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Abstract

Expression quantitative trait loci (eQTL) studies are used to understand the regulatory func-

tion of non-coding genome-wide association study (GWAS) risk loci, but colocalization

alone does not demonstrate a causal relationship of gene expression affecting a trait. Evi-

dence for mediation, that perturbation of gene expression in a given tissue or developmental

context will induce a change in the downstream GWAS trait, can be provided by two-sample

Mendelian Randomization (MR). Here, we introduce a new statistical method, MRLocus, for

Bayesian estimation of the gene-to-trait effect from eQTL and GWAS summary data for loci

with evidence of allelic heterogeneity, that is, containing multiple causal variants. MRLocus

makes use of a colocalization step applied to each nearly-LD-independent eQTL, followed

by an MR analysis step across eQTLs. Additionally, our method involves estimation of the

extent of allelic heterogeneity through a dispersion parameter, indicating variable mediation

effects from each individual eQTL on the downstream trait. Our method is evaluated against

other state-of-the-art methods for estimation of the gene-to-trait mediation effect, using an

existing simulation framework. In simulation, MRLocus often has the highest accuracy

among competing methods, and in each case provides more accurate estimation of uncer-

tainty as assessed through interval coverage. MRLocus is then applied to five candidate

causal genes for mediation of particular GWAS traits, where gene-to-trait effects are concor-

dant with those previously reported. We find that MRLocus’s estimation of the causal effect

across eQTLs within a locus provides useful information for determining how perturbation of

gene expression or individual regulatory elements will affect downstream traits. The MRLo-

cus method is implemented as an R package available at https://mikelove.github.io/

mrlocus.
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Author summary

Genome-wide association studies (GWAS) have identified many loci associated with com-

plex traits and diseases. Expression quantitative trait loci (eQTL) may help to explain

mechanisms of GWAS associations, if the gene has a role as a mediator of the trait or dis-

ease. Loci that exhibit allelic heterogeneity, that is, loci containing multiple causal variants,

offer the opportunity to investigate whether effects are concordant and proportional

across eQTL and GWAS; if the gene is a partial mediator of the trait, the sign and size of

the effects across distinct eQTL variants should be reflected in GWAS associations. Such a

Mendelian Randomization (MR) analysis of individual loci is complicated by moderate

sample sizes in eQTL studies and linkage disequilibrium (LD), resulting in complex pat-

terns of estimated effect sizes for eQTL and GWAS. We develop a statistical model,

MRLocus, with two steps: selection of eQTL SNPs to act as instruments in the MR analysis

of a genetic locus, and estimation of the gene-to-trait mediation effect taking instrument

uncertainty into account. In simulation, the method has higher accuracy and better uncer-

tainty measures compared to other competing methods, and we compare its estimates on

candidate causal gene-trait pairs from literature.

Introduction

Genome-wide association studies (GWAS) have identified many loci associated with complex

traits and diseases. A major goal now is to understand the mechanism by which non-coding

genetic variation influences trait levels through changes in gene expression. This involves iden-

tifying the causal variants at a locus, determining if the same variants are associated with both

gene expression and trait, and disambiguating mediation from pleiotropy [1]. Proposing medi-

ating genes from existing expression quantitative trait loci (eQTL) and GWAS resources will

lead to experiments that test whether modulating gene expression influences traits, and there-

fore inform further research and development of treatments.

Current efforts to identify the genes underlying GWAS risk often make use of either coloca-

lization of GWAS signal with eQTLs, or expression imputation. In colocalization, statistical

models are used to probabilistically assess if the same genetic variants within a locus are likely

to be causally contributing to both eQTL and GWAS signals, taking into account the structure

of linkage disequilibrium (LD) for a given population [2–8]. Expression imputation methods,

as in transcriptome-wide association studies (TWAS), add additional information by includ-

ing subthreshold signal for both GWAS and eQTL to identify which genes’ expression may

have a non-zero local genetic correlation with a given GWAS trait [9–11]. Further refinements

of TWAS statistical models have allowed for probabilistic fine-mapping within loci harboring

multiple candidate genes by accounting for LD structure, as in FOCUS [11].

Though colocalization and expression imputation suggest genes involved in a trait, neither

method is designed to disambiguate between pleiotropy and mediation. The latest generation

of methods for determining those genes involved in mediating GWAS signal have combined

the approaches of colocalization and expression imputation with statistical techniques from

the field of Mendelian randomization (MR) [12–14], as evaluated and reviewed recently

[15,16]. Intuitively, these methods work by determining if those genetic variants which influ-

ence gene expression also influence a downstream trait in proportionate degrees. Evidence for

mediation is provided by randomized genetic variation used to perturb gene expression and

observing the expression effects propagated to traits. With access to genotype, expression, and

trait data, classical mediation techniques can be employed, as in the methods CIT [17] and
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SMUT [18], while MR-link [19] makes use of individual-level data from a GWAS study and

summary statistics for eQTL to perform MR analysis.

Other methods testing gene-to-trait mediation require only summary statistics from eQTL

and GWAS studies, as it is rarely possible to have access to the per-participant genotypes,

expression values, and GWAS trait values [20]. Methods such as CaMMEL [21], TWMR [22],

LDA-MR-Egger [23], PMR-Summary-Egger [24], PTWAS [25], MESC [1], MR-Robin [26]

allow for estimation of gene-to-trait effects from eQTL and GWAS summary statistics, integrat-

ing across multiple SNPs within a locus. The ability to accurately estimate the gene-to-trait

mediation effect within a locus relies on having multiple independent “instruments”, SNPs

which are found to be associated with the potential mediator (gene expression), and which plau-

sibly only affect the downstream trait through the mediator. Across studies, between 29–50% of

genes provide evidence for allelic heterogeneity, that is, having more than one independent cis-

eQTL per gene, with estimates varying by tissue and study sample size [27–29]. Some genes pro-

vide evidence for up to 13 independent cis-eQTL signals, detected by conditional analysis in

peripheral blood [28]. A recent study integrating neonatal gene expression with GWAS of auto-

immune and allergic disease performed MR analysis across 52 genes that had three or more cis-

eQTLs [30]. Therefore, while not all genes display allelic heterogeneity at current eQTL study

sample sizes, it is common enough to allow for mediation modeling of many candidate genes.

Existing methods for assessing whether expression of a particular gene in some context

may mediate GWAS signal have primarily focused on their ability to perform genome-wide

mediation scans across multiple tissues or cell types. This is a critical task in determining the

genetic architecture and the most relevant molecular contexts for a trait (e.g. tissues, cell types,

or developmental stage) which are often not known a priori. However, when considering func-

tional follow-up experiments at an individual locus, investigators may weigh accurate quantifi-

cation of the uncertainty regarding a potential gene-to-trait effect, as well as the heterogeneity
of gene-to-trait effects across signal clusters within a locus.

Here, we propose MRLocus, a Bayesian model for estimating the gene-to-trait effect from

multiple independent signal clusters for one gene, as well as for estimating the heterogeneity of

the effects across clusters. We have designed our method for prioritization of genes in functional

experiments, where the genes under study have already been identified as candidates for media-

tion, having emerged from one of the global mediation scanning methods described above, or

from colocalization or TWAS. MRLocus performs estimation of the gene-to-trait effect itself, as

our focus is on experimental follow-up, as opposed to estimation of the percent of mediated

heritability. In comparisons with other recently developed methods for identifying mediating

genes from eQTL and GWAS summary data and LD matrices, TWMR and PTWAS, MRLocus

was often more accurate in estimation of the gene-to-trait effect across simulated eQTL and

GWAS experiments, and had higher and closer to nominal coverage of the true effect when

considering its credible intervals. Using existing eQTL and GWAS data, we also estimate media-

tion effects at previously reported and experimentally validated loci. The MRLocus method is

implemented as an open source R package with full function documentation and a software

vignette demonstrating its use, publicly available at https://mikelove.github.io/mrlocus.

Materials and methods

MRLocus method

MRLocus consists of two steps, (1) colocalization and (2) MR slope fitting, each of which use

Bayesian hierarchical models specified in the Stan probabilistic programming language, and

with posterior inference using the Stan and RStan software packages [31]. As in PTWAS [25],

MRLocus estimates the gene-to-trait effect or slope by identifying "nearly-LD-independent"
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signal clusters and then assessing the strength of evidence of mediation and the heterogeneity

of the allelic effects. We refer to "nearly-LD-independent" clusters meaning non-overlapping

sets of SNPs with low LD: MRLocus first uses PLINK’s clumping algorithm [32] with r2 < 0.1

to identify signal clusters, sets of SNPs correlated with gene expression based on eQTL p-value

(as discussed below), whereas PTWAS uses DAP [33] for identifying signal clusters. MRLocus

additionally performs trimming of signal clusters to ensure r2 < 0.05 for cluster representative

SNPs, first using across-cluster r2 based on index SNP, then later using the candidate causal

SNP from the colocalization step. Here, "trimming clusters" refers to removing clusters, priori-

tizing those clusters with lower index SNP eQTL p-value. Alternatively, conditional analysis

could be used as discussed in a recent coloc methods paper [34]. As with other gene mediation

methods mentioned above, we focus here on common SNPs (using a minor allele frequency

(MAF) filter on real and simulated data of 0.01). To the extent that a SNP or genetic variant

gives rise to both the eQTL and GWAS signal and is in the set analyzed by MRLocus, then the

model has a chance to find the "causal” SNP, although in general MRLocus may identify a SNP

which is in high LD with the causal SNP.

In contrast to other methods for estimating gene-to-trait effects, MRLocus additionally per-

forms a colocalization step prior to slope fitting, using eQTL and GWAS summary statistics

(estimated coefficients and standard errors (SE)), based on LD matrices (either distinct matri-

ces when eQTL/GWAS are performed in different populations, or a single shared matrix can

be used when eQTL/GWAS are performed in the same population). The colocalization step

attempts to identify a single candidate causal SNP per nearly-LD-independent signal cluster.

Here “candidate causal SNP” refers to the hypothesis that the SNP gives rise to both the

observed eQTL and GWAS signal, given the LD matrices. The colocalization step produces

posterior estimates that assess the degree to which the summary statistics and LD matrices sup-

port the causal hypothesis per signal cluster (see S1 Methods for details on the statistical

model). If the SNP is a strong candidate for causing both the eQTL and GWAS signal in a sig-

nal cluster, then the posterior estimates for the eQTL and GWAS effect sizes will be large (in

absolute value) for the SNP, and near 0 for the other SNPs. If the SNP is a strong candidate for

only the eQTL signal, but not for the GWAS signal, then the posterior estimate for the chosen

SNP for the GWAS signal will be near 0. Finally, we note that prior to the colocalization step,

MRLocus performs collapsing of highly correlated SNPs (threshold of 0.95 correlation), such

that the final "per-SNP" results actually correspond to results for representatives from sets of

highly correlated SNPs. MRLocus also performs allele flipping such that all SNPs are coded to

be in positive LD correlation to the index SNP that has a positive estimated coefficient for

eQTL (S1 Methods). This ensures that the statistical modeling and visualizations are always

referring to the effect of an expression-increasing allele.

MRLocus’s colocalization step is motivated by the eCAVIAR model [5] as it formulates a gen-

erative model for the summary statistics based on true underlying signals, but is distinct from the

eCAVIAR model in two respects. First, eCAVIAR models the z-scores from eQTL and GWAS,

while MRLocus directly models the estimated coefficients, as our focus is on estimation of the

gene-to-trait effect, which can be conceived as in other MR applications as a regression of coeffi-

cients from GWAS on eQTL. eCAVIAR does not output posterior effect sizes for the two studies,

which is the originally intended input to MRLocus slope estimation. Second, eCAVIAR uses a

multivariate normal distribution to model the vector of observed z-scores in a locus, while MRLo-

cus uses a univariate distribution to model the estimated coefficients of the SNPs in each nearly-

LD-independent signal cluster. The univariate distribution was chosen for its increased perfor-

mance in accuracy and in efficiency in model fitting, as well as for flexibility in specification of

prior distributions. As the methods have distinct but related functionality, we also assessed the use

of eCAVIAR in lieu of MRLocus’s colocalization step, for choice of candidate causal SNPs to
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provide to the subsequent slope fitting step (referred to here as "eCAVIAR-MRLocus"). As with

MRLocus colocalization, clusters are trimmed such that across-cluster r2< 0.05 based on eCA-

VIAR chosen SNPs, but collapsing of highly correlated SNPs is not performed, as it is not required

for eCAVIAR input. The SNP with largest colocalization posterior probability (CLPP) is chosen

among those SNPs with p-value below the clumping threshold.

In its implementation of colocalization, MRLocus uses a horseshoe prior [35] on the true

coefficients for eQTL and GWAS signal per signal cluster, which helps to induce sparsity in

the posterior estimates of the coefficients prior to mediation analysis (S1 Methods). The pro-

posed use of the horseshoe prior during colocalization to identify putative causal SNPs from

eQTL and GWAS coefficients within a signal cluster is distinct from other Bayesian MR meth-

ods’ use of the horseshoe prior on pleiotropic effects or on the mediation slope [36–38].

MRLocus’s slope fitting step involves estimation of the gene-to-trait effect across signal

clusters (Fig 1). For slope estimation, the best candidate SNP per nearly-LD-independent sig-

nal cluster is chosen, based on which SNP has the largest posterior mean of the eQTL effect

size from the colocalization step. A hierarchical model is used to perform inference on param-

eters of interest, in this case the slope (α) of true GWAS coefficients on true eQTL coefficients.

In contrast to a typical inverse-variance weighted MR slope estimation, MRLocus additionally

includes uncertainty on the effect size of the instruments, which we find leads to better cover-

age properties of credible intervals in simulated datasets. For study of putative mediator A (e.g.

eQTL) and downstream trait B (e.g. GWAS), the following hierarchical model is fit using esti-

mated coefficients b̂ j and standard errors sej across signal clusters j ∊ 1,. . .,J:

b̂A
j � NðbA

j ; se
A
j Þ

b̂B
j � NðbB

j ; se
B
j Þ

b
A
j � Nð0; SDbÞ

b
B
j � NðabA

j ; sÞ

Fig 1. MRLocus estimates the gene-to-trait effect (solid blue line) as the slope from paired eQTL and GWAS effect

sizes from independent signal clusters (black points with standard error bars), here on simulated coefficients. The

dispersion of allelic effects around the main gene-to-trait effect (light blue band) is also estimated. An 80% credible

interval on the slope is indicated with dashed blue lines sloping above and below the solid blue line. Panels represent

loci demonstrating (A) mediation with low dispersion, (B) mediation with high dispersion, and (C) colocalization of

eQTL and GWAS signals but no evidence of mediation (slope credible interval overlaps 0). Investigators may wish to

prioritize loci for experimental follow-up in which a typical “dosage” pattern is observed, such that alleles contributing

small amounts to expression of a gene contribute small amounts to GWAS trait, and similarly for large effect alleles.

https://doi.org/10.1371/journal.pgen.1009455.g001
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Details regarding setting of priors for the hyperparameters SDβ (the prior for the instru-

ment effect sizes), α (the gene-to-trait slope), and σ (the dispersion of signal cluster effect sizes

around the fitted line) are provided in the S1 Methods. If the signal cluster does not provide

evidence of colocalization, the estimate of the GWAS coefficient from the previous step will be

near 0, and this will bring the estimated slope toward 0 as well. If the eQTL and GWAS esti-

mated coefficients are based on standardized expression and traits, then α2 can be interpreted

as the mediated trait variance explained in the samples. Quantile-based credible intervals on

the slope coefficient provide information regarding the uncertainty of the gene mediating the

trait measured in the GWAS. Finally, whereas PTWAS makes use of an I2 statistic [39] for

quantifying the heterogeneity of the allelic effects at the locus, MRLocus estimates the disper-

sion (σ) of the different allelic effects around the predicted values given by the slope. Therefore,

MRLocus may have high certainty on the slope (narrow credible interval for α not overlapping

0), while nevertheless estimating that the dispersion of allelic effects around the slope is large

(σ). The tradeoff between uncertainty on the estimate of α and the dispersion σ of allelic effects

around fitted line naturally depends upon the number of independent signal clusters at the

locus. For loci with no allelic heterogeneity, we do not recommend running MRLocus (the

software will produce a warning), and do not evaluate MRLocus on such loci here.

Choice of methods for comparison

We chose to focus on TWMR [22] and PTWAS [25] in our comparisons, as these two methods

had a focus on estimation of the gene-to-trait effect, were able to run on eQTL data for a single

gene and a single tissue, and required only summary statistics and LD matrices. PTWAS adds

to the analysis of gene-to-trait effects an upstream fine-mapping of cis-eQTL using DAP [33],

and estimation of gene-to-trait effect heterogeneity in the case of multiple independent eQTL

signal clusters, employing an I2 statistic that ranges between 0 and 1. The I2 statistic represents,

in the gene-to-trait meditation case, the percent of variance in estimated effect sizes across sig-

nal clusters that arises from true effect heterogeneity.

We additionally compared MRLocus to LDA-MR-Egger [23] and PMR-Summary-Egger

[24] on the first simulation setting. Other methods that likewise determine if one or more

genes may mediate traits include SMR [40,41], CaMMEL [21], MESC [1], MR-Robin [26].

SMR uses the top cis-eQTL per gene to compute gene-to-trait effects, and was extended to

SMR-multi [41] to perform null hypothesis testing across multiple SNPs per gene, but it does

not offer an integrated estimate of the causal effect. We were not able to run CaMMEL using

only LD matrices from the eQTL and/or GWAS cohort, as the fit.med.zqtl function takes

genotype design matrices as input. We were not able to run MESC with less than 5 genes,

while our focus with MRLocus is on single gene mediating effect estimation. MR-Robin also

provides robust estimates of gene-to-trait effects but with a focus on multiple-tissue eQTL

summary statistics as input.

Simulation

For simulation, we used the pre-existing TWAS simulation framework, twas_sim [42], which

simulates eQTL and GWAS datasets using real genotype data (1KG EUR Phase3) and outputs

summary statistics. This software has a number of options for simulation parameters including

cis heritability of gene expression (referred to here as "h2g"), expression mediated trait herita-

bility (referred to here as "h2med"), and the number of SNPs in a locus which are cis eQTL. A

single gene’s expression was simulated per experiment, and both gene and trait were scaled to

unit variance for slope estimation. The key twas_sim simulation equations follow. For a study

with N individuals, concerning a locus with n SNPs, let the distribution of eQTL effect sizes

PLOS GENETICS MRLocus: identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity
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for causal SNPs j ∊ C, |C| = ncausal < n follow a Normal distribution with mean and variance

given by:

b
eQTL
j � Nð0; h2g=ncausalÞ:

The generation of a vector of gene expression ygene for N individuals is given by:

s2

gene ¼ V̂ ðZ beQTL
Þ

s2

err ¼ s2

geneðð1=h
2gÞ � 1Þ

εindiv � Nð0; s2

errÞ

ygene ¼ Z beQTL
þ ε;

where V̂ is a function for the unbiased sample variance, Z is an N x n matrix of zero-centered,

unit variance genotypes, βeQTL is a column vector of sampled true eQTL effect sizes which is

equal to 0 everywhere except for the causal SNPs βj
eQTL, and ε is a column vector of errors for

individuals 1 to N. A column vector of errors, ε, are drawn from a zero-centered normal with

variance s2
err. Finally, ygene is standardized to unit variance before eQTL coefficients are esti-

mated. The simulated GWAS trait ytrait for a separate set of individuals is generated as above

but using h2med in place of h2g, and where the same set of causal (non-zero effect size) SNPs

are used for βeQTL and βGWAS:

s2

trait ¼ V̂ ðZ bGWAS
Þ

s2

err;trait ¼ s2

traitðð1=h
2medÞ � 1Þ

εindiv;trait � Nð0; s2

err;traitÞ

ytrait ¼ Z bGWAS
þ εtrait:

This provides gene expression and trait with population-level heritability given by h2g and

h2med (the simulated individuals are drawn from an infinite population and so the heritability

in the finite sample may differ). Finally, the true gene-to-trait slope α is calculated as the ratio

of βj
GWAS / βj

eQTL for causal SNPs j, after scaling coefficients by the sample standard deviation

for ygene and ytrait. Therefore, in the simulations we have the approximate relationship (see also

S1 Method):

h2med ffi h2g a2

Simulations of paired eQTL and GWAS datasets were performed where the gene was a par-

tial mediator of the trait, as well as null simulations where the gene expression was unrelated

to the downstream trait and the locus contains multiple trait-only association signals (the

same causal SNP percent as for eQTL). An additional simulation was performed in which the

gene is a partial mediator of the trait, and three large effect trait-only association signals are

added to the causal SNP set for simulating the GWAS study. This simulation was performed to

assess the methods’ accuracy in the presence of horizontal pleiotropy, and code for this simula-

tion can be found in the ‘hp’ branch of the forked repository: https://github.com/mikelove/

twas_sim/tree/hp. Null simulations were obtained by running twas_sim with two different
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seeds on the same locus to produce a set of GWAS trait signals not mediated by gene expres-

sion: a distinct set of causal SNPs with unrelated effect sizes.

TWMR, PTWAS, MRLocus, eCAVIAR-MRLocus, LDA-MR-Egger, and PMR-Summary-

Egger were all run on the same summary data from eQTL and GWAS simulations. The Snake-

make software [43] was used for automation of simulation scripts including specification of

random seed for each of the simulations, in order to assist with computational reproducibility

of simulations. Simulation and analysis code is provided at https://github.com/mikelove/

mrlocusPaper. The sample sizes for eQTL and GWAS were kept at their default values of

NeQTL = 500 and NGWAS = 100,000, respectively, and an additional simulation was performed

with NeQTL = 1,000. The percent of SNPs in a locus which are eQTLs was set to 1%. The

parameter h2g was varied from its default value (0.1) to a higher value (0.2) and a lower value

(0.05), and the expression mediated trait heritability (h2med) was varied from its default value

(0.01) to two lower values (0.005, 0.001, as well as to 0 indicating a null simulation where gene

expression does not explain variation in a GWAS trait). Each combination of 3 (for h2g) x 4

(for h2med) resulted in 12 simulations (with labels A-I, Null-0.1, Null-0.2, and Null-0.05) plus

two additional simulations for partial mediation with horizontal pleiotropy (HP) and higher

NeQTL (High-N), totaling 14 simulation types (Fig A in S1 Text). 20 iterations of each simula-

tion were drawn, and if this did not produce at least 18 iterations with allelic heterogeneity

(two or more index eSNPs with p-value < 0.001 and pairwise r2 < 0.05), then 20 more itera-

tions were drawn. 40 iterations of the main (A) simulation, the horizontal pleiotropy (HP)

simulation, and the higher NeQTL (High-N) simulation were drawn. If a method did not pro-

duce output for an iteration due to insufficient input data, e.g. no signal clusters with

PIP > 0.5 for PTWAS, or < 2 nearly-LD-independent signal clusters for MRLocus, then a

slope estimate of 0 is plotted in the simulation accuracy figures. The error rate and coverage

for a method was calculated only over those iterations that the method produced an estimate.

All methods except for PMR-Summary-Egger ran without error on all iterations.

LD-based clumping implemented in PLINK (v1.90b) [32] was performed on eQTL simula-

tion un-adjusted p-values with the following settings:—clump-p1 0.001—clump-p2 1—clump-

r2 0.1—clump-kb 500. All PLINK clumps were provided to TWMR (commit 62994ec) [22]

and MRLocus (v0.0.22) for gene-to-trait effect estimation. PTWAS (v1.0) [25] was provided

with output from DAP (DAP-G, commit ac38301) [33] with settings: -d_n NeQTL -d_syy

NeQTL (as twas_sim scales expression to unit variance). PTWAS code was modified (at line 97

for commit b5714f3) to allow for input of estimated coefficients and their SE, such that it pro-

vided slope estimates on the original scale of coefficients, not z-scores. LDA-MR-Egger and

PMR-Summary-Egger (v1.0) were supplied with the eQTL and GWAS summary statistics of

the locus and the LD matrix, without clumping. For 1–2 simulation iterations, LDA-MR-Egger

or PMR-Summary-Egger would output a very large estimate of α (> 2 in absolute value), and

these large estimates were removed to give more representative error rates for these two meth-

ods. PMR-Summary-Egger does not provide an SE of the causal effect in its output so was

excluded from coverage evaluation. eCAVIAR (v2.2) was run per nearly-LD-independent sig-

nal cluster with -c 1 (maximum of one causal SNP), without collapsing of highly correlated

SNPs, as an alternative to MRLocus colocalization step. For eCAVIAR-MRLocus, the SNP

with highest CLPP among those with p-value less than the PLINK clumping threshold was

provided from each signal cluster to the slope fitting step. For all simulations, if there were no

SNPs in the simulated locus with eQTL un-adjusted p-value < 0.001 then a new seed was

drawn. Furthermore, all methods were only evaluated on loci with evidence of allelic heteroge-

neity, as demonstrated by more than one nearly-LD-independent (r2 < 0.05) signal cluster

with index eQTL p-value< 0.001. For simulation comparisons, MR with inverse variance

weighted (IVW) regression with fixed effects [44] was computed using the true causal eQTLs

PLOS GENETICS MRLocus: identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009455 April 19, 2021 8 / 24

https://github.com/mikelove/mrlocusPaper
https://github.com/mikelove/mrlocusPaper
https://doi.org/10.1371/journal.pgen.1009455


("causal") or across all SNPs ("all") using the mr_ivw_fe function in the TwoSampleMR R pack-

age (v0.5.5) [45] with eQTL as the exposure study and GWAS as the outcome study. The

"causal" IVW MR analysis served as an "oracle" estimator in the simulations, as it was provided

with information not available in a typical analysis and not provided to other methods. The

number of true eQTL SNPs, PLINK clumps, DAP signal clusters, and clusters passing 1st and

2nd round of r2-based trimming are shown in Fig B in S1 Text. The distribution of the number

of SNPs per clump before and after collapsing highly correlated SNPs (part of MRLocus pre-

processing, described in S1 Methods) is shown in Fig C in S1 Text.

In order to assess whether trimming signal clusters to obtain pairwise r2 < 0.05 would be

sufficient to protect against false positives for MRLocus slope fitting resulting from correlated

instruments, a simulation was performed across a range of r2. Estimated eQTL and GWAS

coefficients for between J = 4, 6, or 8 signal clusters were generated from a multivariate normal

distribution, such that the population correlation between adjacent signal clusters took on a

specific r2 value, and all other pairs had correlation of 0. The mean vector for the eQTL (A)

study was centered on [10,. . .,10], while the mean vector for the GWAS (B) study was centered

on the origin, such that the true gene-to-trait slope is α = 0. These coefficients and their stan-

dard errors were provided to the slope estimation step of MRLocus, and 80% credible intervals

were calculated for 400 iterations per combination of J and r2. The code for this simulation is

provided in the corr_instr_sim directory of the mrlocusPaper GitHub repository.

By producing signal clusters with PLINK clump using—clump-p1 0.001, this ensures that

the index eSNP for each signal cluster has an absolute Z-score of> ~3.3, or equivalently an F-

statistic > ~10.8. In order to assess whether even stronger criteria on the strength of the signal

clusters provided to MRLocus would improve accuracy of the gene-to-trait effect, we re-ran

PLINK clump on the main (A) simulation and the high NeQTL simulation using—clump-p1

0.0001 (F-statistic > ~15.1), and re-ran TWMR and MRLocus. Such estimates for TWMR and

MRLocus are referred to using "_p1e-4" in the Results. As PTWAS did not always produce esti-

mates on simulated loci due to insufficient signal clusters with posterior inclusion probability

(PIP) > 0.5, we additionally tested PTWAS on the A and high NeQTL simulations using signal

clusters with PIP > 0.1, referred to as "_t0.1" in the Results.

Two additional assessments of the simulation datasets were performed, to better understand

underlying factors that may explain differences in method performance. For MRLocus and

eCAVIAR colocalization steps, the accuracy in recovering the causal eSNPs was assessed across

the different simulation settings. Specifically, for signal clusters containing a true causal eSNP,

the SNP chosen as the candidate instrument from each signal cluster for slope fitting was evalu-

ated as to whether it was equal to or in high correlation (r> 0.95) with the causal eSNP. The

accuracy was then computed by averaging over all signal clusters from all iterations of the simu-

lation. Additionally, the coverage of true values by confidence or credible intervals was assessed

using information about the true simulated value. As insufficient coverage could occur due to

estimation bias or badly calibrated standard errors, for three simulations with h2g of 10% (A, D,

G), we calculated the bias for TWMR, PTWAS, MRLocus, and eCAVIAR-MRLocus, using the

sample mean of the estimates and the population-level true alpha value of (h2med / h2g)-1/2. We

then re-computed the interval coverage after subtracting the bias. While these "oracle" bias-

adjusted coverage values could not be obtained in real settings, they help to answer whether cor-

rection of estimation bias alone would resolve problems with insufficient coverage.

Real data analysis

To evaluate the performance of methods on real data, we applied TWMR, PTWAS, and

MRLocus to five candidate causal genes for mediation of particular GWAS traits, chosen based
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on literature review of previous connections between gene expression and downstream pheno-

type: SORT1 (liver)—low-density lipoproteins (LDL), MRAS (tibial artery)—coronary artery

disease (CAD), PHACTR1 (tibial artery)—CAD, CETP (liver)—high-density lipoproteins

(HDL), and LIPC (liver, as well as in blood)—HDL. eQTL and GWAS summary data were

obtained as summarized in Table A in S1 Text. Briefly, eQTL data on tibial artery, blood, and

liver was obtained from the Genotype-Tissue Expression (GTEx) project v8 [46], eQTLGen

Consortium 2019-12-23 release [47], and directly from the authors of a liver meta-analysis

study [48], respectively. GTEx v8 estimated eQTL coefficients were on the scale of unit vari-

ance expression values (following per-gene inverse normal transformation), eQTLGen esti-

mated coefficients and standard errors were derived from z-scores and MAF as indicated by

the README for SMR input, while the liver meta-analysis estimated coefficients were on the

scale of log2 normalized expression, according to references. GWAS summary statistics on

CAD were obtained from CARDioGRAMplusC4D (Coronary ARtery DIsease Genome wide

Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D)

Genetics) consortium [49], where coefficients represent log odds ratios (OR), and the UK Bio-

bank (https://www.ukbiobank.ac.uk) obtained from http://www.nealelab.is/uk-biobank/,

where coefficients are estimated with respect to unit variance, continuous scale HDL or LDL.

Prior to defining independent signal clusters, we filtered out SNPs with MAF < 0.01 from

GWAS data, and p-values were corrected with lambda GC [50]. We used raw p-values for

eQTL data and genomic control corrected p-values for GWAS data. As our task for down-

stream inference is estimation of the slope of GWAS coefficients over eQTL coefficients across

signal clusters, it is not necessary that the eQTL signal clusters attain genome-wide significance

before being provided to MRLocus. We first identified nearly-LD-independent signal clusters

for eQTL by LD-based clumping implemented in PLINK (1.90b) [32] with the following set-

tings:—clump-p1 0.001—clump-p2 1—clump-kb 500—clump-r2 0.1 (as in the simulation set-

ting). LD was estimated in the European population from the 1000 Genome Project phase 3

(1KG EUR). Next we directly obtained test statistics of matched SNPs in each eQTL cluster

from GWAS summary data.

Generating MRLocus input files

For each independent pair, we generated MRLocus input files (effect size tables) with esti-

mated coefficients, SE, and reference and effect alleles from both eQTL and GWAS. Pairwise

LD (Pearson’s r) between SNPs were generated by the PLINK—r function for all SNPs

included in the corresponding effect size table using 1KG EUR. We also included major/

minor allele information from the reference panel (PLINK bim files) in the effect size table for

proper allele flipping for statistical modeling and visualization (S1 Methods).

Real data analysis with other methods

TWMR and PTWAS were used to compare estimates on real data loci. Both software packages

require definition of eQTL signal clusters and we used DAP (DAP-G, commit ac38301) to esti-

mate independent eQTL clusters for PTWAS (v1.0) as described in the original paper, while

for TWMR (commit 62994ec) we ran PLINK clumping with the same parameters we used for

MRLocus (v0.0.22) (c.f. the original TWMR paper performed approximate conditional analy-

ses). DAP was applied to estimated coefficients and SE from eQTL summary statistics with

default options except we set maximum models (-msize) to 20. For the CETP locus, there were

not any signal clusters for PTWAS with sufficient posterior inclusion of probability (all signal

cluster PIP < 0.5), so the threshold was lowered to 0.1 in order to visualize an estimate and

interval.
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Results

Simulation

In order to evaluate the accuracy in estimating the mediated gene effect, we used a GWAS and

eQTL simulation. The twas_sim simulation framework used for evaluating methods has

default values for cis eQTL gene expression heritability of 10% (h2g) and expression mediated

trait heritability of 1% (h2med). As the eQTL-based gene expression heritability could feasibly

be higher or lower than 10%, we investigated values of 20% and 5% as well, which are within

the range of detection for eQTL studies with hundreds of samples [51–55]. The default medi-

ated trait variance explained value of 1% for a single gene is likely high, given that a recent pub-

lication using GTEx data has estimated the proportion of heritability mediated by expression

across all genes to be around 11% (±2%) averaging over 42 traits, with the top mediated traits

having around 30% of heritability mediated by expression [1]. We therefore considered even

lower expression mediated heritability of the GWAS trait, h2med of 0.5% and 0.1%, as well as a

null simulation where gene expression did not mediate the downstream trait in any way (0%).

We note that the selection of simulated loci with two or more nearly-LD-independent eQTL

with index eSNP p-value < 0.001 may result in Winner’s Curse for low-powered studies,

where true values tend to be smaller than the estimated coefficients for the eSNPs passing a sig-

nificance threshold. Over-estimation of instrument effect sizes would then result in under-esti-

mation of the mediation effect. There was some over-estimation for the lowest gene

heritability (h2g = 0.05), but a balance of both under- and overestimation of effect sizes for h2g

of 0.1 or 0.2 (Fig D in S1 Text).

For the default values of 10% gene h2 and 1% h2med (simulation A), eCAVIAR-MRLocus

had the highest accuracy in terms of relative mean absolute error (RMAE), dividing the error

by the absolute value of the true slope, followed by MRLocus and PTWAS (Fig 2A). TWMR

and PTWAS demonstrated the most negative bias, calculated using the sample mean of the

estimator and the population-level α. The bias for TWMR, PTWAS, MRLocus, and eCA-

VIAR-MRLocus was -0.112, -0.079, -0.003, and -0.053, respectively. In addition, only eCA-

VIAR-MRLocus and MRLocus were able to achieve nominal coverage for 80% credible

Fig 2. Performance of methods on simulated eQTL and GWAS datasets. (A) Estimates of each method over true (simulated) gene-to-trait

values. The method denoted with “causal” indicates an inverse variance weighted slope estimation using the true causal SNPs but the estimated

coefficients and SEs (an oracle estimate), and “all” indicates an inverse variance weighted slope estimation using all SNPs. (B) Observed coverage

(abbreviated “cov.”) of 80% confidence or credible intervals from each method. If the interval contains the true effect size, it is colored black,

otherwise red.

https://doi.org/10.1371/journal.pgen.1009455.g002
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intervals over the true values, while other methods had lower observed coverage, having too

narrow confidence intervals (Fig 2B). We additionally tested two other methods, LDA-MR-Eg-

ger and PMR-Summary-Egger at the default twas_sim settings (Fig E in S1 Text). These addi-

tional two methods had higher error compared to other methods at the default twas_sim

settings (with LDA-MR-Egger having lower error of the two), and so we focused on the latter

three methods for further evaluation. Here, and in all simulation settings considered, the eval-

uated methods had higher RMAE of gene-to-trait slope compared to an oracle method that

uses only the true causal SNPs (which are generally not known) and their estimated coeffi-

cients (“causal”) in IVW regression with fixed effects [44].

In the evaluation of pairwise r2 across signal clusters, for loci with 4, 6, or 8 signal clusters,

increase in the r2 of adjacent signals was associated with an increase in the false positive rate

for MRLocus (Fig F in S1 Text). False positive rate was measured by the rate of 80% credible

intervals not covering the true value of α = 0, for 400 simulation iterations per combination of

simulation parameters. At r2 < 0.05, the average rate of intervals not covering 0 was approxi-

mately 20%, so MRLocus was then achieving the nominal level. We therefore recommend

trimming signal clusters to achieve r2 < 0.05 across pairs of clusters before running MRLocus

slope estimation, because allowing higher pairwise r2 across instruments could lead to loss of

nominal interval coverage. A convenience function in the MRLocus package, trimClusters,

can be used to prioritize signal clusters with higher strength of eQTL signal. Violin plots of the

pairwise r2 across clusters, for all instruments passed to MRLocus slope fitting is provided in

Fig G in S1 Text.

We modified simulation A in two ways, to assess how horizontal pleiotropy or higher sam-

ple size would worsen or improve estimation of partial mediation, respectively. The effect of

horizontal pleiotropy, i.e. signals associated separately with gene expression and trait, on esti-

mation of gene-to-trait mediation was assessed by adding non-expression associated GWAS

signals to a loci exhibiting partial mediation. An example region plot for one of the HP simula-

tion iterations is provided in Fig H in S1 Text. TWMR, PTWAS, MRLocus, and eCA-

VIAR-MRLocus had higher error and lower interval coverage for the horizontal pleiotropy

simulation compared to their performance in simulation A, as expected (Fig I in S1 Text, with

additional methods provided in Fig J in S1 Text). MRLocus and eCAVIAR-MRLocus had

nearly the same RMAE, which was the lowest among the methods tested. LDA-MR-Egger was

less affected by inclusion of trait-only signals, although still having higher error than all other

methods except for PMR-Summary-Egger. MRLocus and eCAVIAR-MRLocus obtained close

to 80% coverage (86% and 76%, respectively) despite the addition of coincident trait-only

GWAS signals. Finally, for the same default h2g and h2med settings as simulation A, we

increased the sample size to NeQTL = 1,000 to see how higher power in detection of instru-

ments may translate to better estimation of mediation. In this higher power setting, all meth-

ods had lower error in estimating the gene-to-trait effect (Fig K in S1 Text). Here, MRLocus

had the lowest RMAE, slightly below that of eCAVIAR-MRLocus, and both obtained nominal

interval coverage. PTWAS had improved confidence interval coverage (from 28% to 50%)

while other methods had similar coverage as with NeQTL = 500.

For simulations using other parameter settings of gene expression heritability h2g and

expression mediated trait heritability h2med, MRLocus had the second lowest RMAE in 6 of

the remaining 8 non-null simulation settings with non-default values of h2g and h2med (Figs

L-S in S1 Text). In simulation G, with 10% h2g and 0.1% h2med, PTWAS had lower RMAE

than MRLocus, and in simulation H, with 20% h2g and 0.1% h2med, eCAVIAR-MRLocus had

lower RMAE than MRLocus and PTWAS. Overall, considering the non-null simulations per-

formed, MRLocus or eCAVIAR-MRLocus had the lowest RMAE in estimating the gene-to-

trait effect compared to other methods for 10 out of 11 of the settings (Fig 2, and Figs I, K-P,
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R-S in S1 Text). When expression heritability and mediated heritability were moderate to high

(h2g� 10%, h2med� 0.5%), these two methods would come close to the RMAE of the oracle

estimate ("causal").

In terms of credible or confidence interval coverage, MRLocus and eCAVIAR-MRLocus

always had better or equal coverage of the true values compared to all other methods within

the non-null simulation settings, though it did not always reach the nominal level (Figs T-AA

in S1 Text). When expression heritability was low (h2g = 5%), or the mediated trait heritability

low (h2med = 0.1%) MRLocus and eCAVIAR-MRLocus had coverage roughly in the range

50–70%; exceptions to this trend were that MRLocus achieved >80% coverage for simulation

F, and both methods had>80% coverage for simulation H. MRLocus always had higher cover-

age than eCAVIAR-MRLocus when they differed by more than 5%. PTWAS tended to have

higher coverage than TWMR, but they each had a maximal coverage of 39% and 26%, respec-

tively; TWMR and PTWAS had the best coverage on the h2g = 20%, h2med = 0.1% simulation.

The oracle method tended to have narrow confidence intervals, and MRLocus had higher cov-

erage than the oracle method for all simulations. The maximal coverage of the oracle was simu-

lation F with 40%. We believe the lower-than-nominal coverage seen here for the oracle

method is likely from insufficient propagation of error during slope estimation. As the twas_-

sim framework does not include heterogeneity of effects from different signal clusters, an addi-

tional simulation was performed to assess MRLocus’s estimation of the dispersion of effects

around the gene-to-trait fitted line (Fig AB in S1 Text). Here, MRLocus was accurate both in

estimation of the dispersion and quantification of uncertainty (attaining nominal credible

interval coverage), with higher accuracy and smaller intervals as the number of nearly-LD-

independent clusters increased, as expected.

In the 3 null simulation settings with h2g of 5%, 10%, 20% but no mediated heritability, and

trait-only GWAS signals, MRLocus always had the highest interval coverage of the true slope

value of 0 (average of 79%, close to the nominal 80%), followed by eCAVIAR-MRLocus (aver-

age of 63%) (Fig AC in S1 Text). Here, TWMR had average coverage of 35% and PTWAS had

average coverage of 38%. The oracle method with the true eQTL SNPs had average coverage of

14%. The oracle method again had too narrow intervals as in the non-null simulations.

TWMR and PTWAS had lower mean absolute error (MAE) for estimating α = 0 than MRLo-

cus and eCAVIAR-MRLocus, which was expected due to the bias toward 0 seen in the non-

null simulations.

We performed sensitivity analysis for the two thresholds involved in the formation of signal

clusters: the eQTL p-value used with PLINK clump (default of p-value < 0.001), and the PIP

threshold for inclusion of a signal cluster to PTWAS causal effect estimation (default of

PIP > 0.5). While p-value < 0.001 corresponds to an F-statistic > ~10.8, use of stronger crite-

ria for the eQTL instruments (p< 0.0001, F-statistic > 15.1) did not result in higher accuracy

or better interval coverage for MRLocus in simulation A or with higher NeQTL = 1,000 (Fig AD

in S1 Text). However, in both simulation settings, accuracy and coverage were improved

slightly for TWMR using the stricter p-value for clumping. Running PTWAS with PIP thresh-

old lowered from the default value of 0.5 to 0.1 did not improve accuracy or interval coverage

in these simulation settings.

We assessed whether MRLocus colocalization step or eCAVIAR was more accurate at iden-

tifying the causal eSNP in non-null and null simulations. eCAVIAR outperformed MRLocus

on the non-null simulations in its ability to detect the true causal SNP, for all 11 non-null sim-

ulations (Fig AE in S1 Text). We note that eCAVIAR does not provide posterior estimates of

eQTL and GWAS effect sizes, the originally designed input to the MRLocus slope fitting step.

When providing eCAVIAR-chosen SNPs and the original estimated coefficients from eQTL

and GWAS, we find that eCAVIAR-MRLocus is more accurate for only 2 out of 11 non-null
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simulations (simulation A and H). Furthermore, MRLocus generally had higher coverage of

the gene-to-trait effect compared to eCAVIAR-MRLocus in the more difficult simulation set-

tings (simulations C, F, and I, while eCAVIAR-MRLocus had higher coverage for simulation

G). For the null simulations, in which eQTL eSNPs and GWAS trait-associated SNPs are dis-

tinct and expression does not mediate trait variance, MRLocus colocalization was always more

accurate at identifying the true causal eSNP, and the MRLocus-chosen eSNPs were better for

providing intervals that cover the true gene-to-trait effect (α = 0).

Insufficient confidence or credible interval coverage could result from estimator bias, and

TWMR and PTWAS exhibited downward bias in the simulations. We further examined if cal-

culating and removing the estimator bias (using the true, population-level slope α) improved

interval coverage for TWMR, PTWAS, MRLocus and eCAVIAR-MRLocus, for the simula-

tions with h2g of 10% (simulation A, D, and G). In some cases, bias removal helped substan-

tially, for example TWMR’s coverage rising from 14% to 67% in simulation A and from 8% to

59% in simulation D, or PTWAS’s coverage rising from 35% to 76% in simulation G (Fig AF

in S1 Text). Still, even with this "oracle" bias removal, TWMR and PTWAS still had cases of

insufficient coverage, for example PTWAS with 32% coverage in simulation D, and TWMR

with 44% coverage in simulation G. This indicated that the insufficient coverage observed for

these methods was not only due to bias, but also from too small standard errors on the causal

effect estimate.

We assessed method timing across the 80 main (A) and high NeQTL simulations. MRLocus

was approximately 17 times slower than TWMR and 32 times slower than PTWAS, with a

mean running time per locus of 75 seconds compared to 4.3 seconds for TWMR and 2.3 sec-

onds for PTWAS (Fig AG in S1 Text). The additional elapsed time is because MRLocus

involves a colocalization step with model fitting per signal cluster using MCMC. MRLocus

colocalization step was provided with four cores for running four MCMC chains, while other

methods and MRLocus slope fitting used a single core. Performing colocalization with eCA-

VIAR reduced the running time by about two-thirds for eCAVIAR-MRLocus compared to

MRLocus (3.4 seconds for eCAVIAR colocalization and 22 seconds for MRLocus slope fitting,

so in total 6 times slower than TWMR and 11 times slower than PTWAS). One reason why

MRLocus colocalization is slower than eCAVIAR is that MRLocus’s model for colocalization

adapts its priors for eQTL and GWAS effect sizes to the data in each signal cluster in terms of

the scale and sparsity of causal variants. Runtime for PLINK clumping and DAP were not

included in the times presented above.

Real data analysis

We compared TWMR, PTWAS, MRLocus, and eCAVIAR-MRLocus using eQTL and GWAS

summary statistics for five gene-trait pairs in which there is strong evidence that the gene

mediates the trait, and the direction of the effect has also been reported, such that we could

compare our estimates against the literature. For one gene-trait pair (LIPC and HDL), we

examined the effect in liver, the tissue reported in literature as the relevant gene expression

context, as well as using eQTL in blood, where the expression association signal may or may

not provide strong evidence of mediation of the GWAS trait. LocusZoom-style plots [56,57]

for the eQTL and GWAS tracks are provided in Figs AH-AL in S1 Text. Additionally, the LD

patterns for all trimmed signal clusters are provided in Figs AM-AR in S1 Text.

On the six eQTL-GWAS dataset pairs, all four methods had consistent sign of the mediating

effect (Fig 3). MRLocus and eCAVIAR-MRLocus generally had larger credible intervals com-

pared to confidence intervals from the other two methods, as was seen in the simulation data-

sets where MRLocus and eCAVIAR-MRLocus had improved coverage of the true effect size.
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In all cases except LIPC in blood, the sign of the mediating effect was in concordance with lit-

erature: higher SORT1 (liver) expression decreasing LDL levels [19,58,59], higher MRAS
(artery) being hazardous for CAD [60–62], higher PHACTR1 (artery) being protective for

CAD [63,64], higher CETP (liver) decreasing HDL levels [65], and higher LIPC (liver) decreas-

ing HDL levels [66]. For LIPC assayed in blood, TWMR and PTWAS have positive effect sizes

with narrow confidence intervals (opposite of the mediating effect for LIPC in liver), while

MRLocus and eCAVIAR-MRLocus have large credible intervals, reflecting the conflicting evi-

dence across blood eQTL signal clusters (Figs AS and AT in S1 Text). We note that MRLocus

also has large credible intervals for LIPC in liver, due to a limited number of nearly-LD-inde-

pendent signal clusters (n = 3) and posterior GWAS effect sizes close to 0 for two signal clus-

ters (Fig AS in S1 Text). For CETP (liver) paired with HDL, PTWAS did not have any DAP

signal clusters with sufficient PIP (threshold of 0.5) to estimate an effect, so the threshold was

lowered to 0.1, which produced an estimate close to 0, while MRLocus and eCAVIAR-MRLo-

cus likewise displayed high uncertainty of mediation given the limited number of signal clus-

ters (n = 2 for both, Figs AS and AT in S1 Text).

MRLocus had the strongest evidence for mediation with SORT1 (liver) and its effect on LDL,

with LocusZoom-style plot of the region in Fig 4A and MRLocus gene-to-trait estimate plot in

Fig 4B. The number of signal clusters used for MRLocus for SORT1 (liver), MRAS (artery),

PHACTR1 (artery), CETP (liver), LIPC (liver), and LIPC (blood) were: {6, 9, 5, 2, 3, 31}, and for

eCAVIAR-MRLocus were: {5, 5, 6, 2, 3, 28}. The number of nearly-LD-independent signal clus-

ters for blood eQTL for LIPC (n = 31 and 28 for MRLocus and eCAVIAR-MRLocus, respec-

tively) is likely an overestimate of the number of true causal SNPs at this locus, and new

methods for clumping or summary-based conditional analysis large-sample-size meta-analysis

eQTL studies may refine these signals. MRLocus and eCAVIAR-MRLocus also had strong evi-

dence for mediation with PHACTR1 (artery) and its effect on CAD. Two loci where MRLocus

and eCAVIAR-MRLocus have slightly differing results were MRAS (artery) on CAD and LIPC
(liver) on HDL, where MRLocus-selected instruments tended to have more scatter (Fig AS in

S1 Text), and thus more uncertainty reflected in the credible interval of the gene-to-trait effect.

Estimates of heterogeneity and dispersion for PTWAS and MRLocus are shown in Table 1.

PTWAS indicates heterogeneity of instruments using an I2 statistic that ranges from 0 to 1

Fig 3. Estimated gene-to-trait effects for TWMR, PTWAS, and MRLocus on five eQTL and GWAS datasets for

strong candidate genes for mediation of the GWAS trait and one auxiliary tissue example (LIPC in blood). 80%

confidence or credible intervals are shown (MRLocus provides quantile-based credible intervals). The artery eQTL

were estimated from inverse normal transformed expression data from GTEx, transformed z-scores for eQTLGen,

while the liver meta-analysis eQTL were estimated from log2 expression data, thus the estimated slopes represent

changes in SD of artery or blood gene expression on log odds for CAD risk and on SDs of lipid levels, and doubling of

liver gene expression on SDs of lipid levels.

https://doi.org/10.1371/journal.pgen.1009455.g003
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(low to high heterogeneity). MRLocus estimates the dispersion of instruments around the fit-

ted line on the scale of the mediation effect; the estimate can be compared across loci by calcu-

lating the mean mediated effect: (estimate α) x (mean of estimated coefficients for βj
A).

Visually, the mean mediated effect is the y-axis value from the fitted slope in Fig 4B corre-

sponding to the middle values of estimated eQTL coefficients. The ratio of the estimate of dis-

persion σ over the absolute value of mean mediated effect indicates relatively how much the

effects from nearly-LD-independent signal clusters vary around the conditional mean. The

lowest I2 for PTWAS was for MRAS and LIPC (liver), which each had an estimate of 0 for

Table 1. I2 statistic for PTWAS and dispersion estimate σ from MRLocus for eQTL-GWAS pairs.

Gene (tissue)—trait PTWAS I2 MRLocus σ Mean mediated σ / |MM|

SORT1 (liver)—LDL 0.85 1.47 -0.062 0.17

MRAS (art.)—CAD 0.00 0.16 0.014 0.91

PHACTR1 (art.)—CAD 0.76 0.12 -0.044 0.71

CETP (liver)—HDL 0.92 0.17 -0.12 1.43

LIPC (liver)—HDL 0.00 0.14 -0.028 1.30

LIPC (blood)—HDL 0.29 0.12 0.0051 7.16

Additional columns provide the mean mediated effect for MRLocus, and the ratio of the dispersion to the absolute value of the mean mediated effect.

https://doi.org/10.1371/journal.pgen.1009455.t001

Fig 4. Colocalization and MRLocus estimation for SORT1. (A) Colocalized signals in the SORT1 region. From top panel to bottom, gene model (NCBI

Refseq), eQTL for SORT1 in liver (N = 588) (Strunz et al., 2018) and LDL association within UKBB (N = 343,621). Dashed line indicates a significance

threshold at p = 0.001 or p = 5x10-8 for eQTL and GWAS respectively. Colored labels indicate eSNPs used for slope fitting with both methods,

eCAVIAR-MRLocus, or MRLocus. (B) MRLocus plot of the gene-to-trait effect for SORT1 expression in liver on LDL levels. The signal clusters all provide

consistent evidence for a gene-to-trait effect of -0.042, meaning that doubling of gene expression level in liver should reduce LDL by 4.2% of its population

standard deviation. An 80% credible interval for the slope is indicated by dashed blue lines around the solid blue slope, while a range of heterogeneity of allelic

effects is indicated by the light blue band.

https://doi.org/10.1371/journal.pgen.1009455.g004
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heterogeneity. The lowest dispersion relative to the mean mediated effect for MRLocus was for

SORT1, followed by PHACTR1 and MRAS.

On the six gene-tissue-trait combinations, eCAVIAR colocalization took an average of 6

seconds per locus, MRLocus slope fitting following eCAVIAR took an average of 18 seconds

per locus, and MRLocus (both steps) took an average of ~4 minutes per locus, using 4 cores

for MRLocus colocalization step.

Discussion

Here, we introduce MRLocus, a two-step Bayesian statistical procedure for estimation of gene-

to-trait effects from eQTL and GWAS summary statistics. We find that MRLocus tends to

have high accuracy in estimating the gene-to-trait effect across a variety of simulation settings,

often higher than existing methods, and always had better credible interval coverage of true

values, whether in partial mediation or null simulations. On real data analyses, MRLocus and

eCAVIAR-MRLocus (using eCAVIAR for colocalization followed by MRLocus slope fitting)

had consistent sign of estimates and comparable effect size compared to TWMR and PTWAS,

but larger credible intervals compared to the other methods’ confidence intervals. While the

effect sizes of alleles detected by GWAS on downstream traits examined here may be moder-

ate, MRLocus’s estimation of the causal effect from perturbation of gene expression can be

helpful in assessing the impact of therapeutic effects modulating expression on downstream

traits [67]. For various systems, different downstream trait effect sizes qualify as practically

meaningful increases or decreases, and MRLocus provides a framework for assessing what

level of gene expression perturbation may be needed to obtain such changes in a downstream

trait.

MRLocus was used to estimate the gene-to-trait effect following colocalization with MRLo-

cus’s own Bayesian model of eQTL and GWAS coefficients per signal cluster, and alternatively

using the existing eCAVIAR method. Both approaches were found to perform well in simula-

tions, and better than other methods in terms of accuracy and interval coverage of the true

slope. Use of eCAVIAR sped up the pipeline substantially (by at least an order of magnitude

after accounting for use of multiple cores), as colocalization in MRLocus is the slowest step.

eCAVIAR was better on average at identifying the true causal eSNP for non-null simulations,

although MRLocus was better at identifying true causal eSNP in the null simulations. In simu-

lation settings when expression heritability was high (h2g> 5%), passing original estimated

coefficients for eCAVIAR-identified SNPs to slope fitting performed just as well as passing

MRLocus’s posterior estimates for MRLocus-identified SNPs. However, when expression heri-

tability was lower (h2g = 5%), MRLocus had a more substantial gain in accuracy in estimating

the gene-to-trait effect over eCAVIAR-MRLocus. This advantage may be due to the shrinkage

of the eQTL/GWAS effect sizes that occurs in the MRLocus colocalization step (eCAVIAR

does not provide posterior estimates of effect size). Also, in the h2g = 5% simulations, eCA-

VIAR-MRLocus had moderate coverage of the true effect (48–58%), while MRLocus had

closer to nominal coverage (68–87%). In the real data loci, the two alternatives for colocaliza-

tion input to MRLocus slope fitting had similar output, except for the case of MRAS (artery)

and LIPC (liver) where MRLocus had a larger interval, intersecting with 0. Overall, we recom-

mend MRLocus over eCAVIAR-MRLocus for general purpose estimation of gene-to-trait

effects, but both are provided as options in the MRLocus software guide.

While the mediator evaluated by MRLocus in this work was gene expression effects via

eQTL, the methods are generic, and protein abundance effects via pQTL could be used instead

of eQTL. Two-sample MR linking pQTL and GWAS has already uncovered 30 metabolite fea-

tures with evidence of causal effects on at least one disease [68], and a recent pQTL study of
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hepatic proteins reported a median of 4.5 local pQTL variants per protein [69], suggesting that

there are loci with sufficient number of nearly-LD-independent clusters for MR analysis. Addi-

tionally, large scale pQTL studies of similar sample size to eQTLGen (>30,000 individuals)

have uncovered secondary pQTL signals upon conditional analysis for hundreds of loci [70].

Alternatively, pQTL could be used in place of the downstream GWAS trait in order to study

mediation from gene expression to protein abundance [71], as previous work has found pQTL

effect size to be positively correlated with eQTL effect size for variants ascertained through

eQTL in human [72,73], and that colocalized eQTL and pQTL signal leads to higher observed

RNA-protein correlations in mice [74].

Given MRLocus’s improved performance with respect to interval coverage in the simula-

tion, we feel that accurate estimation of uncertainty is an advantage to MRLocus, and the focus

in developing a new method was on specificity for prioritization of gene targets for functional

follow-up experiments. Additionally, the MRLocus model is extensible. The slope-fitting

model could easily be generalized to use an alternative monotonic function, as long as there

are sufficient nearly-LD-independent signal clusters to support fitting. On the other hand,

MRLocus’s slower speed means it is likely not the best choice for a global scan of the transcrip-

tome for mediating genes, while the other methods examined and discussed here have been

successfully used to scan across all genes and across multiple tissues. Furthermore, MRLocus is

designed for investigating loci with strong causal gene candidates, whereas other methods that

estimate gene-to-trait effects for many genes in a locus simultaneously may have less biased

estimation of the effect, when a strong gene candidate is not present. Future work on the

MRLocus model may involve estimation of the mediating effect of candidate causal genes in

the context of other relevant genes in a pathway and a polygenic background [75].

There are a number of important limitations of the current study. First, the 1000 Genome

Project phase 3 (1KG EUR) was used for LD calculations and clumping on the real data loci,

although this reference panel is now a small sample size compared to other available resources

such as gnomAD, TOPMed, and UK Biobank [76–78]. In addition, new tools such as TopLD

(http://topld.genetics.unc.edu/topld/) allow for easy access to LD based on TOPMed whole

genome sequencing data. MRLocus and other methods for estimating mediation effects would

benefit from these larger reference panels for LD calculations. Another important limitation is

that, as eQTL study sample sizes increase, the threshold of eQTL p-value < 0.001 for clumping

and inclusion of eQTL instruments may prove to be too lenient, as could be seen in the large

number of nearly-LD-independent loci with small eQTL effect size for LIPC in blood from

eQTLGen (Figs AS and AT in S1 Text). More sophisticated statistical methods for performing

conditional analyses from summary statistics would benefit downstream analyses such as

MRLocus that make use of nearly-LD-independent signal clusters, and stricter instrument

inclusion criteria may be needed for large studies and meta-analyses with ancestry heterogene-

ity across studies.

We note that our method focuses on common variation (MAF> 0.01), and that we collapse

highly correlated SNPs to a single representative SNP during the pre-processing, such that we

cannot determine if the final selected SNP is the true "causal" SNP. Future development of

MRLocus could involve upstream use of methods defining credible sets [79–84] or modeling

based on a posterior inclusion probability as in LLARRMA or DAP [33,85]. Therefore, the cur-

rent implementation of MRLocus can perform fine-mapping to the level of a highly correlated

set of SNPs, which may be sufficient for identifying one or more regulatory elements (RE) to

prioritize for functional follow-up experiments. The current implementation of MRLocus

assumes that the mediation slope passes through the origin, and therefore that eQTL signal

clusters do not affect the downstream trait through genes other than the eGene. Estimation

was nevertheless shown to be robust when loci harbored large trait-only association signals.
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Further iterations of MRLocus could relax this assumption through the addition of an inter-

cept term accounting for invalid instruments as in MR-Egger [86,87]. Complementary infor-

mation linking RE to genes, e.g. as measured by Hi-C, was not examined here, but have been

proven successful elsewhere (HUGIN [88], H-MAGMA [89]), and we envision that prioritiza-

tion of signal clusters in MRLocus that are supported by Hi-C would increase its power to

detect causal genes.

As part of the MR analysis, MRLocus provides an estimate of the dispersion of effects

around the estimated slope from nearly-LD-independent signal clusters, analogous to

PTWAS’ use of the I2 statistic for effect size heterogeneity. The combined information from

PTWAS and MRLocus regarding both uncertainty in estimation of the gene-to-trait slope, and

estimated dispersion or heterogeneity of effects is critical when modeling context-specific (e.g.

relevant tissue, cell type, or developmental stage) gene expression as a mediator for down-

stream traits. Different combinations of eQTL and GWAS SE (primarily influenced by sample

size), extent of heterogeneity of effects, and the number of nearly-LD-independent signal clus-

ters within a locus all may give rise to the same gene-to-trait effect and SE, but disentangling

these sources of variance is important for experimental planning. For example, consider exper-

imental follow-up for endophenotype downstream traits that could be feasibly measured in
vitro. An investigator could choose between modulating gene expression directly or modulat-

ing the activity of an RE harboring candidate causal SNPs. A nonzero gene-to-trait effect with

narrow credible interval estimated by MRLocus (as in Figs 1A and 4B) would suggest that

modulating the gene directly or via the activity of an RE should affect the downstream trait,

and the predicted effect could be assessed experimentally. However, high dispersion around

the gene-to-trait slope (as in Fig 1B) suggests that perturbation of an RE implicated by candi-

date causal SNPs may induce an effect on the trait that is far from the effect size indicated by

the fitted line, such that modulation of the gene directly may prove more successful. MRLocus

provides a band around the predominant gene-to-trait slope, such that functional experiments

per RE can therefore be prioritized. In all, here we demonstrate the MRLocus method and soft-

ware utilizing summary statistics from eQTL and GWAS to identify genes mediating traits

that can be prioritized for experimental follow-up.
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