.8) 7,437 (94.9) 4,985 (63.6)

Definition of abbreviations: JHU (Johns Hopkins University, twin-sibs design), UNC (University of North Carolina, extremes of 

phenotype), UW (University of Washington, longitudinal study for effect of Pseudomonas aeruginosa acquisition on lung disease), 

FrGMS (French CF Gene Modifier Consortium, population-based) and CGS (Canadian CF Gene Modifier Study, population-based). 

*Age for lung function phenotyping for KNoRMA calculation. †Based on self-reported ancestry, confirmed by ancestry-by-genotyping.
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Table 2. Genome-wide significant (P < 5 x 10-8) and suggestive (P < 5 x 10-7) association results.

Chr

band
Gene(s) BP position SNP

Risk/ Protective

Allele
PAF* Beta P value

Prior GWAS regional

P value‡

Significant findings

3q29 MUC20/MUC4 195,760,866 rs2246771 G/A 0.29 0.1 6.7 x 10-12 † 3.3 x 10-11 †

5p15.33 SLC9A3/CEP72 537,775 rs56108664 T/C 0.83 0.11 2.8 x 10-10 † 6.8 x 10-12 †

6p21 HLA class II 32,462,048 rs9268860 T/C 0.68 0.08 9.9 x 10-10 † 1.2 x 10-8 †

11p13 EHF/APIP 34,808,842 rs485845 A/C 0.64 0.09 2.6 x 10-9 † 4.8 x 10-9 †

16p12.2 CHP2/PRKCB 23,779,017 rs194788 A/T 0.44 0.07 2.5 x 10-8 † 7.7 x 10-7

Xq23 AGTR2/SLC6A14 116,230,240 rs12009976 G/A 0.49 0.08 6.1 x 10-12 † 1.8 x 10-9 †

Suggestive findings

1p36 CEP85 26,257,354 rs41284341 A/C 0.009 0.39 1.6 x 10-7 9.1 x 10-3

6q15 UBE2J1 89,330,626 rs9294434 T/C 0.009 0.41 1.3 x 10-7 8.0 x 10-3

8q11.2 SNTG1 50,730,869 rs140650336 C/T 0.005 0.65 1.2 x 10-7 7.2 x 10-4

17q22 PPM1E 58,950,377 rs72828739 C/T 0.991 0.36 4.7 x 10-7 7.1 x 10-2

Gene listed if intergenic, otherwise, flanking genes are listed. *PAF=Frequency of protective allele. Beta coefficient refers to increased 

average KNoRMA for each copy of the protective allele. †P values with genome-wide significant association, P < 5 x 10-8; others listed are 

suggestive association, P < 5 x 10-7. ‡From Corvol et al., 2015 (6).
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Rank of P values in genes associated with KNoRMA
AGTR2*, TNF, MET*, BMP7, GLI2, PTCH1, FGF1*, GLI3, NOTCH4*, FKBPL, MED1, NKX3-1, GPC3, CAV3*, FOXC2*, AREG*, NOG, 
TNC, PAK1*, CTNNBIP1, SPRY2*, BMP2, SMAD4, SIX4, SOX9, WNT2, RASIP1, FOXD1, KRAS, MIR16-1, NKX2-1, PBX1, SHH, 
CTSH, NPNT, LAMA1, WNT2B, PAX2*, CTNNB1, SFRP2, MAGED1*, LGR4, WT1, SEMA3E*, LRP5, HNF1B*, AR, RBM15, EDNRA, 
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Figure 5
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Introduction 

There are many useful references about the role of different mutations in CFTR, 

nutritional aspects of disease in CF, environmental effects, impact of modifier genes, 

effect of modulators on lung disease severity in CF and ongoing development of new 

therapies in CF (1-8). 

 

Methods 

The GMS consists of unrelated patients with over-representation of extremes of lung 

function (6), and the TSS recruited families in which two or more surviving children have 

CF (9) and the CFRD study recruited pwCF both with and without CFRD (10, 11). The 

EPIC study is a prospective, longitudinal investigation of CF lung disease from 

childhood (12).  

 

The 3,592 patients who had imputation of genome-wide genotypes were from: UNC (n = 

554); JHU (n = 217); the French CF Gene Modifier Consortium (FrGMC) (n = 1,207); 

and the Canadian CF Gene Modifier Study (CGS) (n = 1,614).  

 

Lung function (KNoRMA) phenotyping 

KNoRMA is a validated quantitative trait of CF lung disease severity based on multiple 

measures of FEV1 over 3 years, corrected for sex, age, and survival (13, 14). KNoRMA 

was calculated for each patient from UNC, JHU, and UW cohorts, using recent data 
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when possible, from the CF Foundation Patient Registry (CFFPR) (15) (2017), or earlier 

chart-extracted data. Lung function data were considered up to the last clinic visit, time 

of solid organ transplant, or date of death. Further, to avoid potential confounding 

effects of recently approved modulators to obscure genetic influences on KNoRMA, 

FEV1 measures for UNC, JHU, and UW subjects were utilized only if they were obtained 

prior to approval of ivacaftor modulator therapy for 10 CFTR variants, whereby lung 

function measures from 2012-2014 were typically utilized. For patients with CFTR 

variants that were granted early approval for ivacaftor therapy, data from 2009-2011 

were used. Finally, lung function data in encounter records in the CFFPR with mention 

of ivacaftor use were removed to avoid using data potentially arising from clinical trials 

prior to drug approval. For the FrGMC and CGS cohorts, previously derived KNoRMA 

values from the pre-modulator era were used (13, 14).  

Whole genome sequencing 

The CFGP samples were sequenced to ~30X coverage using the NovaSeq6000, 

performed at the Broad Institute (Cambridge, MA), using recommended QC filters as 

part of the GATK Best Practices Workflow, with 66 samples removed due to low 

sequencing coverage, high contamination, or duplication. Identity was confirmed via 

checks for matching sex, relatedness, and ancestry as recorded in clinical datasets, and 

genotypes if prior array genotypes were available, resulting in removal of 10 samples. 

GATK Variant Quality Score Recalibration (VQSR) was used to filter variants. The SNP 

VQSR model was trained using HapMap3.3 and 1KG Omni 2.5 SNP sites and a 99.6% 

sensitivity threshold was applied to filter variants. Specific sequencing details for the 

project are described previously (16). The GWAS array-based data and cohorts were 
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described previously (13), including six genotyping platforms. Genetic imputation was 

performed using minimac (17) and reference panels from TOPMed freeze 8 and WGS 

from CFGP (18). There was no sample overlap between CFGP and the imputed 

samples used in this study. A total of ~13.5 million bi-allelic variants were used for 

association testing, including ~8 million variants with minor allele frequency > 1% and 

imputation Rsq ≥ 0.3, and an additional ~5.5 million variants with minor allele count > 20 

(corresponding to MAF > 0.12%) and MAF < 1%, and imputation Rsq ≥ 0.8 (18). The 

focus of this study was on single-variant association testing, and all of the suggestive 

and significant variants are indexed by RefSNP, and thus hereafter we refer to the 

variants as single nucleotide polymorphisms (SNPs). 

Association analysis 

For each SNP, association was tested using KNoRMA as a response variable in an 

additive effect mixed model with covariates using the GENESIS R package (19), with z-

statistics and P values obtained with the assocTestSingle option. Ancestry scores were 

computed using genotype principal components using PCAiR (20) and used as 

covariates in this study. As a consistency check, ancestry scores were also computed 

using the PCFAM (21) method, especially designed to account for family structures. The 

results of the two principal component methods were highly concordant, with correlation 

r > 0.94 for the top six principal components produced by the two methods. Analysis by 

the Consortium indicated that effective ancestry control for the CFGP could be achieved 

with as few as four genotype principal components (22), and as a conservative measure 

we included six principal components as covariates. Additional covariates included sex, 

and terms for all cohort-sites×platform combinations (as applicable). A genetic 
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relatedness matrix was used as a random effect to account for the small proportion of 

families as well as cryptic relatedness. As a conservative approach and to ensure no 

confounding due to cohort or platform, a fixed-effect meta-analysis for each of the 14 

cohort-site×platform combinations weighted by sample size (23) was used to combine 

genotype score test z-statistics for SNPs with MAF > 0.01 (for which meta-analysis was 

possible). For the remaining SNPs with minor allele count > 20 and MAF < 1%, a pooled 

analysis was used by fitting a single mixed model with covariates including the cohort-

site×platform effects. QQ plots indicated proper false positive control (Figure E1), and 

for the genome scans in all (7,840) pwCF and 4,985 F508del homozygotes, the 

genomic control λ (24) was 1.022 and 1.029, respectively. Results were combined using 

R v4.02, and plotted using the qqman package (25). Regional association plots were 

performed using LocusZoom (26), with the localzoom feature, with color scale using 

linkage disequilibrium r2 estimates obtained as squared Pearson correlations among 

plotted SNPs using the samples of the current dataset. P value thresholds were applied 

at the level of genome-wide significance (P < 5 × 10-8) (27), and we considered SNPs 

with P < 5 ×10-7 to be strongly suggestive (28).  

For each genome-wide significant region, additional analyses were conducted to 

search surrounding SNPs for evidence of multilocus effects for a two-locus model. To 

ensure that a global maximum for two-SNP models was achieved, linear regression was 

performed as a screening step, using the lung phenotype as a response, with all the 

covariates including terms for all cohort-site×platform combination, and exhaustive 

interrogation of all pairs of SNPs in the region to maximize the model R2. For the SNP 

pair achieving maximum R2, the SNP producing higher partial R2 was designated as 
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primary, and the other as secondary. Finally, P values for the remaining SNPs were 

computed after conditioning on the primary SNP by including it as a fixed effect using 

the GENESIS mixed effect model, and similarly after conditioning on the secondary 

SNP. The P values after conditioning on the primary SNP were subjected to regional 

multiple correction by applying Benjamini-Hochberg false discovery correction using 

p.adjust in R v4.01. Overall, the approach was similar to conditioning on the most 

significant regional SNP in the initial genome scan, but with initial exhaustive testing it is 

possible to identify a more significant primary SNP. Moreover, the P values after 

conditioning on the secondary SNP can potentially be more significant than in the initial 

scan, due to reduced error variation and dependence on local linkage disequilibrium 

structure. 

For regions with two significant SNPs, haplotype analysis was performed as a 

potential alternative to multi-SNP genotype modeling. The haplo.stats package (R v 

4.01) was used to fit a normal likelihood ratio model (haplo.score function) for 

association of the pair of SNPs with KNoRMA, using the same covariates as in the main 

modeling, assuming a null model with no SNPs. This approach was used as an 

approximate screen to test for possible linkage phase effects, as it does not consider 

random effects due to cryptic and familial relatedness.  

A reverse regression alternative to the primary single-variant analyses 

As stated earlier, the KNoRMA lung function measure is designed to account for age 

cohort survival effects in a manner that does not reduce the power for genetic mapping. 

Indeed, by simply adding age as an additional predictor in the primary model above, the 

evidence for association drops considerably (not shown – all of the main loci effects 
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become less significant, and only the loci at 3q29, 11p13, 16p12.2, and Xq23 remain 

genome-wide significant). To further investigate the effect of the genotype on lung 

function, while considering the effect of age at phenotyping, we considered the following 

nested models,  

Larger model: genotype~KNoRMA+ KNoRMA + Age+ KNoRMA*Age+Sex + 

Cohort+genotype_PCs 

Smaller model: genotype ~ Sex + Cohort+genotype_PCs 

where the predictors and KNoRMA are the same as used in the primary model. As we 

envision genotype effects as “causal” for phenotype, this modeling may be viewed as a 

form of reverse regression that considers selection effects on phenotype, and 

(importantly) on age, which is associated with genotype by the survival of pwCF. The 

models were fitted using an additive logistic model in R for the presence of each minor 

allele for the genotype response. By including KNoRMA, age, and the KNoRMA*age 

interaction, the larger model accounts for the phenotype, as well as “genotype effects 

on age” that might not have been captured in the primary model. The test statistic is a 

likelihood ratio for the larger model vs. the smaller model, with three degrees of freedom 

for the accompanying chisquare statistic. 

P values from this reverse regression modeling were comparable to (data not shown, 

within a factor of 2) the primary analysis, but generally less significant. We conclude that 

the reduced significance may result from the fact that a three degree of freedom test 

statistic is required. In addition, incorporating cryptic and familial information within this 

approach is not straightforward.  However, the close correspondence of this reverse 
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regression approach to our primary analysis leads us to conclude that the primary 

analysis retains the bulk of the information content for genotype-phenotype mapping. 

Expression imputation and transcriptome-wide association 

Transcriptome-wide association evidence was determined using our summary 

association z-statistics and the published method (29). This approach uses SNP-level 

gene expression weights from 48 tissues from the Genotype-Tissue Expression (GTEx) 

project v8 (30), peripheral blood from the Netherlands Twin Register (NTR) (31), and 

whole blood from the Young Finns Study (YFS) (32), providing SNP-level association 

statistics for each gene and each of the 50 tissues. A Bonferroni correction across the 

tissues was performed for each gene to provide a conservative corrected pmin to 

highlight the most significant tissue. We also computed a directional omnibus statistic to 

aggregate signal across the tissues, as previously described (33). The approach seeks 

to improve upon power from other omnibus statistics by computing for each gene 𝑧 =

∑ 𝑧𝑖/√𝑣𝑖 , where 𝑣 = ∑ ∑ 𝜌𝑖𝑗𝑗𝑖  and 𝜌𝑖𝑗 is the observed correlation across the genes 

between 𝑧𝑖 and 𝑧𝑗 for pairs of tissues I and j. Finally, a conservative P value of P = 

2Xmin(pmin, pomni) was used as a final summary for each gene, and final Benjamini-

Hochberg false discovery q < 0.1 was used to identify significant genes using the 

p.adjust package in R. Both pmin and pomni provide direction of association of imputed 

expression with phenotype, and these directions were consistent for all significant 

genes. All genes reported in a published paper by Gusev et al. (29) were used to adjust 

for multiple comparisons, and pseudogenes and genes without available annotation 

were not included in plots. Among significant genes, an index of TWAS tissue-specificity 

was computed as the ratio pomni/pmin, with large values indicative of tissue specificity. 

Page 46 of 83

 AJRCCM Articles in Press. Published March 15, 2023 as 10.1164/rccm.202209-1653OC 
 Copyright © 2023 by the American Thoracic Society 



9 
 

Cohort effect size concordance 

For the most significant SNP in each genomic region, cohort effect sizes (beta 

coefficients from the main association model) were compared across the five cohort 

sites for evidence of concordant ordering across cohorts for different loci. For each pair 

of significant SNPs, the Pearson correlation coefficient was computed across the five 

cohorts, and the average correlation across all pairs of loci was used as a statistic. 

Under the null hypothesis that sites do not have a consistent ordering, and assuming 

unlinked genomic regions, the effect size estimates should be independent. However, 

the statistical power to detect true signal varies somewhat across the cohorts, due to (i) 

varying sample size, and (ii) differing phenotypic variances due to design differences. 

To correct for this modest difference, rescaled effect sizes 
�̂�

𝜎√𝑛
 (where �̂� denotes the 

cohort allelic effect, 𝜎 the overall phenotype standard deviation, and sample size n) 

were used for the comparisons. Using one million random permutations, the average 

Pearson correlations of the rescaled values under permutations were compared to the 

observed average correlation to construct a one-sided P value. 

Our testing procedure for significantly consistently ranked cohort effects assumes 

a null hypothesis under which the effect coefficients are the same in each cohort. It is 

reasonable to consider whether the procedure may be biased by winner’s curse effects 

(34), which can produce bias in overall effect size estimation for genomic discoveries. A 

careful consideration of the meta-analysis procedure used in this study shows that, 

while the winner’s curse produces biases in effect size estimates, the biases are 

identical for each cohort because the discovery is based on the overall sample. Thus, 
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our resampling testing procedure, which compares ordering of effect estimates across 

loci, remains valid. 

For illustration, we use the standard meta-analysis approach (35) for two constituent 

cohorts. Suppose that the true effect size is 𝛽 for each of two cohorts indexed by 𝑖 =

{1,2}, i.e. the true effect size may be non-zero, but there is no heterogeneity of effect 

size across cohorts. We have standard errors 𝑆𝐸𝑖 ≈ 𝑐/√𝑛𝑖, where 𝑐 is a constant that 

may depend on common quantities such as SNP minor allele frequency, and the per-

cohort test statistic is 𝑍𝑖 =
�̂�

𝑆𝐸𝑖
~̇𝑁(𝜇𝑖, 1), where  𝜇𝑖 =

𝛽

𝑆𝐸𝑖
=

𝛽√𝑛𝑖

𝑐
. A standard meta-

analysis approach weights the coefficient estimates by the inverse variances (35), which 

for the test statistic corresponds to weights 𝑤𝑖 = √
𝑛𝑖

𝑛1+𝑛2
 (easily seen by plugging in the 

standard errors above), and meta 𝑍 = (𝑤1𝑍1+𝑤2𝑍2). It is easy to show that 𝑍~̇𝑁(𝜇, 1) 

for 𝜇 = 𝑤1𝜇1+𝑤2𝜇2 =
𝛽

𝑐
(

𝑛1+𝑛2

√𝑛1+𝑛2
). To address the estimated cohort effect sizes 

conditioned on the statistical significance of the overall study, we consider the 

expectations 𝐸(�̂�𝑖|𝑍 = 𝑧) = 𝐸(𝑍𝑖𝑆𝐸𝑖|𝑍 = 𝑧) =
𝑐

√𝑛𝑖
𝐸(𝑍𝑖|𝑍 = 𝑧). All of the z-values are 

linear combinations of the other two, so each pair is bivariate normal, e.g. 

(𝑍𝑖, 𝑍)~𝑁 ([
𝜇𝑖

𝜇 ] , [
1 𝑤𝑖

𝑤𝑖 1
]), where 𝑤𝑖 can be shown to be the correlation between 𝑍𝑖 and 

𝑍. By the rules of conditional normal densities, we have 𝐸(𝑍𝑖|𝑍 = 𝑧) = 𝜇𝑖 + 𝑤𝑖(𝑧 − 𝜇), so 

finally 𝐸(�̂�𝑖|𝑍 = 𝑧) = 𝐸(𝑍𝑖𝑆𝐸𝑖|𝑍 = 𝑧) =
𝑐

√𝑛𝑖

𝛽√𝑛𝑖

𝑐
+

𝑐

√𝑛𝑖
√

𝑛𝑖

𝑛1+𝑛2
(𝑧 − 𝜇) = 𝛽 +

𝑐

√𝑛1+𝑛2
(𝑧 − 𝜇).  

The importance of the result is as follows: (1) estimation of the effect sizes are biased 

according to the winner’s curse, as is well known, and (2) the bias in both cohorts is the 
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same, regardless of the sample sizes, which follows from the fact that the final result no 

longer does not depend on cohort 𝑖 (although the standard errors can be different). The 

result is true for each 𝑍 = 𝑧, and therefore applies to other constructions such as 

𝐸(�̂�𝑖|𝑍 > 𝑧).  Moreover, the result holds for an arbitrary number of cohorts (such as our 

cohort-site×platform combinations), as independent sets of cohorts can be collected into 

paired sets {one cohort group vs. a group consisting of all remaining cohorts}.  

Pathway Analysis 

We implemented the Gene Set Enrichment Analysis (GSEA) method (36), available in 

the clusterProfiler R package (37). The input is a vector of sorted gene-level P values 

from association with KNoRMA. GO and KEGG pathway annotations come from the 

org.Hs.eg.db R package with genome-wide annotation for Human, primarily based on 

mapping using Entrez Gene identifiers. We analyzed pathway sets from GO.BP, 

GO.CC, GO.MF, and KEGG. For each pathway, GSEA calculates an enrichment score 

(ES), identifies the “core enriched” genes which maximize the ES, and estimates the 

significance level using a P value from a permutation test. The P values are then 

adjusted for multiple testing using false discovery control. We ran GSEA on three sets 

of gene-level results: rare-variant aggregate tests, VEGAS2, and TWAS. 

Non-rare variants, putative function 

CAVIAR 

Within each significant locus, we ran CAVIAR (Causal Variants Identification in 

Associated Regions), a statistical framework that quantifies the probability of each SNP 

to be causal (38). Inputs are SNP Z-scores from the association tests, and the pair-wise 
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correlations between each pair of SNPs. CAVIAR outputs the causal posterior 

probability for each SNP, and we identified the top SNPs adding up to 90% of the total 

probability. 

VEP 

We also ran the Ensembl Variant Effect Predictor (VEP), which determines the effect of 

variants on genes, transcripts, protein sequences, and regulatory regions (39). Inputs 

are the coordinates of SNPs from significant loci. VEP outputs the following: genes and 

transcripts affected by the variants; location of the variants (e.g. upstream of a 

transcript, in coding sequence, in non-coding RNA, in regulatory regions); consequence 

of variants on the protein sequence (e.g. stop gained, missense, stop lost, frameshift); 

SIFT and PolyPhen-2 scores for changes to protein sequence. Based on its variant 

consequence, we identified SNPs having an impact rating of high, moderate, or low. 

Non-rare variants (SNPs), gene-level summary analysis 

We combined P values from the SNP association tests to gene-level P values using the 

VEGAS2 method (40), available in the cpvSNP R package. SNPs within a flanking 

region of 20kb around the gene were considered part of the gene. VEGAS2 uses the 

matrix of correlation values among the SNPs in the gene, followed by simulations from 

the multivariate normal distribution, as an approximate permutation test. Gene 

annotations are available in the TxDb.Hsapiens.UCSC.hg38.knownGene R package. As 

VEGAS2 is based on permutation, we used 1 million permutations for each gene, 

followed by 10 million permutations for all genes showing P < 10-4 in the first 
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permutation stage.  Thus, the minimum P value possible by VEGAS2 was P = 10-7.  We 

ranked the gene-level P values from VEGAS2 as input for GSEA pathway analysis. 

Analysis of rare variants 

SNPs from the WGS passing QC, with a missing rate <2%, MAC <20, and in one of the 

six variant groupings defined by TOPMed (41) were aggregated into genes and 

analyzed in the CFGP subjects. We performed aggregate tests in the GENESIS R 

package using three methods: burden, SMMAT, and SKAT-O for the six variant 

groupings recommended by TOPMed (41). The burden test is more powerful when a 

large percentage of variants are associated, with similar-sized effects in the same 

direction. SKAT-O is more powerful when a small percentage of variants are associated 

and/or the effects have mixed directions. SMMAT is hybrid of the burden test and 

SKAT-O.  

 

Results 

To investigate possible effects of linkage phase on association, for each of the chr5p15 

and chr11p13 regions, two-SNP haplotype models using the respective primary and 

secondary SNPs (rs56108664 and rs111275646 for SLC9A3/CEP72; rs483769 and 

rs1509661 for EHF/APIP) were fitted as described in Methods, using the same 

covariates as for the genotype-based modeling. The resulting haplotype-based P values 

for the two-SNP models vs a null model with no SNPs were similar to the analogous P 

values for genotype-based modeling (for SLC9A3/CEP72, haplotype P = 2.37 × 10-12, 

genotype P = 5.01 × 10-13, while for EHF/APIP, haplotype P = 6.48 × 10-15, genotype P 
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= 2.35 × 10-15). We conclude that multi-SNP genotype-based modeling is a 

parsimonious approach to assess association evidence in these regions. 

The previous TWAS studies took a maximal approach in which all genes with 

nominal (P < 0.01) gene expression associations were included for subsequent pathway 

investigations. In this current study, the larger sample size, combined with the more 

recent database GTEx v8 (20), enabled application of transcriptome-wide multiple test 

correction to identify individual genes achieving transcriptome-wide significance (false-

discovery). 

Previous studies had suggested that some GWAS loci associated more strongly 

with pwCF homozygous for CFTR F508del. Therefore, we explored genetic/genotype 

associations utilizing the subset of CFTR F508del homozygotes, analyzed in a smaller, 

but genetically more uniform, subset of patients (n = 4,985) (Figure E8). Only the loci at 

chr3q29, chr11p13, and chrXq23 retained genome-wide significance in this cohort. 

However, the result for chr11p13 (P = 1.4 × 10-9) was somewhat more significant in the 

CFTR F508del homozygote subset, compared to all pwCF (P = 2.5 × 10-8) despite the 

reduced sample size. A test for interaction with CFTR F508del homozygote status at 

SNP rs7122048 was significant (P = 0.01, Figure E9). For the subset of CFTR F508del 

homozygotes, additional suggestive regions included chr5q11.2 (ITGA2), chr6q22.3 

(LAMA2), and chr15 (SV2B) (see Figures E8 and E10).  

 

 

Discussion 
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Lung development, branching morphogenesis, and dysanapsis involve complex 

molecular, pathway signaling, biological, and physiological components. More extensive 

references are provided about these topics (42-48). 

Aside from top GWAS hits, other genes/loci identified are noteworthy. The four 

loci with suggestive (P < 5 × 10-7) associations in 7,840 pwCF are particularly 

interesting, because: 1) the top SNP at each locus for CEP85, UBE21J, SNTG1, and 

PPM1E is intragenic (Figure E3) and has low MAF (0.005 – 0.009) (Table 2), and 2) 

each of these genes may be relevant to CF lung disease severity. CEP85 (like CEP72) 

is involved with microtubular function (49). UBE2J1 is a ubiquitin-conjugating enzyme 

involved in inflammation via LPS-mediated TNFα expression (50, 51). SNTG1 is a 

cytoplasmic peripheral membrane protein, which has been linked to lung function in 

GWAS (52). PPM1E is an AMPK phosphatase, which inhibits LPS-induced TNFα 

production in monocytes/macrophages (50). The three significant genes (ADAMTS8, 

LINC01844, and PTTG1IP) from the VEGAS2 gene-level analysis are novel, but 

currently available data do not suggest any obvious link to CF lung disease. 
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Table E1.  Regional associations with KNoRMA (regions with P value < 10-5) in all n = 

7,840 CF patients in this study, and in n = 4,985 F508del homozygotes. Definitions of 

abbreviations: chr = chromosome; band = cytoband; symbol = HGNC gene symbol for 

nearest gene; bp = base pair position for SNP with most significant regional association, 

hg19; SNP = reference sequence SNP ID; MAF = minor allele frequency; P value = 

association with KNoRMA. 

 

All CF patients 

chr band symbol bp SNP MAF P value 

1 1p36 CEP85 26257354 rs41284341 0.009 1.6 x 10-7 

1 1p32 GLIS1 53686818 rs141358675 0.004 4.1 x 10-6 

1 1p22 LRRC8C 89655585 rs142646920 0.02 8.2 x 10-6 

1 1q32 CHIT1/BTG2 203301135 rs80030262 0.006 7.6 x 10-6 

1 1q43 CHRM3 239757579 rs192349033 0.004 1.9 x 10-6 

1 1q44 CATSPERE 244579587 rs187260665 0.008 1.2 x 10-6 

2 2p23 CIB4 26581520 rs140014205 0.002 7.8 x 10-6 

2 2p16 VRK2 57940209 rs4603748 0.18 4.5 x 10-6 

2 2p12 GCFC2/LRRTM4 76436224 rs114894742 0.01 4.0 x 10-6 

2 2p12 LRRTM4/SUCLG1 82659835 rs17022099 0.07 8.9 x 10-6 

2 2q11 AFF3 99928010 rs62147651 0.28 3.3 x 10-6 

2 2q22 NXPH2/LRP1B 139969218 rs552730483 0.005 4.0 x 10-6 

2 2q33 PLCL1/SATB2 198955575 rs186647389 0.01 4.4 x 10-6 

3 3p24 LRRC3B/NEK10 26826536 rs59833755 0.09 2.8 x 10-6 

3 3p22 CLASP2/PDCD6IP 33747747 rs112132113 0.002 2.0 x 10-6 

3 3p13 PROK2/RYBP 71930985 rs114601176 0.01 7.8 x 10-6 

3 3p11 CGGBP1 88148109 rs148330308 0.002 7.3 x 10-6 

3 3q13 TEX55 119154262 rs534281242 0.004 9.9 x 10-6 

3 3q24 PLSCR5/ZIC4 147310626 rs1500866 0.36 2.0 x 10-6 

3 3q29 MUC20/MUC4 195760866 rs2246771 0.29 6.7 x 10-12 

4 4p15 STIM2/PCDH7 27882432 rs149976017 0.002 2.9 x 10-6 

4 4q26 PDE5A/MAD2L1 119664980 rs117249477 0.001 6.8 x 10-6 

5 5p15 SLC9A3/CEP72 537775 rs56108664 0.17 2.8 x 10-10 

5 5p15 MARCHF11/ZNF622 16402883 rs114979959 0.03 4.3 x 10-6 

5 5q11 GPBP1/ACTBL2 57282432 rs12654867 0.27 8.6 x 10-6 

5 5q31 FGF1/ARHGAP26 142698150 rs10477191 0.07 2.2 x 10-6 

6 6p24 EEF1E1/SLC35B3 8225758 rs187686036 0.002 4.5 x 10-6 

6 6p21 HLA-DRA/HLA-DRB5 32462048 rs9268860 0.32 9.9 x 10-10 

6 6q15 UBE2J1 89330626 rs9294434 0.009 1.3 x 10-7 

6 6q26 PACRG 163081553 rs34811235 0.03 7.7 x 10-6 

7 7p21 NXPH1 8734538 rs7799161 0.17 9.0 x 10-6 

7 7p21 DGKB 14244431 rs112063234 0.006 9.6 x 10-6 

7 7q21 MAGI2/GNAI1 79702085 rs2714649 0.48 6.1 x 10-6 

7 7q21 GNGT1 93648787 rs117202935 0.02 5.0 x 10-6 

8 8q11 SNTG1 50730869 rs140650336 0.005 1.2 x 10-7 
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8 8q21 SBSPON/C8orf89 73137454 rs7819203 0.009 3.3 x 10-6 

8 8q22 C8orf37/GDF6 96023491 rs534774613 0.002 6.1 x 10-6 

9 9q34 TSC1 132915598 rs111801465 0.01 2.1 x 10-6 

10 10p14 GATA3/CELF2 8881405 rs72780984 0.06 8.3 x 10-6 

10 10p13 CAMK1D 12371661 rs184419307 0.01 6.9 x 10-7 

10 10q21 PCDH15 54495964 rs117393810 0.05 5.7 x 10-6 

10 10q22 KCNMA1 77151487 rs115644363 0.02 1.3 x 10-6 

11 11p15 LSP1 1886192 rs3781963 0.11 6.0 x 10-6 

11 11p13 EHF/APIP 34808842 rs485845 0.36 2.6 x 10-6 

11 11q12 SCGB1D4/ASRGL1 62321517 rs2463828 0.18 4.6 x 10-6 

11 11q13 CHKA/KMT5B 68149941 rs138219403 0.005 1.6 x 10-6 

11 11q14 TENM4/FAM181B 81116865 rs182734497 0.003 2.7 x 10-6 

11 11q22 MMP20/MMP27 102630776 rs2846358 0.23 7.4 x 10-6 

11 11q25 NTM 131968206 rs73031505 0.02 8.7 x 10-6 

12 12q13 SLC38A4/AMIGO2 47057702 rs148791082 0.04 5.6 x 10-6 

12 12q13 SOAT2 53125141 rs543477650 0.01 3.7 x 10-6 

12 12q21 LGR5 71463690 rs73138543 0.008 3.0 x 10-6 

12 12q24 TBX3/MED13L 115466937 rs80125243 0.02 5.7 x 10-6 

12 12q24 RILPL1 123497127 rs75279302 0.007 5.5 x 10-6 

12 12q24 TMEM132C 128325703 rs146366610 0.01 9.5 x 10-6 

13 13q14 VWA8 41583574 rs143305354 0.02 5.0 x 10-6 

13 13q33 MYO16 109006635 rs80032059 0.10 1.2 x 10-6 

14 14q32 BCL11B/SETD3 99345800 rs11160515 0.37 7.4 x 10-6 

15 15q12 GABRG3 27162968 rs116966042 0.02 2.4 x 10-6 

15 15q21 AP4E1/TNFAIP8L3 51018942 rs12324608 0.003 4.7 x 10-6 

15 15q26 SV2B 91293590 rs540806270 0.002 8.9 x 10-6 

15 15q26 MCTP2/NR2F2 95182677 rs565944044 0.003 1.6 x 10-6 

16 16p13 PDPK1/KCTD5 2664115 rs546441131 0.007 9.5 x 10-6 

16 16p12 CHP2/PRKCB 23779017 rs194788 0.44 2.5 x 10-8 

16 16q22 ZFHX3 73445752 rs190272774 0.007 7.7 x 10-6 

16 16q23 WWOX 78661539 rs117592608 0.002 6.4 x 10-6 

17 17q22 CA10/KIF2B 53664017 rs189245993 0.01 5.4 x 10-6 

17 17q22 PPM1E 58950377 rs72828739 0.009 4.7 x 10-7 

18 18p11 L3MBTL4/ARHGAP28 6489587 rs188115066 0.01 8.6 x 10-6 

18 18q22 SOCS6/CBLN2 70927742 rs75780575 0.21 9.0 x 10-6 

18 18q23 GALR1/SALL3 77920162 rs117399154 0.03 7.5 x 10-6 

19 19q13 CLEC11A/GPR32 50766899 rs138603078 0.02 3.5 x 10-6 

20 20q13 CBLN4/MC3R 56113464 rs559568103 0.003 8.1 x 10-6 

22 22q11 KIAA1671 25067863 rs187323966 0.006 7.9 x 10-6 

22 22q13 PNPLA3/SAMM50 43957603 rs549395716 0.003 5.8 x 10-6 

X Xq13 NHSL2 72015085 rs139351147 0.005 2.3 x 10-6 

X Xq23 AGTR2/SLC6A14 116230240 rs12009976 0.49 6.1 x 10-12 
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F508del homozygote CF patients 

chr band symbol bp SNP MAF P value 

1 1q31 PLA2G4A/BRINP3 187397134 rs6425090 0.26 6.2 x 10-6 

1 1q31 CDC73/KCNT2 195055622 rs112526599 0.14 4.0 x 10-6 

1 1q32 CHIT1/BTG2 203301135 rs80030262 0.005 6.1 x 10-6 

1 1q32 CNTN2 205048700 rs116082426 0.003 2.3 x 10-6 

1 1q42 RHOU/RAB4A 229162749 rs342829 0.20 3.2 x 10-6 

1 1q43 CHRM3 239757579 rs192349033 0.004 9.4 x 10-6 

2 2q21 TUBA3E/CCDC115 130287762 rs566393574 0.004 9.9 x 10-6 

2 2q23 ARL6IP6/RPRM 153070652 rs1435024 0.15 7.3 x 10-6 

2 2q34 MYL1 210312747 rs72998411 0.009 1.4 x 10-6 

3 3p22 TRANK1 36881404 rs575293467 0.003 1.9 x 10-6 

3 3p22 ULK4 41438673 rs190729225 0.02 5.9 x 10-6 

3 3p12 ROBO1/GBE1 80025827 rs111563552 0.006 3.6 x 10-6 

3 3p11 CGGBP1/ZNF654 88080039 rs532527341 0.002 4.1 x 10-6 

3 3q29 MUC20/MUC4 195760866 rs2246771 0.29 4.0 x 10-8 

4 4p14 PCDH7/ARAP2 35904806 rs61452043 0.01 4.6 x 10-6 

5 5p15 SLC9A3/CEP72 582882 rs72703051 0.15 8.6 x 10-7 

5 5q11 ITGA2 53036259 rs2406598 0.28 1.3 x 10-7 

5 5q14 ATP6AP1L 82359496 rs74798522 0.02 5.3 x 10-6 

5 5q15 FAM172A 93896429 rs9314091 0.06 3.4 x 10-6 

5 5q21 FBXL17/FER 108575901 rs73217641 0.006 9.5 x 10-6 

6 6p21 HLA-DRB1/HLA-DQA1 32596950 rs28366340 0.39 2.8 x 10-7 

6 6q22 LAMA2 128927753 rs7738059 0.007 9.5 x 10-8 

6 6q23 AKAP7 131264361 rs146994932 0.02 6.8 x 10-6 

6 6q23 SLC2A12 134026173 rs75395918 0.002 9.5 x 10-6 

6 6q23 MAP7 136367391 rs138017191 0.004 7.8 x 10-6 

7 7p21 DGKB 14244431 rs112063234 0.004 5.0 x 10-6 

7 7q21 CDK6/SAMD9 92872390 rs10429198 0.05 8.7 x 10-6 

8 8p22 TRMT9B 12967580 rs144830546 0.03 6.2 x 10-6 

8 8p11 ADAM18 39661410 rs184059380 0.01 6.8 x 10-6 

8 8p11 CHRNB3 42716976 rs76252105 0.02 2.4 x 10-6 

8 8q11 SNTG1 50730869 rs140650336 0.005 5.4 x 10-6 

9 9q22 TRIM14 98086843 rs184222854 0.006 3.8 x 10-6 

10 10p11 AL117339.4/ZNF33B 38708056 rs191327171 0.02 6.6 x 10-6 

10 10q11 AL117339.4/ZNF33B 41736315 rs1608199 0.01 9.7 x 10-6 

11 11p15 RNH1/HRAS 521966 rs78465464 0.04 6.5 x 10-6 

11 11p13 EHF/APIP 34828026 rs483769 0.40 1.4 x 10-9 

11 11q22 ARHGAP42 100685745 rs528552437 0.004 9.3 x 10-6 

11 11q22 MMP20/MMP27 102630776 rs2846358 0.22 1.2 x 10-6 

12 12q13 SLC38A4/AMIGO2 46942803 rs79076238 0.02 1.9 x 10-6 

12 12q21 ATP2B1/CCER1 90074692 rs538161945 0.006 5.8 x 10-7 

13 13q12 FGF9/SGCG 22306992 rs9550839 0.24 6.7 x 10-6 

13 13q21 KLHL1/DACH1 71175920 rs141112878 0.01 4.6 x 10-6 
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14 14q32 INF2 104695717 rs4326984 0.48 7.2 x 10-6 

15 15q12 GABRG3 27162968 rs116966042 0.02 2.6 x 10-6 

15 15q26 SV2B/SLCO3A1 91428896 rs4932491 0.35 2.3 x 10-7 

16 16p12 CHP2/PRKCB 23779286 rs2520012 0.44 2.5 x 10-6 

16 16q24 ZCCHC14/JPH3 87517173 rs574712649 0.004 3.8 x 10-6 

17 17p13 GSG1L2 9808600 rs73976614 0.003 7.7 x 10-6 

17 17p12 HS3ST3B1/PMP22 15096298 rs75154553 0.04 3.7 x 10-6 

17 17p11 KCNJ18/MTRNR2L1 22229652 rs143475159 0.07 9.0 x 10-6 

17 17q11 BLMH 30276810 rs56881390 0.09 4.8 x 10-6 

17 17q22 NOG/C17orf67 56603918 rs12603025 0.37 5.5 x 10-6 

17 17q24 KCNJ2/SOX9 71155392 rs9916274 0.11 7.4 x 10-6 

18 18q12 TRAPPC8/RNF125 31973637 rs190591278 0.006 3.7 x 10-6 

19 19q13 PRMT1 49678324 rs183780282 0.005 7.0 x 10-6 

20 20p11 GGTLC1/SYNDIG1 24152860 rs557143039 0.002 8.3 x 10-6 

21 21q22 SUMO3/PTTG1IP 44841475 rs235260 0.18 5.5 x 10-6 

X Xq23 AGTR2/SLC6A14 116230240 rs12009976 0.49 3.0 x 10-10 
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Table E2. CAVIAR and VEP results. 

Please refer to Excel file uploaded to the journal online submission website. 
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Table E3.  Transcriptome-wide association evidence for expression vs. lung function for individual annotated genes transcriptome-wide 

false discovery q < 0.10 (the table for all genes is in Table E4).   

Column headings are as follows. (i) Gene symbol: HGNC gene symbol; (ii) CHR: chromosome; (iii) TSS: transcription start site in bp 

using human genome build hg38; (iv) omniz: z-statistic for the omnibus association statistic as described in Methods, with positive sign 

corresponding to positive association of imputed transcription values with improved lung phenotype; (v) omnip: two-sided P value for 

omniz; (vi) omniq: false discovery q value for omnip, corrected for all ~26K genes; (vii) maxtissue (number of samples): tissue/dataset in 

which the most significant TWAS association occurred (eQTL dataset sample size shown in parentheses); (viii) maxz: z-statistic for the 

most significant tissue; (ix) minp: P value for the most significant tissue; (x) minp corrected: Bonferroni corrected P value for minp, 

corrected for the number of tissues with informative data; (xi) minq: false discovery q value for minp corrected, corrected for all ~26K 

genes; (xii) finalp: final P value = 2*[min (omnip, minp corrected)], which is a gene-level P value, Bonferroni-corrected for the choice of 

the more significant of the two P values (based on either the omnibus statistic or the tissue-specific statistic); (xiii) finalq: final q value 

correction over all 26K genes for the finalp; (xiv) tissue specificity score = omnip/(minp corrected), which is large when the tissue 

specificity P value is smaller than that for the omnibus statistic. 

Gene 
symbol CHR TSS omniz omnip omniq maxtissue (number of samples) maxz minp 

minp 
corrected minq finalp finalq 

tissue 
specificity 
score 

HLA-DRB6 6 32527799 -6.20 2.72E-11 7.07E-07 Minor_Salivary_Gland (85) -5.95 2.70E-09 1.27E-07 3.66E-04 5.44E-11 1.41E-06 2.14E-04 

HLA-DQA2 6 32709119 -5.94 1.76E-10 1.58E-06 Brain_Hypothalamus (108) -5.54 3.05E-08 1.43E-06 1.96E-03 3.52E-10 3.15E-06 1.23E-04 

CEP72 5 612387 5.94 1.82E-10 1.58E-06 Thyroid (399) 6.53 6.65E-11 1.53E-09 1.99E-05 3.64E-10 3.15E-06 1.19E-01 

EXOC3 5 443273 5.61 1.63E-09 8.48E-06 Brain_Substantia_nigra (80) 6.69 2.28E-11 9.37E-10 1.99E-05 1.87E-09 1.22E-05 1.74E+00 

ZDHHC11 5 851101 4.48 1.50E-06 3.55E-03 Adrenal_Gland (175) 6.46 1.08E-10 2.69E-09 2.33E-05 5.38E-09 2.33E-05 5.58E+02 

TPPP 5 693510 -4.31 3.75E-06 7.49E-03 Brain_Cerebellum (154) -6.35 2.16E-10 3.89E-09 2.53E-05 7.78E-09 2.89E-05 9.64E+02 

SDHAP1 3 195717187 -5.07 5.03E-08 1.87E-04 Testis (225) -5.82 5.91E-09 2.36E-07 4.72E-04 1.01E-07 2.61E-04 2.13E-01 

HLA-DRB1 6 32557625 4.83 2.12E-07 6.13E-04 Small_Intestine_Terminal_Ileum (122) 5.92 3.23E-09 1.16E-07 3.66E-04 2.32E-07 5.02E-04 1.83E+00 

HLA-DQA1 6 32595956 4.52 1.21E-06 3.13E-03 Small_Intestine_Terminal_Ileum (122) 5.87 4.38E-09 1.45E-07 3.76E-04 2.90E-07 5.80E-04 8.34E+00 

ZDHHC11B 5 767067 3.94 2.26E-05 2.80E-02 Thyroid (399) 5.70 1.22E-08 1.83E-07 4.31E-04 3.66E-07 6.79E-04 1.23E+02 
HLA-DQB1-
AS1 6 32628132 4.27 4.42E-06 8.20E-03 Colon_Sigmoid (203) 5.63 1.84E-08 6.82E-07 1.18E-03 1.36E-06 2.08E-03 6.48E+00 

HLA-DRA 6 32407619 -1.91 4.06E-02 8.96E-01 Adipose_Subcutaneous (385) -5.25 1.50E-07 1.05E-06 1.61E-03 2.10E-06 2.87E-03 3.87E+04 

TRIP13 5 892940 4.12 9.55E-06 1.38E-02 Artery_Aorta (267) 4.92 8.52E-07 1.70E-06 2.21E-03 3.40E-06 4.42E-03 5.62E+00 

BRD9 5 892757 -4.22 5.71E-06 9.89E-03 Brain_Cerebellum (154) -3.85 1.17E-04 8.18E-04 2.80E-01 1.14E-05 1.41E-02 6.98E-03 

CHP2 16 23765948 0.99 2.86E-01 1.00E+00 Lung (383) 4.70 2.60E-06 7.81E-06 9.46E-03 1.56E-05 1.78E-02 3.66E+04 

HLA-DQB1 6 32636160 4.13 9.16E-06 1.38E-02 Brain_Putamen_basal_ganglia (111) 4.10 4.21E-05 2.02E-03 4.61E-01 1.83E-05 1.85E-02 4.54E-03 

PRL 6 22297730 3.50 1.70E-04 1.30E-01 Brain_Hippocampus (111) 4.58 4.64E-06 9.27E-06 1.05E-02 1.85E-05 1.85E-02 1.83E+01 
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AK8 9 135754164 -4.02 1.61E-05 2.21E-02 Brain_Substantia_nigra (80) -4.21 2.55E-05 6.63E-04 2.69E-01 3.22E-05 3.10E-02 2.43E-02 

GRAMD1C 3 113547029 3.96 2.07E-05 2.69E-02 Artery_Coronary (152) 4.07 4.70E-05 6.58E-04 2.69E-01 4.14E-05 3.84E-02 3.15E-02 

HLA-DQB2 6 32731311 -3.89 2.95E-05 3.26E-02 Brain_Cerebellum (154) -4.31 1.60E-05 7.19E-04 2.79E-01 5.90E-05 4.74E-02 4.10E-02 

HLA-DRB5 6 32498064 1.99 3.28E-02 8.59E-01 NTR.BLOOD.RNAARR (1247) 4.98 6.25E-07 3.00E-05 3.12E-02 6.00E-05 4.74E-02 1.09E+03 

CDSN 6 31088223 -3.88 3.01E-05 3.26E-02 Skin_Sun_Exposed_Lower_leg (414) -3.82 1.34E-04 2.68E-04 1.39E-01 6.02E-05 4.74E-02 1.12E-01 

DDX39B 6 31510225 -2.24 1.59E-02 7.50E-01 Brain_Cerebellar_Hemisphere (125) -4.53 6.04E-06 4.23E-05 3.92E-02 8.46E-05 5.94E-02 3.76E+02 

MIR570 3 195426272 -3.49 1.78E-04 1.32E-01 Cells_Transformed_fibroblasts (300) -4.79 1.70E-06 4.60E-05 4.12E-02 9.20E-05 6.29E-02 3.86E+00 

FBXL7 5 15500305 0.90 3.36E-01 1.00E+00 Colon_Sigmoid (203) 4.53 5.80E-06 5.22E-05 4.52E-02 1.04E-04 6.96E-02 6.43E+03 

XXYLT1 3 194991896 -0.83 3.72E-01 1.00E+00 Heart_Left_Ventricle (272) -4.77 1.80E-06 5.39E-05 4.52E-02 1.08E-04 7.00E-02 6.91E+03 

CORO1A 16 30194148 3.72 6.42E-05 6.18E-02 YFS.BLOOD.RNAARR (1264) 3.65 2.62E-04 7.85E-04 2.79E-01 1.28E-04 8.14E-02 8.18E-02 

CCDC127 5 218330 -2.16 2.01E-02 7.94E-01 
Brain_Nucleus_accumbens_basal_ganglia 
(130) -4.73 2.24E-06 7.63E-05 6.20E-02 1.53E-04 9.44E-02 2.63E+02 
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Table E4. TWAS results for all genes (n = 25,982) using the CFGP WGS for 7,840 

patients. 

Please refer to Excel file uploaded to the journal online submission website. 
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Table E5. Association results of 36,946 genes and Consortium lung phenotype 

(KNoRMA). 

Please refer to Excel file uploaded to the journal online submission website. 
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Table E6. Pathways that are significantly associated with Consortium lung phenotype 

(KNoRMA). 

Please refer to Excel file uploaded to the journal online submission website. 
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Supplementary Figures 
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Figure E1. Control of false positives. The quantile-quantile plot of 

observed vs. expected P values shows proper control of false positives 

(genomic control λ = 1.022). Results shown are from genome-wide 

association analysis with KNoRMA in all participants (n = 7,840).
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MUC4/MUC20 (chr3q29)

SLC9A3/CEP72 (chr5p15.33)

HLA class II (chr6p21)

Figure E2. LocusZoom plots for six loci with genome-wide significant associations. For each locus, the 

left panel shows the P values from the original association scan, and the right panel shows the 

conditional P values after conditioning on the most significant regional SNP. Red line on left panels, P < 

5 x 10-8 (also see Table 2). For two of the loci (SLC9A3/CEP72 and EHF/APIP), regional correction for 

the secondary/conditional SNP was significant after regional false discovery rate correction.

rs111275646

Bonferroni-corrected 

conditional P value = 0.17; FDR q = 0.04

rs2246771

rs56108664

rs9268860

Page 73 of 83

 AJRCCM Articles in Press. Published March 15, 2023 as 10.1164/rccm.202209-1653OC 
 Copyright © 2023 by the American Thoracic Society 



EHF/APIP (chr11p13)

CHP2/PRKCB (chr16p12.2)

AGTR2/SLC6A14 (chrXq23)

Bonferroni-corrected 

conditional P value = 0.003; FDR q = 0.0003

rs1509661

rs194788

rs12009976

rs485845

Figure E2 (continued). LocusZoom plots for six loci with genome-wide significant associations.

For each locus, the left panel shows the P values from the original association scan, and the 

right panel shows the conditional P values after conditioning on the most significant regional 

SNP. Red line on left panels, P < 5 x 10-8 (also see Table 2). For two of the loci (SLC9A3/CEP72

and EHF/APIP), regional correction for the secondary/conditional SNP was significant after 

regional false discovery rate correction.
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Figure E3. LocusZoom plots for four loci with suggestive associations in 

all patients. Blue line, P < 5 x 10-7 (see also Table 2).

UBE2J1 (chr6q15)CEP85 (chr1p36)

SNTG1 (chr8q11.2) PPM1E (chr17q22)

rs41284341
rs9294434

rs140650336
rs72828739
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Figure E4. LocusZooms in the chr5p15.33 region showing P values for original and 

conditional analyses for the most significant SNPs. Exhaustive two-SNP modeling 

identified rs56108664 (“primary”) and rs111275646 (“secondary”) as the most significant 

pair of SNPs (linkage disequilibrium r2 = 0.01  for rs56108664/rs111275646) in predicting 

the KNoRMA phenotype in the all-patients analysis. These SNPs are highlighted on the 

plots. Dashed line shows genome-wide significance of P < 5 x 10-8. (A) in original 

genome-wide association scan, repeated here for easy comparison; (B) after controlling 

for the primary SNP rs56108664 (protective allele frequency, PAF = 0.83) determined 

from exhaustive two-SNP modeling in the region; (C) after controlling for the secondary 

SNP rs111275646 (PAF = 0.85). The result after conditioning on the secondary SNP is 

similar to that of the initial single-SNP scan.

A

B

C

rs56108664

rs56108664

rs111275646 
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Figure E5. LocusZooms in the chr11p13 region showing P values for original and 

conditional analyses for the most significant SNPs. Exhaustive two-SNP modeling 

identified rs483769 (“primary”) and rs1509661 (“secondary”) as the most significant 

pair of SNPs (linkage disequilibrium r2 = 0.28 for rs483769/rs1509661) in predicting the 

KNoRMA phenotype in the all-patients analysis. These SNPs and their protective allele 

frequencies (PAF) are highlighted on the plots. Dashed line shows genome-wide 

significance of P < 5 x 10-8. (A) Original genome-wide association scan in all patients, 

repeated here for easy comparison. The most significant SNP in this single-SNP 

analysis was rs485845 (P = 2.6 x 10-9), which is in the same LD block and correlated 

with the primary (rs483769) SNP (r2 = 0.35 for rs483769/rs485845). (B) P values for all 

patients after controlling for the primary SNP (minimum P = 3.4 x 10-6 at rs1509661), 

with regional Bonferroni P = 0.003.  (C) P values after controlling for the secondary 

SNP rs1509661 are much smaller (4-5 orders of magnitude, minimum P = 7.2 x 10-14) 

than the P values from the original scan.

All patients

A

B

C

EHF APIP
PDHX
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Figure E6. Violin/boxplots of the KNoRMA phenotype for various genotype combinations for rs483769 

and rs1509661 in the EHF/APIP region. The two SNPs indicated were the most significant in the primary 

and secondary regions based upon the two-SNP additive model (see Figure E5). “Risk” alleles, i.e., 

those that associate with lower lung function (KNoRMA), are highlighted in red. Line inside each box is 

the median KNoRMA and the box represents the inter-quartile range (IQR), or distance between the first 

and third quartiles (the 25th and 75th percentiles). Blue dots are predicted KNoRMA based on the effect 

sizes of each SNP in the two-SNP additive model. Violin plots represent the phenotype distribution. The 

number of study participants carrying each genotype combination (n) is shown along with the mean 

(KNoRMA). 

K
N

o
R

M
A

rs483769        A/A A/A A/A A/G      A/G A/G G/G    G/G     G/G
rs1509661      T/T G/T G/G      T/T G/T G/G      T/T G/T G/G
n 76       749    2,100    395    2,277    1,026    561     533     123
KNoRMA 0.12    0.34     0.43    0.45     0.52     0.56     0.53    0.62    0.65
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Figure E7. Consistent ordering of cohort effect sizes across multiple loci. Allelic 

effect sizes (beta values) from forest plots of Figure 3 are plotted as pairwise 

scatterplots, with bubbles corresponding to site cohort and with bubble areas 

proportional to cohort size. The protective allele is used as reference, so all are 

in the same positive direction, and the unit line is shown as a dashed line. The 

results show positive correlation for all pairs of cohorts across the six genome-

wide significant loci, indicating consistent ordering of cohort effects (P = 0.0014) 

by the most conservative assumptions.
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Figure E8. Results from genome-wide Manhattan plot of associations with 

KNoRMA in the Phe508del homozygotes (n = 4,985). (A) The quantile-

quantile plot of observed vs. expected P values shows proper control of 

false positives (genomic control λ = 1.029). (B) Manhattan plot, with red 

and blue lines corresponding to significant (P < 5 x 10-8) and suggestive (P

< 5 x 10-7) associations, respectively.
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Figure E9. LocusZooms in the chr11p13 region showing P values for original and 

conditional analyses for the most significant SNPs. Exhaustive two-SNP modeling 

identified rs483769 (“primary”) and rs1509661 (“secondary”) as the most significant pair of 

SNPs (linkage disequilibrium r2 = 0.28 for rs483769/rs1509661) in predicting the KNoRMA

phenotype in the all-patients analysis. These two SNPs are used throughout as 

primary/secondary for consistency, and these SNPs and others and their protective allele 

frequencies (PAF) are highlighted on the plots.  Dashed line shows genome-wide 

significance of P < 5 x 10-8. (A) Original genome-wide association scan in F508del 

homozygous patients (minimum P = 1.4 x 10-9 at the initial primary SNP rs483769). (B) P

values for F508del homozygous patients after controlling for the primary SNP showed a 

minimum at rs7122048 (P = 2.4 x 10-6, regional Bonferroni P = 0.003) in the same LD block 

as the secondary SNP (LD r2 = 0.84 for rs1509661/rs7122048). (C) P values after 

controlling for the secondary SNP rs1509661 are much smaller (4-5 orders of magnitude, 

minimum P = 6.9 x 10-14) than the P values from the original scan.

F508del/F508del homozygotes
A

B

C

EHF APIP
PDHX
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Figure E10. LocusZoom plots for three loci with suggestive associations in the 

CFTR Phe508del/Phe508del homozygotes. Blue line, P < 5 x 10-7.

ITGA2 (chr5q11.2) LAMA2 (chr6q22.3)

SV2B (chr15)

rs7738059
rs2406598

rs4932491

Page 82 of 83

 AJRCCM Articles in Press. Published March 15, 2023 as 10.1164/rccm.202209-1653OC 
 Copyright © 2023 by the American Thoracic Society 



12

Figure E11.  Genes that drive core enrichment significant result for this 

cytoskeleton organization pathway (GO:0051494). This VEGAS2 

analysis GSEAS plot includes many genes related to microtubular and 

cytoskeleton function, which is abnormal in CF epithelial cells (see main 

text refs 46, 47, and 38).

Rank of P values in genes associated with KNoRMA

RDX, MET, CAPZA2, CARMIL1, MYOC, CDH5, VILL, ADD3, CLASP2, MIR214, KATNB1, 

TMOD1, SPTBN4, CAPG, KAT2A, CRACD, FRMD7, SPTAN1, CAV3, ARFGEF1, CAPZA3, 

FLII, F11R, DLC1, CORO1A, LIMA1, CHMP2A, SMAD4, APC2, TWF1, NPM1, FGF13, 

MAPRE1, TPX2, CCNF, PFN2, BMERB1, MID1, CORO2B, MIR138-1, ATXN7, CAPZB, 

ARHGAP6, MYADM, ARHGEF18, ESPN, TMSB4X, STMN1, MID1IP1, CAPZA1, GMFG, 

FHOD3, RBM14, NUBP1, TMEFF2, SSH1, TTBK2, GMFB, CAMSAP2, MKKS, CCP110, 

PLEKHH2, PPFIA1, SVIL, CLIP3, PAK2, AVIL, SLIT2, INPP5K, SPTBN2, BBS4, ARPIN, 

SPTBN1, ARHGEF2, KIF25, LMOD1, TACSTD2
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